xref: /btstack/example/spp_and_gatt_streamer.c (revision cd5f23a3250874824c01a2b3326a9522fea3f99f)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
24  * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "spp_and_gatt_streamer.c"
39 
40 // *****************************************************************************
41 /* EXAMPLE_START(spp_and_le_streamer): Dual mode example
42  *
43  * @text The SPP and LE Streamer example combines the Bluetooth Classic SPP Streamer
44  * and the Bluetooth LE Streamer into a single application.
45  *
46  * @text In this Section, we only point out the differences to the individual examples
47  * and how how the stack is configured.
48  *
49  * @text Note: To test, please run the example, and then:
50  *    - for SPP pair from a remote device, and open the Virtual Serial Port,
51  *    - for LE use some GATT Explorer, e.g. LightBlue, BLExplr, to enable notifications.
52  *
53  */
54 // *****************************************************************************
55 
56 #include <stdint.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <inttypes.h>
61 
62 #include "btstack.h"
63 #include "spp_and_gatt_streamer.h"
64 
65 int btstack_main(int argc, const char * argv[]);
66 
67 #define RFCOMM_SERVER_CHANNEL 1
68 #define HEARTBEAT_PERIOD_MS 1000
69 
70 #define TEST_COD 0x1234
71 #define NUM_ROWS 25
72 #define NUM_COLS 40
73 #define DATA_VOLUME (10 * 1000 * 1000)
74 
75 /*
76  * @section Advertisements
77  *
78  * @text The Flags attribute in the Advertisement Data indicates if a device is in dual-mode or not.
79  * Flag 0x06 indicates LE General Discoverable, BR/EDR not supported although we're actually using BR/EDR.
80  * In the past, there have been problems with Anrdoid devices when the flag was not set.
81  * Setting it should prevent the remote implementation to try to use GATT over LE/EDR, which is not
82  * implemented by BTstack. So, setting the flag seems like the safer choice (while it's technically incorrect).
83  */
84 /* LISTING_START(advertisements): Advertisement data: Flag 0x06 indicates LE-only device */
85 const uint8_t adv_data[] = {
86     // Flags general discoverable, BR/EDR not supported
87     0x02, 0x01, 0x06,
88     // Name
89     0x0c, 0x09, 'L', 'E', ' ', 'S', 't', 'r', 'e', 'a', 'm', 'e', 'r',
90 };
91 
92 static btstack_packet_callback_registration_t hci_event_callback_registration;
93 
94 uint8_t adv_data_len = sizeof(adv_data);
95 
96 static uint8_t  test_data[NUM_ROWS * NUM_COLS];
97 
98 // SPP
99 static uint8_t   spp_service_buffer[150];
100 
101 static uint16_t  spp_test_data_len;
102 static uint16_t  rfcomm_mtu;
103 static uint16_t  rfcomm_cid = 0;
104 // static uint32_t  data_to_send =  DATA_VOLUME;
105 
106 // LE
107 static uint16_t         att_mtu;
108 static int              counter = 'A';
109 static int              le_notification_enabled;
110 static uint16_t         le_test_data_len;
111 static hci_con_handle_t le_connection_handle;
112 
113 #ifdef ENABLE_GATT_OVER_CLASSIC
114 static uint8_t gatt_service_buffer[70];
115 #endif
116 
117 /*
118  * @section Track throughput
119  * @text We calculate the throughput by setting a start time and measuring the amount of
120  * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
121  * and reset the counter and start time.
122  */
123 
124 /* LISTING_START(tracking): Tracking throughput */
125 #define REPORT_INTERVAL_MS 3000
126 static uint32_t test_data_transferred;
127 static uint32_t test_data_start;
128 
129 static void test_reset(void){
130     test_data_start = btstack_run_loop_get_time_ms();
131     test_data_transferred = 0;
132 }
133 
134 static void test_track_transferred(int bytes_sent){
135     test_data_transferred += bytes_sent;
136     // evaluate
137     uint32_t now = btstack_run_loop_get_time_ms();
138     uint32_t time_passed = now - test_data_start;
139     if (time_passed < REPORT_INTERVAL_MS) return;
140     // print speed
141     int bytes_per_second = test_data_transferred * 1000 / time_passed;
142     printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
143 
144     // restart
145     test_data_start = now;
146     test_data_transferred  = 0;
147 }
148 /* LISTING_END(tracking): Tracking throughput */
149 
150 
151 static void spp_create_test_data(void){
152     int x,y;
153     for (y=0;y<NUM_ROWS;y++){
154         for (x=0;x<NUM_COLS-2;x++){
155             test_data[y*NUM_COLS+x] = '0' + (x % 10);
156         }
157         test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
158         test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
159     }
160 }
161 
162 static void spp_send_packet(void){
163     rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
164 
165     test_track_transferred(spp_test_data_len);
166 #if 0
167     if (data_to_send <= spp_test_data_len){
168         printf("SPP Streamer: enough data send, closing channel\n");
169         rfcomm_disconnect(rfcomm_cid);
170         rfcomm_cid = 0;
171         return;
172     }
173     data_to_send -= spp_test_data_len;
174 #endif
175     rfcomm_request_can_send_now_event(rfcomm_cid);
176 }
177 
178 static void le_streamer(void){
179     // check if we can send
180     if (!le_notification_enabled) return;
181 
182     // create test data
183     counter++;
184     if (counter > 'Z') counter = 'A';
185     memset(test_data, counter, sizeof(test_data));
186 
187     // send
188     att_server_notify(le_connection_handle, ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE, (uint8_t*) test_data, le_test_data_len);
189 
190     // track
191     test_track_transferred(le_test_data_len);
192 
193     // request next send event
194     att_server_request_can_send_now_event(le_connection_handle);
195 }
196 
197 /*
198  * @section HCI Packet Handler
199  *
200  * @text The packet handler of the combined example is just the combination of the individual packet handlers.
201  */
202 
203 static void hci_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
204     UNUSED(channel);
205     UNUSED(size);
206 
207     bd_addr_t event_addr;
208     uint16_t  conn_interval;
209     hci_con_handle_t con_handle;
210 
211     switch (packet_type) {
212         case HCI_EVENT_PACKET:
213             switch (hci_event_packet_get_type(packet)) {
214 
215                 case HCI_EVENT_PIN_CODE_REQUEST:
216                     // inform about pin code request
217                     printf("Pin code request - using '0000'\n");
218                     hci_event_pin_code_request_get_bd_addr(packet, event_addr);
219                     gap_pin_code_response(event_addr, "0000");
220                     break;
221 
222                 case HCI_EVENT_USER_CONFIRMATION_REQUEST:
223                     // inform about user confirmation request
224                     printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
225                     printf("SSP User Confirmation Auto accept\n");
226                     break;
227 
228                 case HCI_EVENT_LE_META:
229                     switch (hci_event_le_meta_get_subevent_code(packet)) {
230                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
231                             // print connection parameters (without using float operations)
232                             con_handle    = hci_subevent_le_connection_complete_get_connection_handle(packet);
233                             conn_interval = hci_subevent_le_connection_complete_get_conn_interval(packet);
234                             printf("LE Connection - Connection Interval: %u.%02u ms\n", conn_interval * 125 / 100, 25 * (conn_interval & 3));
235                             printf("LE Connection - Connection Latency: %u\n", hci_subevent_le_connection_complete_get_conn_latency(packet));
236 
237                             // request min con interval 15 ms for iOS 11+
238                             printf("LE Connection - Request 15 ms connection interval\n");
239                             gap_request_connection_parameter_update(con_handle, 12, 12, 0, 0x0048);
240                             break;
241 
242                         case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE:
243                             // print connection parameters (without using float operations)
244                             con_handle    = hci_subevent_le_connection_update_complete_get_connection_handle(packet);
245                             conn_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet);
246                             printf("LE Connection - Connection Param update - connection interval %u.%02u ms, latency %u\n", conn_interval * 125 / 100,
247                                 25 * (conn_interval & 3), hci_subevent_le_connection_update_complete_get_conn_latency(packet));
248                             break;
249 
250                         default:
251                             break;
252                     }
253                     break;
254 
255                 case HCI_EVENT_DISCONNECTION_COMPLETE:
256                     // re-enable page/inquiry scan again
257                     gap_discoverable_control(1);
258                     gap_connectable_control(1);
259                     // re-enable advertisements
260                     gap_advertisements_enable(1);
261                     le_notification_enabled = 0;
262                     break;
263 
264                 default:
265                     break;
266             }
267             break;
268 
269         default:
270             break;
271     }
272 }
273 
274 /*
275  * @section RFCOMM Packet Handler
276  *
277  * @text The RFCOMM packet handler accepts incoming connection and triggers sending of RFCOMM data on RFCOMM_EVENT_CAN_SEND_NOW
278  */
279 
280 static void rfcomm_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
281     UNUSED(channel);
282 
283     bd_addr_t event_addr;
284     uint8_t   rfcomm_channel_nr;
285 
286     switch (packet_type) {
287         case HCI_EVENT_PACKET:
288             switch (hci_event_packet_get_type(packet)) {
289 
290                 case RFCOMM_EVENT_INCOMING_CONNECTION:
291                     // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
292                     rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
293                     rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
294                     rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
295                     printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
296                     rfcomm_accept_connection(rfcomm_cid);
297                     break;
298 
299                 case RFCOMM_EVENT_CHANNEL_OPENED:
300                     // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
301                     if (rfcomm_event_channel_opened_get_status(packet)) {
302                         printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
303                     } else {
304                         rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
305                         rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
306                         printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
307 
308                         spp_test_data_len = rfcomm_mtu;
309                         if (spp_test_data_len > sizeof(test_data)){
310                             spp_test_data_len = sizeof(test_data);
311                         }
312 
313                         // disable page/inquiry scan to get max performance
314                         gap_discoverable_control(0);
315                         gap_connectable_control(0);
316                         // disable advertisements
317                         gap_advertisements_enable(0);
318 
319                         test_reset();
320                         rfcomm_request_can_send_now_event(rfcomm_cid);
321                     }
322                     break;
323 
324                 case RFCOMM_EVENT_CAN_SEND_NOW:
325                     spp_send_packet();
326                     break;
327 
328                 case RFCOMM_EVENT_CHANNEL_CLOSED:
329                     printf("RFCOMM channel closed\n");
330                     rfcomm_cid = 0;
331                     break;
332 
333                 default:
334                     break;
335             }
336             break;
337 
338         case RFCOMM_DATA_PACKET:
339             test_track_transferred(size);
340 #if 0
341             printf("RCV: '");
342             for (i=0;i<size;i++){
343                 putchar(packet[i]);
344             }
345             printf("'\n");
346 #endif
347             break;
348 
349         default:
350             break;
351     }
352 }
353 
354 /*
355  * @section ATT Packet Handler
356  *
357  * @text The packet handler is used to track the ATT MTU Exchange and trigger ATT send
358  */
359 
360 /* LISTING_START(attPacketHandler): Packet Handler */
361 static void att_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
362     UNUSED(channel);
363     UNUSED(size);
364 
365     if (packet_type != HCI_EVENT_PACKET) return;
366 
367     switch (hci_event_packet_get_type(packet)) {
368         case ATT_EVENT_CONNECTED:
369             le_connection_handle = att_event_connected_get_handle(packet);
370             att_mtu = att_server_get_mtu(le_connection_handle);
371             le_test_data_len = btstack_min(att_server_get_mtu(le_connection_handle) - 3, sizeof(test_data));
372             printf("ATT MTU = %u\n", att_mtu);
373             break;
374 
375         case ATT_EVENT_MTU_EXCHANGE_COMPLETE:
376             att_mtu = att_event_mtu_exchange_complete_get_MTU(packet);
377             le_test_data_len = btstack_min(att_mtu - 3, sizeof(test_data));
378             printf("ATT MTU = %u\n", att_mtu);
379             break;
380 
381         case ATT_EVENT_CAN_SEND_NOW:
382             le_streamer();
383             break;
384 
385         case ATT_EVENT_DISCONNECTED:
386             le_notification_enabled = 0;
387             le_connection_handle = HCI_CON_HANDLE_INVALID;
388             break;
389 
390         default:
391             break;
392     }
393 }
394 
395 // ATT Client Read Callback for Dynamic Data
396 // - if buffer == NULL, don't copy data, just return size of value
397 // - if buffer != NULL, copy data and return number bytes copied
398 // @param offset defines start of attribute value
399 static uint16_t att_read_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){
400     UNUSED(con_handle);
401     UNUSED(att_handle);
402     UNUSED(offset);
403     UNUSED(buffer);
404     UNUSED(buffer_size);
405     return 0;
406 }
407 
408 // write requests
409 static int att_write_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){
410     UNUSED(con_handle);
411     UNUSED(offset);
412     UNUSED(buffer_size);
413 
414     // printf("att_write_callback att_handle %04x, transaction mode %u\n", att_handle, transaction_mode);
415     if (transaction_mode != ATT_TRANSACTION_MODE_NONE) return 0;
416     switch(att_handle){
417         case ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_CLIENT_CONFIGURATION_HANDLE:
418             le_notification_enabled = little_endian_read_16(buffer, 0) == GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION;
419             printf("Notifications enabled %u\n", le_notification_enabled);
420             if (le_notification_enabled){
421                 att_server_request_can_send_now_event(le_connection_handle);
422             }
423 
424             // disable page/inquiry scan to get max performance
425             gap_discoverable_control(0);
426             gap_connectable_control(0);
427 
428             test_reset();
429             break;
430         default:
431             break;
432     }
433     return 0;
434 }
435 
436 /*
437  * @section Main Application Setup
438  *
439  * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
440  */
441 
442 
443 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
444 int btstack_main(int argc, const char * argv[])
445 {
446     UNUSED(argc);
447     (void)argv;
448 
449     l2cap_init();
450 
451     rfcomm_init();
452     rfcomm_register_service(rfcomm_packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
453 
454     // init SDP, create record for SPP and register with SDP
455     sdp_init();
456     memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
457     spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer");
458     sdp_register_service(spp_service_buffer);
459 
460 #ifdef ENABLE_GATT_OVER_CLASSIC
461     // init SDP, create record for GATT and register with SDP
462     memset(gatt_service_buffer, 0, sizeof(gatt_service_buffer));
463     gatt_create_sdp_record(gatt_service_buffer, 0x10001, ATT_SERVICE_GATT_SERVICE_START_HANDLE, ATT_SERVICE_GATT_SERVICE_END_HANDLE);
464     sdp_register_service(gatt_service_buffer);
465 #endif
466 
467     gap_set_local_name("SPP and LE Streamer 00:00:00:00:00:00");
468     gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
469 
470     // short-cut to find other SPP Streamer
471     gap_set_class_of_device(TEST_COD);
472 
473     gap_discoverable_control(1);
474 
475     // setup le device db
476     le_device_db_init();
477 
478     // setup SM: Display only
479     sm_init();
480 
481     // setup ATT server
482     att_server_init(profile_data, att_read_callback, att_write_callback);
483 
484     // register for HCI events
485     hci_event_callback_registration.callback = &hci_packet_handler;
486     hci_add_event_handler(&hci_event_callback_registration);
487 
488     // register for ATT events
489     att_server_register_packet_handler(att_packet_handler);
490 
491     // setup advertisements
492     uint16_t adv_int_min = 0x0030;
493     uint16_t adv_int_max = 0x0030;
494     uint8_t adv_type = 0;
495     bd_addr_t null_addr;
496     memset(null_addr, 0, 6);
497     gap_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 0, null_addr, 0x07, 0x00);
498     gap_advertisements_set_data(adv_data_len, (uint8_t*) adv_data);
499     gap_advertisements_enable(1);
500 
501     spp_create_test_data();
502 
503     // turn on!
504     hci_power_control(HCI_POWER_ON);
505 
506     return 0;
507 }
508 /* LISTING_END */
509 /* EXAMPLE_END */
510