xref: /btstack/example/spp_and_gatt_streamer.c (revision 5d6688b0c0d84b6c3d22a2713cd42d10ad75dade)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "spp_and_gatt_streamer.c"
39 
40 // *****************************************************************************
41 /* EXAMPLE_START(spp_and_le_streamer): Dual mode example
42  *
43  * @text The SPP and LE Streamer example combines the Bluetooth Classic SPP Streamer
44  * and the Bluetooth LE Streamer into a single application.
45  *
46  * @text In this Section, we only point out the differences to the individual examples
47  * and how how the stack is configured.
48  *
49  * @text Note: To test, please run the example, and then:
50  *    - for SPP pair from a remote device, and open the Virtual Serial Port,
51  *    - for LE use some GATT Explorer, e.g. LightBlue, BLExplr, to enable notifications.
52  *
53  */
54 // *****************************************************************************
55 
56 #include <stdint.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <inttypes.h>
61 
62 #include "btstack.h"
63 #include "spp_and_gatt_streamer.h"
64 
65 int btstack_main(int argc, const char * argv[]);
66 
67 #define RFCOMM_SERVER_CHANNEL 1
68 #define HEARTBEAT_PERIOD_MS 1000
69 
70 #define TEST_COD 0x1234
71 #define NUM_ROWS 25
72 #define NUM_COLS 40
73 #define DATA_VOLUME (10 * 1000 * 1000)
74 
75 /*
76  * @section Advertisements
77  *
78  * @text The Flags attribute in the Advertisement Data indicates if a device is dual-mode or le-only.
79  */
80 /* LISTING_START(advertisements): Advertisement data: Flag 0x02 indicates dual-mode device */
81 const uint8_t adv_data[] = {
82     // Flags general discoverable
83     0x02, BLUETOOTH_DATA_TYPE_FLAGS, 0x02,
84     // Name
85     0x0c, BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME, 'L', 'E', ' ', 'S', 't', 'r', 'e', 'a', 'm', 'e', 'r',
86 };
87 
88 static btstack_packet_callback_registration_t hci_event_callback_registration;
89 
90 uint8_t adv_data_len = sizeof(adv_data);
91 
92 static uint8_t  test_data[NUM_ROWS * NUM_COLS];
93 
94 // SPP
95 static uint8_t   spp_service_buffer[150];
96 
97 static uint16_t  spp_test_data_len;
98 static uint16_t  rfcomm_mtu;
99 static uint16_t  rfcomm_cid = 0;
100 // static uint32_t  data_to_send =  DATA_VOLUME;
101 
102 // LE
103 static uint16_t         att_mtu;
104 static int              counter = 'A';
105 static int              le_notification_enabled;
106 static uint16_t         le_test_data_len;
107 static hci_con_handle_t le_connection_handle;
108 
109 #ifdef ENABLE_GATT_OVER_CLASSIC
110 static uint8_t gatt_service_buffer[70];
111 #endif
112 
113 /*
114  * @section Track throughput
115  * @text We calculate the throughput by setting a start time and measuring the amount of
116  * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
117  * and reset the counter and start time.
118  */
119 
120 /* LISTING_START(tracking): Tracking throughput */
121 #define REPORT_INTERVAL_MS 3000
122 static uint32_t test_data_transferred;
123 static uint32_t test_data_start;
124 
125 static void test_reset(void){
126     test_data_start = btstack_run_loop_get_time_ms();
127     test_data_transferred = 0;
128 }
129 
130 static void test_track_transferred(int bytes_sent){
131     test_data_transferred += bytes_sent;
132     // evaluate
133     uint32_t now = btstack_run_loop_get_time_ms();
134     uint32_t time_passed = now - test_data_start;
135     if (time_passed < REPORT_INTERVAL_MS) return;
136     // print speed
137     int bytes_per_second = test_data_transferred * 1000 / time_passed;
138     printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
139 
140     // restart
141     test_data_start = now;
142     test_data_transferred  = 0;
143 }
144 /* LISTING_END(tracking): Tracking throughput */
145 
146 
147 static void spp_create_test_data(void){
148     int x,y;
149     for (y=0;y<NUM_ROWS;y++){
150         for (x=0;x<NUM_COLS-2;x++){
151             test_data[y*NUM_COLS+x] = '0' + (x % 10);
152         }
153         test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
154         test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
155     }
156 }
157 
158 static void spp_send_packet(void){
159     rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
160 
161     test_track_transferred(spp_test_data_len);
162 #if 0
163     if (data_to_send <= spp_test_data_len){
164         printf("SPP Streamer: enough data send, closing channel\n");
165         rfcomm_disconnect(rfcomm_cid);
166         rfcomm_cid = 0;
167         return;
168     }
169     data_to_send -= spp_test_data_len;
170 #endif
171     rfcomm_request_can_send_now_event(rfcomm_cid);
172 }
173 
174 static void le_streamer(void){
175     // check if we can send
176     if (!le_notification_enabled) return;
177 
178     // create test data
179     counter++;
180     if (counter > 'Z') counter = 'A';
181     memset(test_data, counter, sizeof(test_data));
182 
183     // send
184     att_server_notify(le_connection_handle, ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE, (uint8_t*) test_data, le_test_data_len);
185 
186     // track
187     test_track_transferred(le_test_data_len);
188 
189     // request next send event
190     att_server_request_can_send_now_event(le_connection_handle);
191 }
192 
193 /*
194  * @section HCI Packet Handler
195  *
196  * @text The packet handler of the combined example is just the combination of the individual packet handlers.
197  */
198 
199 static void hci_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
200     UNUSED(channel);
201     UNUSED(size);
202 
203     bd_addr_t event_addr;
204     uint16_t  conn_interval;
205     hci_con_handle_t con_handle;
206 
207     switch (packet_type) {
208         case HCI_EVENT_PACKET:
209             switch (hci_event_packet_get_type(packet)) {
210 
211                 case HCI_EVENT_PIN_CODE_REQUEST:
212                     // inform about pin code request
213                     printf("Pin code request - using '0000'\n");
214                     hci_event_pin_code_request_get_bd_addr(packet, event_addr);
215                     gap_pin_code_response(event_addr, "0000");
216                     break;
217 
218                 case HCI_EVENT_USER_CONFIRMATION_REQUEST:
219                     // inform about user confirmation request
220                     printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
221                     printf("SSP User Confirmation Auto accept\n");
222                     break;
223 
224                 case HCI_EVENT_META_GAP:
225                     switch (hci_event_gap_meta_get_subevent_code(packet)) {
226                         case GAP_SUBEVENT_LE_CONNECTION_COMPLETE:
227                             // print connection parameters (without using float operations)
228                             con_handle    = gap_subevent_le_connection_complete_get_connection_handle(packet);
229                             conn_interval = gap_subevent_le_connection_complete_get_conn_interval(packet);
230                             printf("LE Connection - Connection Interval: %u.%02u ms\n", conn_interval * 125 / 100, 25 * (conn_interval & 3));
231                             printf("LE Connection - Connection Latency: %u\n", gap_subevent_le_connection_complete_get_conn_latency(packet));
232 
233                             // request min con interval 15 ms for iOS 11+
234                             printf("LE Connection - Request 15 ms connection interval\n");
235                             gap_request_connection_parameter_update(con_handle, 12, 12, 4, 0x0048);
236                             break;
237                         default:
238                             break;
239                     }
240                     break;
241 
242                 case HCI_EVENT_LE_META:
243                     switch (hci_event_le_meta_get_subevent_code(packet)) {
244                         case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE:
245                             // print connection parameters (without using float operations)
246                             con_handle    = hci_subevent_le_connection_update_complete_get_connection_handle(packet);
247                             conn_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet);
248                             printf("LE Connection - Connection Param update - connection interval %u.%02u ms, latency %u\n", conn_interval * 125 / 100,
249                                 25 * (conn_interval & 3), hci_subevent_le_connection_update_complete_get_conn_latency(packet));
250                             break;
251 
252                         default:
253                             break;
254                     }
255                     break;
256 
257                 case HCI_EVENT_DISCONNECTION_COMPLETE:
258                     // re-enable page/inquiry scan again
259                     gap_discoverable_control(1);
260                     gap_connectable_control(1);
261                     // re-enable advertisements
262                     gap_advertisements_enable(1);
263                     le_notification_enabled = 0;
264                     break;
265 
266                 default:
267                     break;
268             }
269             break;
270 
271         default:
272             break;
273     }
274 }
275 
276 /*
277  * @section RFCOMM Packet Handler
278  *
279  * @text The RFCOMM packet handler accepts incoming connection and triggers sending of RFCOMM data on RFCOMM_EVENT_CAN_SEND_NOW
280  */
281 
282 static void rfcomm_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
283     UNUSED(channel);
284 
285     bd_addr_t event_addr;
286     uint8_t   rfcomm_channel_nr;
287 
288     switch (packet_type) {
289         case HCI_EVENT_PACKET:
290             switch (hci_event_packet_get_type(packet)) {
291 
292                 case RFCOMM_EVENT_INCOMING_CONNECTION:
293                     // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
294                     rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
295                     rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
296                     rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
297                     printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
298                     rfcomm_accept_connection(rfcomm_cid);
299                     break;
300 
301                 case RFCOMM_EVENT_CHANNEL_OPENED:
302                     // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
303                     if (rfcomm_event_channel_opened_get_status(packet)) {
304                         printf("RFCOMM channel open failed, status 0x%02x\n", rfcomm_event_channel_opened_get_status(packet));
305                     } else {
306                         rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
307                         rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
308                         printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
309 
310                         spp_test_data_len = rfcomm_mtu;
311                         if (spp_test_data_len > sizeof(test_data)){
312                             spp_test_data_len = sizeof(test_data);
313                         }
314 
315                         // disable page/inquiry scan to get max performance
316                         gap_discoverable_control(0);
317                         gap_connectable_control(0);
318                         // disable advertisements
319                         gap_advertisements_enable(0);
320 
321                         test_reset();
322                         rfcomm_request_can_send_now_event(rfcomm_cid);
323                     }
324                     break;
325 
326                 case RFCOMM_EVENT_CAN_SEND_NOW:
327                     spp_send_packet();
328                     break;
329 
330                 case RFCOMM_EVENT_CHANNEL_CLOSED:
331                     printf("RFCOMM channel closed\n");
332                     rfcomm_cid = 0;
333                     break;
334 
335                 default:
336                     break;
337             }
338             break;
339 
340         case RFCOMM_DATA_PACKET:
341             test_track_transferred(size);
342 #if 0
343             printf("RCV: '");
344             for (i=0;i<size;i++){
345                 putchar(packet[i]);
346             }
347             printf("'\n");
348 #endif
349             break;
350 
351         default:
352             break;
353     }
354 }
355 
356 /*
357  * @section ATT Packet Handler
358  *
359  * @text The packet handler is used to track the ATT MTU Exchange and trigger ATT send
360  */
361 
362 /* LISTING_START(attPacketHandler): Packet Handler */
363 static void att_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
364     UNUSED(channel);
365     UNUSED(size);
366 
367     if (packet_type != HCI_EVENT_PACKET) return;
368 
369     switch (hci_event_packet_get_type(packet)) {
370         case ATT_EVENT_CONNECTED:
371             le_connection_handle = att_event_connected_get_handle(packet);
372             att_mtu = att_server_get_mtu(le_connection_handle);
373             le_test_data_len = btstack_min(att_server_get_mtu(le_connection_handle) - 3, sizeof(test_data));
374             printf("ATT MTU = %u\n", att_mtu);
375             break;
376 
377         case ATT_EVENT_MTU_EXCHANGE_COMPLETE:
378             att_mtu = att_event_mtu_exchange_complete_get_MTU(packet);
379             le_test_data_len = btstack_min(att_mtu - 3, sizeof(test_data));
380             printf("ATT MTU = %u\n", att_mtu);
381             break;
382 
383         case ATT_EVENT_CAN_SEND_NOW:
384             le_streamer();
385             break;
386 
387         case ATT_EVENT_DISCONNECTED:
388             le_notification_enabled = 0;
389             le_connection_handle = HCI_CON_HANDLE_INVALID;
390             break;
391 
392         default:
393             break;
394     }
395 }
396 
397 // ATT Client Read Callback for Dynamic Data
398 // - if buffer == NULL, don't copy data, just return size of value
399 // - if buffer != NULL, copy data and return number bytes copied
400 // @param offset defines start of attribute value
401 static uint16_t att_read_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){
402     UNUSED(con_handle);
403     UNUSED(att_handle);
404     UNUSED(offset);
405     UNUSED(buffer);
406     UNUSED(buffer_size);
407     return 0;
408 }
409 
410 // write requests
411 static int att_write_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){
412     UNUSED(con_handle);
413     UNUSED(offset);
414     UNUSED(buffer_size);
415 
416     // printf("att_write_callback att_handle %04x, transaction mode %u\n", att_handle, transaction_mode);
417     if (transaction_mode != ATT_TRANSACTION_MODE_NONE) return 0;
418     switch(att_handle){
419         case ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_CLIENT_CONFIGURATION_HANDLE:
420             le_notification_enabled = little_endian_read_16(buffer, 0) == GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION;
421             printf("Notifications enabled %u\n", le_notification_enabled);
422             if (le_notification_enabled){
423                 att_server_request_can_send_now_event(le_connection_handle);
424             }
425 
426             // disable page/inquiry scan to get max performance
427             gap_discoverable_control(0);
428             gap_connectable_control(0);
429 
430             test_reset();
431             break;
432         default:
433             break;
434     }
435     return 0;
436 }
437 
438 /*
439  * @section Main Application Setup
440  *
441  * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
442  */
443 
444 
445 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
446 int btstack_main(int argc, const char * argv[])
447 {
448     UNUSED(argc);
449     (void)argv;
450 
451     l2cap_init();
452 
453     rfcomm_init();
454     rfcomm_register_service(rfcomm_packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
455 
456     // init SDP, create record for SPP and register with SDP
457     sdp_init();
458     memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
459     spp_create_sdp_record(spp_service_buffer, sdp_create_service_record_handle(), RFCOMM_SERVER_CHANNEL, "SPP Streamer");
460     btstack_assert(de_get_len( spp_service_buffer) <= sizeof(spp_service_buffer));
461     sdp_register_service(spp_service_buffer);
462 
463 #ifdef ENABLE_GATT_OVER_CLASSIC
464     // init SDP, create record for GATT and register with SDP
465     memset(gatt_service_buffer, 0, sizeof(gatt_service_buffer));
466     gatt_create_sdp_record(gatt_service_buffer, sdp_create_service_record_handle(), ATT_SERVICE_GATT_SERVICE_START_HANDLE, ATT_SERVICE_GATT_SERVICE_END_HANDLE);
467     btstack_assert(de_get_len( gatt_service_buffer) <= sizeof(gatt_service_buffer));
468     sdp_register_service(gatt_service_buffer);
469 #endif
470 
471     gap_set_local_name("SPP and LE Streamer 00:00:00:00:00:00");
472     gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
473 
474     // short-cut to find other SPP Streamer
475     gap_set_class_of_device(TEST_COD);
476 
477     gap_discoverable_control(1);
478 
479     // setup SM: Display only
480     sm_init();
481 
482     // setup ATT server
483     att_server_init(profile_data, att_read_callback, att_write_callback);
484 
485     // register for HCI events
486     hci_event_callback_registration.callback = &hci_packet_handler;
487     hci_add_event_handler(&hci_event_callback_registration);
488 
489     // register for ATT events
490     att_server_register_packet_handler(att_packet_handler);
491 
492     // setup advertisements
493     uint16_t adv_int_min = 0x0030;
494     uint16_t adv_int_max = 0x0030;
495     uint8_t adv_type = 0;
496     bd_addr_t null_addr;
497     memset(null_addr, 0, 6);
498     gap_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 0, null_addr, 0x07, 0x00);
499     gap_advertisements_set_data(adv_data_len, (uint8_t*) adv_data);
500     gap_advertisements_enable(1);
501 
502     spp_create_test_data();
503 
504     // turn on!
505     hci_power_control(HCI_POWER_ON);
506 
507     return 0;
508 }
509 /* LISTING_END */
510 /* EXAMPLE_END */
511