xref: /btstack/example/spp_flowcontrol.c (revision 0e2df43f5cbae3fc71139523458b98f30307d21b)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 // *****************************************************************************
39 /* EXAMPLE_START(spp_flowcontrol): SPP Server - Flow Control
40  *
41  * @text This example adds explicit flow control for incoming RFCOMM data to the
42  * SPP heartbeat counter example. We will highlight the changes compared to the
43  * SPP counter example.
44  */
45  // *****************************************************************************
46 
47 #include <stdint.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 
52 #include "hci_cmd.h"
53 #include "btstack_run_loop.h"
54 #include "classic/sdp_util.h"
55 
56 #include "hci.h"
57 #include "l2cap.h"
58 #include "btstack_memory.h"
59 #include "classic/rfcomm.h"
60 #include "classic/sdp_server.h"
61 #include "btstack_config.h"
62 
63 #define HEARTBEAT_PERIOD_MS 500
64 
65 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size);
66 
67 static uint8_t  rfcomm_channel_nr = 1;
68 static uint16_t rfcomm_channel_id;
69 static uint8_t  rfcomm_send_credit = 0;
70 static uint8_t  spp_service_buffer[150];
71 static btstack_packet_callback_registration_t hci_event_callback_registration;
72 
73 /* @section SPP Service Setup
74  *
75  * @text Listing explicitFlowControl shows how to
76  * provide one initial credit during RFCOMM service initialization. Please note
77  * that providing a single credit effectively reduces the credit-based (sliding
78  * window) flow control to a stop-and-wait flow control that limits the data
79  * throughput substantially.
80  */
81 
82 /* LISTING_START(explicitFlowControl): Providing one initial credit during RFCOMM service initialization */
83 static void spp_service_setup(void){
84 
85     // register for HCI events
86     hci_event_callback_registration.callback = &packet_handler;
87     hci_add_event_handler(&hci_event_callback_registration);
88 
89     // init L2CAP
90     l2cap_init();
91 
92     // init RFCOMM
93     rfcomm_init();
94     // reserved channel, mtu limited by l2cap, 1 credit
95     rfcomm_register_service_with_initial_credits(rfcomm_channel_nr, 0xffff, 1);
96 
97     // init SDP, create record for SPP and register with SDP
98     sdp_init();
99     memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
100     sdp_create_spp_service(spp_service_buffer, 0x10001, 1, "SPP Counter");
101     sdp_register_service(spp_service_buffer);
102     printf("SDP service buffer size: %u\n\r", (uint16_t) de_get_len(spp_service_buffer));
103 }
104 /* LISTING_END */
105 
106 /* @section Periodic Timer Setup
107  *
108  * @text Explicit credit management is
109  * recommended when received RFCOMM data cannot be processed immediately. In this
110  * example, delayed processing of received data is simulated with the help of a
111  * periodic timer as follows. When the packet handler receives a data packet, it
112  * does not provide a new credit, it sets a flag instead, see Listing phManual.
113  * If the flag is set, a new
114  * credit will be granted by the heartbeat handler, introducing a delay of up to 1
115  * second. The heartbeat handler code is shown in Listing hbhManual.
116  */
117 
118 static btstack_timer_source_t heartbeat;
119 
120 /* LISTING_START(hbhManual): Heartbeat handler with manual credit management */
121 static void  heartbeat_handler(struct btstack_timer_source *ts){
122     if (rfcomm_send_credit){
123         rfcomm_grant_credits(rfcomm_channel_id, 1);
124         rfcomm_send_credit = 0;
125     }
126     btstack_run_loop_set_timer(ts, HEARTBEAT_PERIOD_MS);
127     btstack_run_loop_add_timer(ts);
128 }
129 /* LISTING_END */
130 
131 static void one_shot_timer_setup(void){
132     heartbeat.process = &heartbeat_handler;
133     btstack_run_loop_set_timer(&heartbeat, HEARTBEAT_PERIOD_MS);
134     btstack_run_loop_add_timer(&heartbeat);
135 }
136 
137 /* LISTING_START(phManual): Packet handler with manual credit management */
138 // Bluetooth logic
139 static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
140 /* LISTING_PAUSE */
141     bd_addr_t event_addr;
142     uint8_t   rfcomm_channel_nr;
143     uint16_t  mtu;
144     int i;
145 
146     switch (packet_type) {
147         case HCI_EVENT_PACKET:
148             switch (hci_event_packet_get_type(packet)) {
149 
150                 case BTSTACK_EVENT_STATE:
151                     if (packet[2] == HCI_STATE_WORKING) {
152                         printf("BTstack is up and running\n");
153                     }
154                     break;
155 
156                 case HCI_EVENT_COMMAND_COMPLETE:
157                     if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){
158                         reverse_bd_addr(&packet[6], event_addr);
159                         printf("BD-ADDR: %s\n\r", bd_addr_to_str(event_addr));
160                         break;
161                     }
162                     break;
163 
164                 case HCI_EVENT_LINK_KEY_REQUEST:
165                     // deny link key request
166                     printf("Link key request\n\r");
167                     reverse_bd_addr(&packet[2], event_addr);
168                     hci_send_cmd(&hci_link_key_request_negative_reply, &event_addr);
169                     break;
170 
171                 case HCI_EVENT_PIN_CODE_REQUEST:
172                     // inform about pin code request
173                     printf("Pin code request - using '0000'\n\r");
174                     reverse_bd_addr(&packet[2], event_addr);
175                     hci_send_cmd(&hci_pin_code_request_reply, &event_addr, 4, "0000");
176                     break;
177 
178                 case RFCOMM_EVENT_INCOMING_CONNECTION:
179                     // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
180                     reverse_bd_addr(&packet[2], event_addr);
181                     rfcomm_channel_nr = packet[8];
182                     rfcomm_channel_id = little_endian_read_16(packet, 9);
183                     printf("RFCOMM channel %u requested for %s\n\r", rfcomm_channel_nr, bd_addr_to_str(event_addr));
184                     rfcomm_accept_connection(rfcomm_channel_id);
185                     break;
186 
187                 case RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE:
188                     // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
189                     if (packet[2]) {
190                         printf("RFCOMM channel open failed, status %u\n\r", packet[2]);
191                     } else {
192                         rfcomm_channel_id = little_endian_read_16(packet, 12);
193                         mtu = little_endian_read_16(packet, 14);
194                         printf("\n\rRFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n\r", rfcomm_channel_id, mtu);
195                     }
196                     break;
197 
198                 case RFCOMM_EVENT_CHANNEL_CLOSED:
199                     rfcomm_channel_id = 0;
200                     break;
201 
202                 default:
203                     break;
204             }
205             break;
206 /* LISTING_RESUME */
207         case RFCOMM_DATA_PACKET:
208             for (i=0;i<size;i++){
209                 putchar(packet[i]);
210             };
211             putchar('\n');
212             rfcomm_send_credit = 1;
213             break;
214 /* LISTING_PAUSE */
215         default:
216             break;
217     }
218 /* LISTING_RESUME */
219 }
220 /* LISTING_END */
221 
222 
223 
224 int btstack_main(int argc, const char * argv[]);
225 int btstack_main(int argc, const char * argv[]){
226 
227     spp_service_setup();
228     one_shot_timer_setup();
229 
230     puts("SPP FlowControl Demo: simulates processing on received data...\n\r");
231     gap_set_local_name("BTstack SPP Flow Control");
232     gap_discoverable_control(1);
233 
234     // turn on!
235     hci_power_control(HCI_POWER_ON);
236 
237     return 0;
238 }
239 /* EXAMPLE_END */
240 
241 
242