xref: /btstack/example/spp_and_gatt_streamer.c (revision 08a78038ba366a6a2a2df8fea05d5123880fdff2)
1 /*
2  * Copyright (C) 2014 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "spp_and_gatt_streamer.c"
39 
40 // *****************************************************************************
41 /* EXAMPLE_START(spp_and_le_streamer): Dual mode example
42  *
43  * @text The SPP and LE Streamer example combines the Bluetooth Classic SPP Streamer
44  * and the Bluetooth LE Streamer into a single application.
45  *
46  * @text In this Section, we only point out the differences to the individual examples
47  * and how how the stack is configured.
48  *
49  * @text Note: To test, please run the example, and then:
50  *    - for SPP pair from a remote device, and open the Virtual Serial Port,
51  *    - for LE use some GATT Explorer, e.g. LightBlue, BLExplr, to enable notifications.
52  *
53  */
54 // *****************************************************************************
55 
56 #include <stdint.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <inttypes.h>
61 
62 #include "btstack.h"
63 #include "spp_and_gatt_streamer.h"
64 
65 int btstack_main(int argc, const char * argv[]);
66 
67 #define RFCOMM_SERVER_CHANNEL 1
68 #define HEARTBEAT_PERIOD_MS 1000
69 
70 #define TEST_COD 0x1234
71 #define NUM_ROWS 25
72 #define NUM_COLS 40
73 #define DATA_VOLUME (10 * 1000 * 1000)
74 
75 /*
76  * @section Advertisements
77  *
78  * @text The Flags attribute in the Advertisement Data indicates if a device is dual-mode or le-only.
79  */
80 /* LISTING_START(advertisements): Advertisement data: Flag 0x02 indicates dual-mode device */
81 const uint8_t adv_data[] = {
82     // Flags general discoverable
83     0x02, BLUETOOTH_DATA_TYPE_FLAGS, 0x02,
84     // Name
85     0x0c, BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME, 'L', 'E', ' ', 'S', 't', 'r', 'e', 'a', 'm', 'e', 'r',
86 };
87 
88 static btstack_packet_callback_registration_t hci_event_callback_registration;
89 
90 uint8_t adv_data_len = sizeof(adv_data);
91 
92 static uint8_t  test_data[NUM_ROWS * NUM_COLS];
93 
94 // SPP
95 static uint8_t   spp_service_buffer[150];
96 
97 static uint16_t  spp_test_data_len;
98 static uint16_t  rfcomm_mtu;
99 static uint16_t  rfcomm_cid = 0;
100 // static uint32_t  data_to_send =  DATA_VOLUME;
101 
102 // LE
103 static uint16_t         att_mtu;
104 static int              counter = 'A';
105 static int              le_notification_enabled;
106 static uint16_t         le_test_data_len;
107 static hci_con_handle_t le_connection_handle;
108 
109 #ifdef ENABLE_GATT_OVER_CLASSIC
110 static uint8_t gatt_service_buffer[70];
111 #endif
112 
113 /*
114  * @section Track throughput
115  * @text We calculate the throughput by setting a start time and measuring the amount of
116  * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
117  * and reset the counter and start time.
118  */
119 
120 /* LISTING_START(tracking): Tracking throughput */
121 #define REPORT_INTERVAL_MS 3000
122 static uint32_t test_data_transferred;
123 static uint32_t test_data_start;
124 
125 static void test_reset(void){
126     test_data_start = btstack_run_loop_get_time_ms();
127     test_data_transferred = 0;
128 }
129 
130 static void test_track_transferred(int bytes_sent){
131     test_data_transferred += bytes_sent;
132     // evaluate
133     uint32_t now = btstack_run_loop_get_time_ms();
134     uint32_t time_passed = now - test_data_start;
135     if (time_passed < REPORT_INTERVAL_MS) return;
136     // print speed
137     int bytes_per_second = test_data_transferred * 1000 / time_passed;
138     printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
139 
140     // restart
141     test_data_start = now;
142     test_data_transferred  = 0;
143 }
144 /* LISTING_END(tracking): Tracking throughput */
145 
146 
147 static void spp_create_test_data(void){
148     int x,y;
149     for (y=0;y<NUM_ROWS;y++){
150         for (x=0;x<NUM_COLS-2;x++){
151             test_data[y*NUM_COLS+x] = '0' + (x % 10);
152         }
153         test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
154         test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
155     }
156 }
157 
158 static void spp_send_packet(void){
159     rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
160 
161     test_track_transferred(spp_test_data_len);
162 #if 0
163     if (data_to_send <= spp_test_data_len){
164         printf("SPP Streamer: enough data send, closing channel\n");
165         rfcomm_disconnect(rfcomm_cid);
166         rfcomm_cid = 0;
167         return;
168     }
169     data_to_send -= spp_test_data_len;
170 #endif
171     rfcomm_request_can_send_now_event(rfcomm_cid);
172 }
173 
174 static void le_streamer(void){
175     // check if we can send
176     if (!le_notification_enabled) return;
177 
178     // create test data
179     counter++;
180     if (counter > 'Z') counter = 'A';
181     memset(test_data, counter, sizeof(test_data));
182 
183     // send
184     att_server_notify(le_connection_handle, ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE, (uint8_t*) test_data, le_test_data_len);
185 
186     // track
187     test_track_transferred(le_test_data_len);
188 
189     // request next send event
190     att_server_request_can_send_now_event(le_connection_handle);
191 }
192 
193 /*
194  * @section HCI Packet Handler
195  *
196  * @text The packet handler of the combined example is just the combination of the individual packet handlers.
197  */
198 
199 static void hci_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
200     UNUSED(channel);
201     UNUSED(size);
202 
203     bd_addr_t event_addr;
204     uint16_t  conn_interval;
205     hci_con_handle_t con_handle;
206 
207     switch (packet_type) {
208         case HCI_EVENT_PACKET:
209             switch (hci_event_packet_get_type(packet)) {
210 
211                 case HCI_EVENT_PIN_CODE_REQUEST:
212                     // inform about pin code request
213                     printf("Pin code request - using '0000'\n");
214                     hci_event_pin_code_request_get_bd_addr(packet, event_addr);
215                     gap_pin_code_response(event_addr, "0000");
216                     break;
217 
218                 case HCI_EVENT_USER_CONFIRMATION_REQUEST:
219                     // inform about user confirmation request
220                     printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
221                     printf("SSP User Confirmation Auto accept\n");
222                     break;
223 
224                 case HCI_EVENT_LE_META:
225                     switch (hci_event_le_meta_get_subevent_code(packet)) {
226                         case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
227                             // print connection parameters (without using float operations)
228                             con_handle    = hci_subevent_le_connection_complete_get_connection_handle(packet);
229                             conn_interval = hci_subevent_le_connection_complete_get_conn_interval(packet);
230                             printf("LE Connection - Connection Interval: %u.%02u ms\n", conn_interval * 125 / 100, 25 * (conn_interval & 3));
231                             printf("LE Connection - Connection Latency: %u\n", hci_subevent_le_connection_complete_get_conn_latency(packet));
232 
233                             // request min con interval 15 ms for iOS 11+
234                             printf("LE Connection - Request 15 ms connection interval\n");
235                             gap_request_connection_parameter_update(con_handle, 12, 12, 4, 0x0048);
236                             break;
237 
238                         case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE:
239                             // print connection parameters (without using float operations)
240                             con_handle    = hci_subevent_le_connection_update_complete_get_connection_handle(packet);
241                             conn_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet);
242                             printf("LE Connection - Connection Param update - connection interval %u.%02u ms, latency %u\n", conn_interval * 125 / 100,
243                                 25 * (conn_interval & 3), hci_subevent_le_connection_update_complete_get_conn_latency(packet));
244                             break;
245 
246                         default:
247                             break;
248                     }
249                     break;
250 
251                 case HCI_EVENT_DISCONNECTION_COMPLETE:
252                     // re-enable page/inquiry scan again
253                     gap_discoverable_control(1);
254                     gap_connectable_control(1);
255                     // re-enable advertisements
256                     gap_advertisements_enable(1);
257                     le_notification_enabled = 0;
258                     break;
259 
260                 default:
261                     break;
262             }
263             break;
264 
265         default:
266             break;
267     }
268 }
269 
270 /*
271  * @section RFCOMM Packet Handler
272  *
273  * @text The RFCOMM packet handler accepts incoming connection and triggers sending of RFCOMM data on RFCOMM_EVENT_CAN_SEND_NOW
274  */
275 
276 static void rfcomm_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
277     UNUSED(channel);
278 
279     bd_addr_t event_addr;
280     uint8_t   rfcomm_channel_nr;
281 
282     switch (packet_type) {
283         case HCI_EVENT_PACKET:
284             switch (hci_event_packet_get_type(packet)) {
285 
286                 case RFCOMM_EVENT_INCOMING_CONNECTION:
287                     // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
288                     rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
289                     rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
290                     rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
291                     printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
292                     rfcomm_accept_connection(rfcomm_cid);
293                     break;
294 
295                 case RFCOMM_EVENT_CHANNEL_OPENED:
296                     // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
297                     if (rfcomm_event_channel_opened_get_status(packet)) {
298                         printf("RFCOMM channel open failed, status 0x%02x\n", rfcomm_event_channel_opened_get_status(packet));
299                     } else {
300                         rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
301                         rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
302                         printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
303 
304                         spp_test_data_len = rfcomm_mtu;
305                         if (spp_test_data_len > sizeof(test_data)){
306                             spp_test_data_len = sizeof(test_data);
307                         }
308 
309                         // disable page/inquiry scan to get max performance
310                         gap_discoverable_control(0);
311                         gap_connectable_control(0);
312                         // disable advertisements
313                         gap_advertisements_enable(0);
314 
315                         test_reset();
316                         rfcomm_request_can_send_now_event(rfcomm_cid);
317                     }
318                     break;
319 
320                 case RFCOMM_EVENT_CAN_SEND_NOW:
321                     spp_send_packet();
322                     break;
323 
324                 case RFCOMM_EVENT_CHANNEL_CLOSED:
325                     printf("RFCOMM channel closed\n");
326                     rfcomm_cid = 0;
327                     break;
328 
329                 default:
330                     break;
331             }
332             break;
333 
334         case RFCOMM_DATA_PACKET:
335             test_track_transferred(size);
336 #if 0
337             printf("RCV: '");
338             for (i=0;i<size;i++){
339                 putchar(packet[i]);
340             }
341             printf("'\n");
342 #endif
343             break;
344 
345         default:
346             break;
347     }
348 }
349 
350 /*
351  * @section ATT Packet Handler
352  *
353  * @text The packet handler is used to track the ATT MTU Exchange and trigger ATT send
354  */
355 
356 /* LISTING_START(attPacketHandler): Packet Handler */
357 static void att_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
358     UNUSED(channel);
359     UNUSED(size);
360 
361     if (packet_type != HCI_EVENT_PACKET) return;
362 
363     switch (hci_event_packet_get_type(packet)) {
364         case ATT_EVENT_CONNECTED:
365             le_connection_handle = att_event_connected_get_handle(packet);
366             att_mtu = att_server_get_mtu(le_connection_handle);
367             le_test_data_len = btstack_min(att_server_get_mtu(le_connection_handle) - 3, sizeof(test_data));
368             printf("ATT MTU = %u\n", att_mtu);
369             break;
370 
371         case ATT_EVENT_MTU_EXCHANGE_COMPLETE:
372             att_mtu = att_event_mtu_exchange_complete_get_MTU(packet);
373             le_test_data_len = btstack_min(att_mtu - 3, sizeof(test_data));
374             printf("ATT MTU = %u\n", att_mtu);
375             break;
376 
377         case ATT_EVENT_CAN_SEND_NOW:
378             le_streamer();
379             break;
380 
381         case ATT_EVENT_DISCONNECTED:
382             le_notification_enabled = 0;
383             le_connection_handle = HCI_CON_HANDLE_INVALID;
384             break;
385 
386         default:
387             break;
388     }
389 }
390 
391 // ATT Client Read Callback for Dynamic Data
392 // - if buffer == NULL, don't copy data, just return size of value
393 // - if buffer != NULL, copy data and return number bytes copied
394 // @param offset defines start of attribute value
395 static uint16_t att_read_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){
396     UNUSED(con_handle);
397     UNUSED(att_handle);
398     UNUSED(offset);
399     UNUSED(buffer);
400     UNUSED(buffer_size);
401     return 0;
402 }
403 
404 // write requests
405 static int att_write_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){
406     UNUSED(con_handle);
407     UNUSED(offset);
408     UNUSED(buffer_size);
409 
410     // printf("att_write_callback att_handle %04x, transaction mode %u\n", att_handle, transaction_mode);
411     if (transaction_mode != ATT_TRANSACTION_MODE_NONE) return 0;
412     switch(att_handle){
413         case ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_CLIENT_CONFIGURATION_HANDLE:
414             le_notification_enabled = little_endian_read_16(buffer, 0) == GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION;
415             printf("Notifications enabled %u\n", le_notification_enabled);
416             if (le_notification_enabled){
417                 att_server_request_can_send_now_event(le_connection_handle);
418             }
419 
420             // disable page/inquiry scan to get max performance
421             gap_discoverable_control(0);
422             gap_connectable_control(0);
423 
424             test_reset();
425             break;
426         default:
427             break;
428     }
429     return 0;
430 }
431 
432 /*
433  * @section Main Application Setup
434  *
435  * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
436  */
437 
438 
439 /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
440 int btstack_main(int argc, const char * argv[])
441 {
442     UNUSED(argc);
443     (void)argv;
444 
445     l2cap_init();
446 
447     rfcomm_init();
448     rfcomm_register_service(rfcomm_packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
449 
450     // init SDP, create record for SPP and register with SDP
451     sdp_init();
452     memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
453     spp_create_sdp_record(spp_service_buffer, sdp_create_service_record_handle(), RFCOMM_SERVER_CHANNEL, "SPP Streamer");
454     btstack_assert(de_get_len( spp_service_buffer) <= sizeof(spp_service_buffer));
455     sdp_register_service(spp_service_buffer);
456 
457 #ifdef ENABLE_GATT_OVER_CLASSIC
458     // init SDP, create record for GATT and register with SDP
459     memset(gatt_service_buffer, 0, sizeof(gatt_service_buffer));
460     gatt_create_sdp_record(gatt_service_buffer, sdp_create_service_record_handle(), ATT_SERVICE_GATT_SERVICE_START_HANDLE, ATT_SERVICE_GATT_SERVICE_END_HANDLE);
461     btstack_assert(de_get_len( gatt_service_buffer) <= sizeof(gatt_service_buffer));
462     sdp_register_service(gatt_service_buffer);
463 #endif
464 
465     gap_set_local_name("SPP and LE Streamer 00:00:00:00:00:00");
466     gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
467 
468     // short-cut to find other SPP Streamer
469     gap_set_class_of_device(TEST_COD);
470 
471     gap_discoverable_control(1);
472 
473     // setup SM: Display only
474     sm_init();
475 
476     // setup ATT server
477     att_server_init(profile_data, att_read_callback, att_write_callback);
478 
479     // register for HCI events
480     hci_event_callback_registration.callback = &hci_packet_handler;
481     hci_add_event_handler(&hci_event_callback_registration);
482 
483     // register for ATT events
484     att_server_register_packet_handler(att_packet_handler);
485 
486     // setup advertisements
487     uint16_t adv_int_min = 0x0030;
488     uint16_t adv_int_max = 0x0030;
489     uint8_t adv_type = 0;
490     bd_addr_t null_addr;
491     memset(null_addr, 0, 6);
492     gap_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 0, null_addr, 0x07, 0x00);
493     gap_advertisements_set_data(adv_data_len, (uint8_t*) adv_data);
494     gap_advertisements_enable(1);
495 
496     spp_create_test_data();
497 
498     // turn on!
499     hci_power_control(HCI_POWER_ON);
500 
501     return 0;
502 }
503 /* LISTING_END */
504 /* EXAMPLE_END */
505