xref: /btstack/chipset/sx128x/ll_sx1280.c (revision ced70f9bfeafe291ec597a3a9cc862e39e0da3ce)
1 /*
2  * Copyright (C) 2020 BlueKitchen GmbH
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the copyright holders nor the names of
14  *    contributors may be used to endorse or promote products derived
15  *    from this software without specific prior written permission.
16  * 4. Any redistribution, use, or modification is done solely for
17  *    personal benefit and not for any commercial purpose or for
18  *    monetary gain.
19  *
20  * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
24  * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
30  * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * Please inquire about commercial licensing options at
34  * [email protected]
35  *
36  */
37 
38 #define BTSTACK_FILE__ "ll_sx1280.c"
39 
40 #define DEBUG
41 
42 #include <string.h>
43 
44 #include "ll.h"
45 
46 #include "hw.h"
47 #include "radio.h"
48 #include "sx1280.h"
49 #include "debug.h"
50 #include "btstack_config.h"
51 #include "btstack_debug.h"
52 #include "btstack_memory.h"
53 #include "btstack_memory_pool.h"
54 #include "btstack_linked_queue.h"
55 #include "bluetooth_company_id.h"
56 #include "hal_cpu.h"
57 #include "hci_event.h"
58 #include "hopping.h"
59 #include "hal_timer.h"
60 
61 
62 //
63 // configuration
64 //
65 
66 #define AUTO_RX_TX_TIME_US 86
67 
68 #define TX_PARAMS_RAMP_TIME RADIO_RAMP_02_US
69 
70 // set output power in dBM, range [-18..+13] dBm - Bluetooth LE max is 10 dBM
71 #define TX_PARAMS_OUTPUT_POWER 10
72 
73 
74 
75 #define ACL_LE_MAX_PAYLOAD 31
76 #define ADV_MAX_PAYLOAD    (6+6+22)
77 #define LL_MAX_PAYLOAD      37
78 
79 // split 256 bytes data buffer into 2 rx and 2 tx buffers
80 #define SX1280_RX0_OFFSET 0
81 #define SX1280_RX1_OFFSET 64
82 #define SX1280_TX0_OFFSET 128
83 #define SX1280_TX1_OFFSET 192
84 
85 
86 // Mask of IRQs to listen in tx and rx mode
87 #define RX_TX_IRQ_MASK (IRQ_RX_DONE | IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT | IRQ_CRC_ERROR)
88 
89 // sync hop delay - time we prepare for next connection event
90 #define SYNC_HOP_DELAY_US                           600
91 
92 // num tx buffers for use by link layer
93 #define HCI_NUM_TX_BUFFERS_LL                       4
94 
95 // num rx buffers
96 #define HCI_NUM_RX_BUFFERS                          16
97 
98 // total number PDU buffers
99 #define MAX_NUM_LL_PDUS (HCI_NUM_TX_BUFFERS_STACK + HCI_NUM_TX_BUFFERS_LL + HCI_NUM_RX_BUFFERS)
100 
101 // HCI Connection Handle used for all HCI events/connections
102 #define HCI_CON_HANDLE 0x0001
103 
104 // convert us to ticks, rounding to the closest tick count
105 // @note us must be <= 1000000 us = 1 s
106 #define US_TO_TICKS(US) (((((uint32_t)(US)) * 4096) + 6125) / 125000L)
107 
108 // ADV PDU Types
109 enum pdu_adv_type {
110     PDU_ADV_TYPE_ADV_IND = 0x00,
111     PDU_ADV_TYPE_DIRECT_IND = 0x01,
112     PDU_ADV_TYPE_NONCONN_IND = 0x02,
113     PDU_ADV_TYPE_SCAN_REQ = 0x03,
114     PDU_ADV_TYPE_AUX_SCAN_REQ = PDU_ADV_TYPE_SCAN_REQ,
115     PDU_ADV_TYPE_SCAN_RSP = 0x04,
116     PDU_ADV_TYPE_CONNECT_IND = 0x05,
117     PDU_ADV_TYPE_AUX_CONNECT_REQ = PDU_ADV_TYPE_CONNECT_IND,
118     PDU_ADV_TYPE_SCAN_IND = 0x06,
119     PDU_ADV_TYPE_EXT_IND = 0x07,
120     PDU_ADV_TYPE_AUX_ADV_IND = PDU_ADV_TYPE_EXT_IND,
121     PDU_ADV_TYPE_AUX_SCAN_RSP = PDU_ADV_TYPE_EXT_IND,
122     PDU_ADV_TYPE_AUX_SYNC_IND = PDU_ADV_TYPE_EXT_IND,
123     PDU_ADV_TYPE_AUX_CHAIN_IND = PDU_ADV_TYPE_EXT_IND,
124     PDU_ADV_TYPE_AUX_CONNECT_RSP = 0x08,
125 };
126 
127 // DATA PDU Types
128 enum pdu_data_llid {
129     PDU_DATA_LLID_RESV = 0x00,
130     PDU_DATA_LLID_DATA_CONTINUE = 0x01,
131     PDU_DATA_LLID_DATA_START = 0x02,
132     PDU_DATA_LLID_CTRL = 0x03,
133 };
134 
135 // DATA Link Layer Control Types
136 enum pdu_data_llctrl_type {
137     PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND = 0x00,
138     PDU_DATA_LLCTRL_TYPE_CHAN_MAP_IND = 0x01,
139     PDU_DATA_LLCTRL_TYPE_TERMINATE_IND = 0x02,
140     PDU_DATA_LLCTRL_TYPE_ENC_REQ = 0x03,
141     PDU_DATA_LLCTRL_TYPE_ENC_RSP = 0x04,
142     PDU_DATA_LLCTRL_TYPE_START_ENC_REQ = 0x05,
143     PDU_DATA_LLCTRL_TYPE_START_ENC_RSP = 0x06,
144     PDU_DATA_LLCTRL_TYPE_UNKNOWN_RSP = 0x07,
145     PDU_DATA_LLCTRL_TYPE_FEATURE_REQ = 0x08,
146     PDU_DATA_LLCTRL_TYPE_FEATURE_RSP = 0x09,
147     PDU_DATA_LLCTRL_TYPE_PAUSE_ENC_REQ = 0x0A,
148     PDU_DATA_LLCTRL_TYPE_PAUSE_ENC_RSP = 0x0B,
149     PDU_DATA_LLCTRL_TYPE_VERSION_IND = 0x0C,
150     PDU_DATA_LLCTRL_TYPE_REJECT_IND = 0x0D,
151     PDU_DATA_LLCTRL_TYPE_SLAVE_FEATURE_REQ = 0x0E,
152     PDU_DATA_LLCTRL_TYPE_CONN_PARAM_REQ = 0x0F,
153     PDU_DATA_LLCTRL_TYPE_CONN_PARAM_RSP = 0x10,
154     PDU_DATA_LLCTRL_TYPE_REJECT_EXT_IND = 0x11,
155     PDU_DATA_LLCTRL_TYPE_PING_REQ = 0x12,
156     PDU_DATA_LLCTRL_TYPE_PING_RSP = 0x13,
157     PDU_DATA_LLCTRL_TYPE_LENGTH_REQ = 0x14,
158     PDU_DATA_LLCTRL_TYPE_LENGTH_RSP = 0x15,
159     PDU_DATA_LLCTRL_TYPE_PHY_REQ = 0x16,
160     PDU_DATA_LLCTRL_TYPE_PHY_RSP = 0x17,
161     PDU_DATA_LLCTRL_TYPE_PHY_UPD_IND = 0x18,
162     PDU_DATA_LLCTRL_TYPE_MIN_USED_CHAN_IND = 0x19,
163 };
164 
165 // Radio State
166 typedef enum {
167     RADIO_LOWPOWER,
168     RADIO_RX_ERROR,
169     RADIO_TX_TIMEOUT,
170     RADIO_W4_TX_DONE_TO_RX,
171     RADIO_W4_TX_ONLY_DONE,
172     RADIO_W4_TIMER,
173 } radio_state_t;
174 
175 // Link Layer State
176 typedef enum {
177     LL_STATE_STANDBY,
178     LL_STATE_SCANNING,
179     LL_STATE_ADVERTISING,
180     LL_STATE_INITIATING,
181     LL_STATE_CONNECTED
182 } ll_state_t;
183 
184 // Link Layer PDU Flags
185 typedef enum {
186     LL_PDU_FLAG_DATA_PDU = 1,
187 } ll_pdu_flags;
188 
189 // Link Layer PDU, used in linked list
190 typedef struct {
191     // header
192     void *                 item;
193     hci_con_handle_t       con_handle;
194     uint8_t                flags;
195     // over the air data
196     uint8_t                header;
197     uint8_t                len;
198     uint8_t                payload[LL_MAX_PAYLOAD];
199 } ll_pdu_t;
200 
201 // channel table: freq in hertz and whitening seed
202 static const struct {
203     uint32_t freq_hz;
204     uint8_t  whitening;
205 }  channel_table[] = {
206         { 2404000000, 0x01 /* 00000001 */ },
207         { 2406000000, 0x41 /* 01000001 */ },
208         { 2408000000, 0x21 /* 00100001 */ },
209         { 2410000000, 0x61 /* 01100001 */ },
210         { 2412000000, 0x11 /* 00010001 */ },
211         { 2414000000, 0x51 /* 01010001 */ },
212         { 2416000000, 0x31 /* 00110001 */ },
213         { 2418000000, 0x71 /* 01110001 */ },
214         { 2420000000, 0x09 /* 00001001 */ },
215         { 2422000000, 0x49 /* 01001001 */ },
216         { 2424000000, 0x29 /* 00101001 */ },
217         { 2428000000, 0x69 /* 01101001 */ },
218         { 2430000000, 0x19 /* 00011001 */ },
219         { 2432000000, 0x59 /* 01011001 */ },
220         { 2434000000, 0x39 /* 00111001 */ },
221         { 2436000000, 0x79 /* 01111001 */ },
222         { 2438000000, 0x05 /* 00000101 */ },
223         { 2440000000, 0x45 /* 01000101 */ },
224         { 2442000000, 0x25 /* 00100101 */ },
225         { 2444000000, 0x65 /* 01100101 */ },
226         { 2446000000, 0x15 /* 00010101 */ },
227         { 2448000000, 0x55 /* 01010101 */ },
228         { 2450000000, 0x35 /* 00110101 */ },
229         { 2452000000, 0x75 /* 01110101 */ },
230         { 2454000000, 0x0d /* 00001101 */ },
231         { 2456000000, 0x4d /* 01001101 */ },
232         { 2458000000, 0x2d /* 00101101 */ },
233         { 2460000000, 0x6d /* 01101101 */ },
234         { 2462000000, 0x1d /* 00011101 */ },
235         { 2464000000, 0x5d /* 01011101 */ },
236         { 2466000000, 0x3d /* 00111101 */ },
237         { 2468000000, 0x7d /* 01111101 */ },
238         { 2470000000, 0x03 /* 00000011 */ },
239         { 2472000000, 0x43 /* 01000011 */ },
240         { 2474000000, 0x23 /* 00100011 */ },
241         { 2476000000, 0x63 /* 01100011 */ },
242         { 2478000000, 0x13 /* 00010011 */ },
243         { 2402000000, 0x53 /* 01010011 */ },
244         { 2426000000, 0x33 /* 00110011 */ },
245         { 2480000000, 0x73 /* 01110011 */ },
246 };
247 
248 // tx buffer offset
249 static uint8_t tx_buffer_offset[] = {
250         SX1280_TX0_OFFSET,
251         SX1280_TX1_OFFSET
252 };
253 
254 // hopping context
255 static hopping_t h;
256 
257 static struct {
258 
259     volatile bool     synced;
260 
261     volatile uint16_t packet_nr_in_connection_event;
262 
263     volatile uint16_t conn_interval_1250us;
264     volatile uint32_t conn_interval_us;
265 	volatile uint16_t conn_interval_ticks;
266 
267     volatile uint16_t conn_latency;
268 
269     volatile uint16_t supervision_timeout_10ms;
270     volatile uint32_t supervision_timeout_us;
271 
272     //
273     volatile uint32_t time_without_any_packets_us;
274 
275     // access address
276     volatile uint32_t aa;
277 
278     // start of current connection event
279     volatile uint16_t anchor_ticks;
280 
281 	// latest time to send tx packet before sync hop
282 	volatile uint16_t conn_latest_tx_ticks;
283 
284 	// timeout for sync relative to anchor
285 	volatile uint16_t conn_sync_hop_ticks;
286 
287     // current channel
288     volatile uint8_t  channel;
289 
290     // CSA #2 supported
291     uint8_t csa2_support;
292 
293     // channels selection algorithm index (1 for csa #2)
294     volatile uint8_t channel_selection_algorithm;
295 
296     // current connection event, first one starts with 0
297     // - needed for connection param and channel map updates as well as encryption
298     volatile uint16_t connection_event;
299 
300     // pending channel map update
301     volatile bool     channel_map_update_pending;
302     volatile uint16_t channel_map_update_instant;
303     volatile uint8_t  channel_map_update_map[5];
304 
305     // pending connection param update
306     volatile bool     conn_param_update_pending;
307     volatile uint16_t conn_param_update_instant;
308     volatile uint8_t  conn_param_update_win_size;
309     volatile uint16_t conn_param_update_win_offset;
310     volatile uint16_t conn_param_update_interval_1250us;
311     volatile uint16_t conn_param_update_latency;
312     volatile uint32_t conn_param_update_timeout_us;
313 
314     // our bd_addr as little endian
315     uint8_t bd_addr_le[6];
316 
317     // peer addr
318     uint8_t peer_addr_type;
319     uint8_t peer_addr[6];
320 
321     // adv data
322     uint8_t adv_len;
323     uint8_t adv_data[31];
324 
325     // adv param
326     uint8_t  adv_map;
327     uint32_t adv_interval_us;
328     uint8_t  adv_type;
329 
330 	// adv data
331 	uint8_t scan_resp_len;
332 	uint8_t scan_resp_data[31];
333 
334     // next expected sequence number
335     volatile uint8_t next_expected_sequence_number;
336 
337     // transmit sequence number
338     volatile uint8_t transmit_sequence_number;
339 
340     // num completed packets
341     volatile uint8_t num_completed;
342 
343     // rx queue
344     btstack_linked_queue_t rx_queue;
345 
346     // current incoming packet
347     ll_pdu_t * rx_pdu;
348 
349     // rx packet ready
350     bool rx_pdu_received;
351 
352     // tx queue of outgoing pdus
353     btstack_linked_queue_t tx_queue;
354 
355     // pdus transferred into controller tx buffers
356     ll_pdu_t * tx_buffer_pdu[2];
357 
358     // manage tx packets on controller
359     uint8_t num_tx_pdus_on_controller;
360 
361     // index of next tx buffer to send
362     uint8_t next_tx_buffer;
363 
364 } ctx;
365 
366 static radio_state_t radio_state = RADIO_LOWPOWER;
367 
368 // Buffer pool
369 static ll_pdu_t ll_pdu_pool_storage[MAX_NUM_LL_PDUS];
370 static btstack_memory_pool_t ll_pdu_pool;
371 
372 // single ll control response
373 static ll_pdu_t ll_tx_packet;
374 static ll_pdu_t ll_empty_packet;
375 
376 // Link Layer State
377 static ll_state_t ll_state;
378 static uint32_t ll_scan_interval_us;
379 static uint32_t ll_scan_window_us;
380 
381 static ll_pdu_t * ll_reserved_acl_buffer;
382 static void (*controller_packet_handler)(uint8_t packet_type, uint8_t * packet, uint16_t size);
383 
384 static uint8_t ll_outgoing_hci_event[258];
385 static bool ll_send_disconnected;
386 static bool ll_send_connection_complete;
387 
388 // prototypes
389 static void radio_set_timer_ticks(uint32_t anchor_offset_ticks);
390 
391 
392 // memory pool for acl-le pdus
393 static ll_pdu_t * btstack_memory_ll_pdu_get(void){
394     void * buffer = btstack_memory_pool_get(&ll_pdu_pool);
395     if (buffer){
396         memset(buffer, 0, sizeof(ll_pdu_t));
397     }
398     return (ll_pdu_t *) buffer;
399 }
400 
401 static void btstack_memory_ll_pdu_free(ll_pdu_t *acl_le_pdu){
402     btstack_memory_pool_free(&ll_pdu_pool, acl_le_pdu);
403 }
404 
405 static void radio_auto_tx_on(void){
406 	// SetAutoTX(150 ms) - direct write / ignore compensation
407 	uint8_t buf[2];
408 	big_endian_store_16(buf, 0, AUTO_RX_TX_TIME_US);
409 	SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 );
410 }
411 
412 static void radio_auto_tx_off(void){
413 	// SetAutoTX(0) - direct write / ignore compensation
414 	uint8_t buf[2] = { 0, 0 };
415 	SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 );
416 }
417 
418 static bool receive_prepare_rx_bufffer(void){
419     if (ctx.rx_pdu == NULL){
420         ctx.rx_pdu = btstack_memory_ll_pdu_get();
421     }
422     if (ctx.rx_pdu == NULL){
423         printf("No free RX buffer\n");
424         return false;
425     } else {
426         return true;
427     }
428 }
429 
430 static void receive_response(void){
431     if (receive_prepare_rx_bufffer()) {
432         // 150 us would be enough, but the timeout seems to apply for AutoTx as well, so we use 250 us
433         Radio.SetRx( ( TickTime_t ) { RADIO_TICK_SIZE_0015_US, 16 } );
434     }
435 }
436 
437 static void receive_first_master(void){
438     if (receive_prepare_rx_bufffer()){
439         Radio.SetRx( ( TickTime_t ) { RADIO_TICK_SIZE_1000_US, 1000 } );
440     }
441 }
442 
443 static void receive_master(void){
444     if (receive_prepare_rx_bufffer()) {
445         Radio.SetRx((TickTime_t) {RADIO_TICK_SIZE_1000_US, 1});
446     }
447 }
448 
449 static void setup_adv_pdu(uint8_t offset, uint8_t header, uint8_t len, const uint8_t * data){
450 	uint8_t buffer[39];
451 	buffer[0] = header;
452 	buffer[1] = 6 + len;
453 	memcpy(&buffer[2], ctx.bd_addr_le, 6);
454 	memcpy(&buffer[8], data, len);
455 	uint16_t packet_size = 2 + buffer[1];
456 	SX1280HalWriteBuffer( offset, buffer, packet_size );
457 }
458 
459 static void send_adv(void){
460 
461 	// enable AutoTX for potential Scan Response
462 	// TODO: only if adv type allows for scanning
463 	radio_auto_tx_on();
464 
465 	SX1280SetBufferBaseAddresses( SX1280_TX0_OFFSET, SX1280_RX0_OFFSET);
466     SX1280SetTx( ( TickTime_t ){ RADIO_TICK_SIZE_1000_US, 1 } );
467 }
468 
469 static void select_channel(uint8_t channel){
470     // Set Whitening seed
471     Radio.SetWhiteningSeed( channel_table[channel].whitening );
472 
473     // Sel Frequency
474     Radio.SetRfFrequency( channel_table[channel].freq_hz );
475 }
476 
477 static void next_channel(void){
478     switch (ctx.channel_selection_algorithm){
479         case 0:
480             ctx.channel = hopping_csa1_get_next_channel( &h );
481             break;
482         case 1:
483             ctx.channel = hopping_csa2_get_channel_for_counter( &h,  ctx.connection_event);
484             break;
485         default:
486             break;
487     }
488     select_channel(ctx.channel);
489 }
490 
491 static void ll_advertising_statemachine(void){
492     switch ( radio_state) {
493         case RADIO_RX_ERROR:
494         case RADIO_LOWPOWER:
495             // find next channel
496             while (ctx.channel < 40){
497                 ctx.channel++;
498                 if ((ctx.adv_map & (1 << (ctx.channel - 37))) != 0) {
499                     // Set Channel
500                     select_channel(ctx.channel);
501                     if (ctx.adv_type == 3) {
502                         // Non connectable undirected advertising (ADV_NONCONN_IND)
503                         radio_state = RADIO_W4_TX_ONLY_DONE;
504                     } else {
505                         // All other are either connectable and/or scannable
506                         radio_state = RADIO_W4_TX_DONE_TO_RX;
507                     }
508                     send_adv();
509                     break;
510                 }
511                 if (ctx.channel >= 40){
512                     // Set timer
513                     radio_state = RADIO_W4_TIMER;
514                     uint32_t adv_interval_ticks = US_TO_TICKS(ctx.adv_interval_us);
515                     radio_set_timer_ticks(adv_interval_ticks);
516                 }
517             }
518             break;
519         default:
520             break;
521     }
522 }
523 
524 static void start_advertising(void){
525 
526     Radio.StopAutoTx();
527 
528     PacketParams_t packetParams;
529     packetParams.PacketType = PACKET_TYPE_BLE;
530     packetParams.Params.Ble.BlePacketType = BLE_EYELONG_1_0;
531     packetParams.Params.Ble.ConnectionState = BLE_PAYLOAD_LENGTH_MAX_37_BYTES;
532     packetParams.Params.Ble.CrcField = BLE_CRC_3B;
533     packetParams.Params.Ble.Whitening = RADIO_WHITENING_ON;
534     Radio.SetPacketParams( &packetParams );
535 
536     // Set CRC init value 0x555555
537     Radio.WriteRegister(0x9c7, 0x55 );
538     Radio.WriteRegister(0x9c8, 0x55 );
539     Radio.WriteRegister(0x9c9, 0x55 );
540 
541     // Set AccessAddress for ADV packets
542     Radio.SetBleAdvertizerAccessAddress( );
543 
544     // prepare adv and scan data in tx0 and tx1
545 	setup_adv_pdu(SX1280_TX0_OFFSET, PDU_ADV_TYPE_ADV_IND,  ctx.adv_len,       ctx.adv_data);
546 	setup_adv_pdu(SX1280_TX1_OFFSET, PDU_ADV_TYPE_SCAN_RSP, ctx.scan_resp_len, ctx.scan_resp_data);
547 
548 	radio_state = RADIO_LOWPOWER;
549     ll_state = LL_STATE_ADVERTISING;
550 
551     // prepare
552     ctx.channel = 36;
553     ctx.anchor_ticks = hal_timer_get_ticks();
554 
555     // and get started
556     ll_advertising_statemachine();
557 }
558 
559 static void start_hopping(void){
560     PacketParams_t packetParams;
561     packetParams.PacketType = PACKET_TYPE_BLE;
562     packetParams.Params.Ble.BlePacketType = BLE_EYELONG_1_0;
563     packetParams.Params.Ble.ConnectionState = BLE_PAYLOAD_LENGTH_MAX_31_BYTES;
564     packetParams.Params.Ble.CrcField = BLE_CRC_3B;
565     packetParams.Params.Ble.Whitening = RADIO_WHITENING_ON;
566     Radio.SetPacketParams( &packetParams );
567 
568 }
569 
570 static void radio_stop_timer(void){
571     hal_timer_stop();
572 }
573 
574 static void radio_set_timer_ticks(uint32_t anchor_offset_ticks){
575     radio_stop_timer();
576     // set timer for next radio event relative to anchor
577     uint16_t timeout_ticks = (uint16_t) (ctx.anchor_ticks + anchor_offset_ticks);
578     hal_timer_start(timeout_ticks);
579 }
580 
581 static void ctx_set_conn_interval(uint16_t conn_interval_1250us){
582 	ctx.conn_interval_1250us = conn_interval_1250us;
583 	ctx.conn_interval_us     = ctx.conn_interval_1250us * 1250;
584 	ctx.conn_interval_ticks  = US_TO_TICKS(ctx.conn_interval_us);
585 	ctx.conn_sync_hop_ticks  = US_TO_TICKS(ctx.conn_interval_us - SYNC_HOP_DELAY_US);
586 
587 	// latest time to send a packet before getting ready for next cnonection event
588 	uint16_t max_packet_time_incl_ifs_us = 500;
589 	ctx.conn_latest_tx_ticks = US_TO_TICKS(ctx.conn_interval_us - SYNC_HOP_DELAY_US - max_packet_time_incl_ifs_us);
590 }
591 
592 static void ll_terminate(void){
593     ll_state = LL_STATE_STANDBY;
594     ctx.conn_param_update_pending = false;
595     ctx.channel_map_update_pending = false;
596     // stop sync hop timer
597     radio_stop_timer();
598     // free outgoing tx packets
599     uint8_t i;
600     for (i=0;i<2;i++){
601         ll_pdu_t * tx_pdu = ctx.tx_buffer_pdu[i];
602         if ((tx_pdu != NULL) && (tx_pdu != &ll_tx_packet) && (tx_pdu != &ll_empty_packet)){
603             btstack_memory_ll_pdu_free(tx_pdu);
604             ctx.tx_buffer_pdu[i] = NULL;
605         }
606     }
607     ctx.num_tx_pdus_on_controller = 0;
608     // free queued tx packets
609     while (true){
610         ll_pdu_t * tx_pdu = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.tx_queue);
611         if (tx_pdu != NULL) {
612             btstack_memory_ll_pdu_free(tx_pdu);
613         } else {
614             break;
615         }
616     }
617     // disable auto tx
618     Radio.StopAutoTx();
619     // notify host stack
620     ll_send_disconnected = true;
621 }
622 
623 // load queued tx pdu into next free tx buffer
624 static void preload_tx_buffer(void){
625     if (ctx.num_tx_pdus_on_controller >= 2) return;
626 
627     ll_pdu_t * tx_pdu = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.tx_queue);
628     if (tx_pdu == NULL) return;
629 
630 	const uint16_t max_packet_len = 2 + 27;
631     uint8_t index = (ctx.next_tx_buffer + ctx.num_tx_pdus_on_controller) & 1;
632     ctx.tx_buffer_pdu[index] = tx_pdu;
633     SX1280HalWriteBuffer( tx_buffer_offset[index], (uint8_t *) &ctx.tx_buffer_pdu[index]->header, max_packet_len);
634 
635     ctx.num_tx_pdus_on_controller++;
636 	// printf("preload %u bytes into %u\n", ctx.tx_buffer_pdu[index]->len, index);
637 }
638 
639 static void radio_timer_handler(void){
640 
641     uint16_t t0 = hal_timer_get_ticks();
642 
643     switch (ll_state){
644         case LL_STATE_CONNECTED:
645             // check supervision timeout
646             ctx.time_without_any_packets_us += ctx.conn_interval_us;
647             if (ctx.time_without_any_packets_us > ctx.supervision_timeout_us) {
648                 printf("Supervision timeout\n\n");
649                 ll_terminate();
650                 return;
651             }
652 
653             // prepare next connection event
654             ctx.connection_event++;
655             ctx.anchor_ticks += ctx.conn_interval_ticks;
656 
657             ctx.packet_nr_in_connection_event = 0;
658             next_channel();
659 
660             if (ctx.channel_map_update_pending && (ctx.channel_map_update_instant == ctx.connection_event)) {
661                 hopping_set_channel_map( &h, (const uint8_t *) &ctx.channel_map_update_map );
662                 ctx.channel_map_update_pending = false;
663             }
664 
665             if (ctx.conn_param_update_pending && ((ctx.conn_param_update_instant) == ctx.connection_event) ) {
666             	ctx_set_conn_interval(ctx.conn_param_update_interval_1250us);
667                 ctx.conn_latency            = ctx.conn_param_update_latency;
668                 ctx.supervision_timeout_us  = ctx.conn_param_update_timeout_us;
669                 ctx.conn_param_update_pending = false;
670 
671                 log_info("Conn param update now");
672 
673                 radio_stop_timer();
674                 ctx.synced = false;
675             }
676 
677             // preload tx pdu
678 			preload_tx_buffer();
679 
680             if (ctx.synced){
681                 // restart radio timer (might get overwritten by first packet)
682                 radio_set_timer_ticks(ctx.conn_sync_hop_ticks);
683 
684                 receive_master();
685             } else {
686                 // just wait longer
687                 receive_first_master();
688             }
689 
690             // printf("--SYNC-Ch %02u-Event %04u - t %08u--\n", ctx.channel, ctx.connection_event, t0);
691             break;
692         case LL_STATE_ADVERTISING:
693             // send adv on all configured channels
694             ctx.channel = 36;
695             ctx.anchor_ticks = t0;
696             radio_stop_timer();
697             ll_advertising_statemachine();
698             radio_state = RADIO_LOWPOWER;
699             break;
700         default:
701             break;
702     }
703 
704 }
705 
706 static void radio_fetch_rx_pdu(void){
707 
708 	if (!ctx.rx_pdu_received) return;
709 	ctx.rx_pdu_received = false;
710 
711 	// fetch reserved rx pdu
712 	ll_pdu_t * rx_packet = ctx.rx_pdu;
713 	btstack_assert(rx_packet != NULL);
714 
715 	// read max packet
716 	uint16_t max_packet_len = 2 + 27;
717 	SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_packet->header, max_packet_len);
718 
719 	// queue if not empty
720 	if (rx_packet->len != 0){
721 
722 		// packet used
723 		ctx.rx_pdu = NULL;
724 
725 		// mark as data packet
726 		rx_packet->flags |= LL_PDU_FLAG_DATA_PDU;
727 
728 		// queue received packet
729 		btstack_linked_queue_enqueue(&ctx.rx_queue, (btstack_linked_item_t *) rx_packet);
730 	}
731 }
732 
733 /** Radio IRQ handlers */
734 static void radio_on_tx_done(void ){
735     switch (ll_state){
736         case LL_STATE_ADVERTISING:
737             switch (radio_state){
738                 case RADIO_W4_TX_DONE_TO_RX:
739                     receive_response();
740                     break;
741                 case RADIO_W4_TX_ONLY_DONE:
742                     radio_state = RADIO_LOWPOWER;
743                     break;
744                 default:
745                     break;
746             }
747             break;
748         case LL_STATE_CONNECTED:
749             btstack_assert(radio_state == RADIO_W4_TX_DONE_TO_RX);
750             receive_response();
751             radio_fetch_rx_pdu();
752             preload_tx_buffer();
753             break;
754         default:
755             break;
756     }
757 }
758 static void radio_prepare_auto_tx(uint16_t packet_end_ticks, uint8_t rx_len){
759 	// restart supervision timeout
760 	ctx.time_without_any_packets_us = 0;
761 
762 	// check if we can sent a full packet before sync hop
763 	int16_t now_ticks = packet_end_ticks - ctx.anchor_ticks;
764 	if (ctx.synced && (now_ticks > ctx.conn_latest_tx_ticks)){
765 		// disable AutoTX to abort sending of next packet
766 		Radio.SetFs();
767 		log_info("Close before Sync hop: now %u > %u", now_ticks, ctx.conn_latest_tx_ticks);
768 
769 		// get rx pdu and
770 		radio_fetch_rx_pdu();
771 		return;
772 	}
773 
774 	// setup empty packet in ll buffer if no tx packet was preloaded
775 	if (ctx.num_tx_pdus_on_controller == 0) {
776 		ctx.tx_buffer_pdu[ctx.next_tx_buffer] = &ll_empty_packet;
777 		ctx.num_tx_pdus_on_controller++;
778         ll_empty_packet.header = PDU_DATA_LLID_DATA_CONTINUE;
779         ll_empty_packet.len = 0;
780 	}
781 
782 	// setup pdu header
783 	uint8_t packet_header[2];
784 	uint8_t md = btstack_linked_queue_empty(&ctx.tx_queue) ? 0 : 1;
785 	packet_header[0] = (md << 4) | (ctx.transmit_sequence_number << 3) | (ctx.next_expected_sequence_number << 2) | ctx.tx_buffer_pdu[ctx.next_tx_buffer]->header;
786 	packet_header[1] = ctx.tx_buffer_pdu[ctx.next_tx_buffer]->len;
787 
788 	// select outgoing tx buffer and update pdu header
789 	SX1280SetBufferBaseAddresses( tx_buffer_offset[ctx.next_tx_buffer], SX1280_RX0_OFFSET);
790 	SX1280HalWriteBuffer( tx_buffer_offset[ctx.next_tx_buffer], (uint8_t *) packet_header, sizeof(packet_header));
791 
792 	// update operating state
793 	SX1280AutoTxWillStart();
794 
795 	// set anchor on first packet in connection event
796 	if (ctx.packet_nr_in_connection_event == 0){
797 
798 		// preamble (1) + aa (4) + header (1) + len (1) + payload (len) + crc (3) -- ISR handler ca. 35 us
799 		uint16_t timestamp_delay = (10 + rx_len) * 8 - 35;
800 		uint16_t packet_start_ticks = packet_end_ticks - US_TO_TICKS(timestamp_delay);
801 
802 		ctx.anchor_ticks = packet_start_ticks;
803 		ctx.synced = true;
804 		radio_set_timer_ticks(ctx.conn_sync_hop_ticks);
805 	}
806 
807 	ctx.packet_nr_in_connection_event++;
808 
809 	// printf("RX %02x -- tx buffer %u, %02x %02x\n", rx_header, ctx.next_tx_buffer, packet_header[0], packet_header[1]);
810 }
811 
812 static void radio_on_rx_done(void ){
813     uint16_t packet_end_ticks = hal_timer_get_ticks();
814 
815 	if (ll_state == LL_STATE_ADVERTISING){
816 
817 		// get rx pdu header
818 		uint8_t rx_header;
819 		SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_header, 1);
820 
821 		// check for Scan Request
822 		uint8_t pdu_type = rx_header & 0x0f;
823 		if (pdu_type == PDU_ADV_TYPE_SCAN_REQ){
824 			// scan request, select TX1 for active AutoTx
825 			SX1280SetBufferBaseAddresses( SX1280_TX1_OFFSET, SX1280_RX0_OFFSET);
826 			radio_state = RADIO_W4_TX_ONLY_DONE;
827 		} else {
828 
829 			// fetch reserved rx pdu
830 			ll_pdu_t * rx_packet = ctx.rx_pdu;
831 			btstack_assert(rx_packet != NULL);
832 			ctx.rx_pdu = NULL;
833 
834 			// no data packet
835 			rx_packet->flags = 0;
836 			uint16_t max_packet_len = 2 + LL_MAX_PAYLOAD;
837 
838 			// no scan request, disable auto tx and read complete buffer
839 			radio_auto_tx_off();
840 			SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_packet->header, max_packet_len);
841 
842 			// queue received packet
843 			btstack_linked_queue_enqueue(&ctx.rx_queue, (btstack_linked_item_t *) rx_packet);
844 		}
845 
846 	} else if (ll_state == LL_STATE_CONNECTED){
847 
848 		// get and parse rx pdu header
849 		uint8_t rx_buffer[2];
850 		SX1280HalReadBuffer( SX1280_RX0_OFFSET, rx_buffer, 2);
851 		uint8_t rx_header = rx_buffer[0];
852 		uint8_t rx_len    = rx_buffer[1];
853         uint8_t next_expected_sequence_number = (rx_header >> 2) & 1;
854         uint8_t sequence_number = (rx_header >> 3) & 1;
855         // more data field not used yet
856         // uint8_t more_data = (rx_packet->header >> 4) & 1;
857 
858         // only accept packets with new sequence number and len <= payload size
859         if ((sequence_number == ctx.next_expected_sequence_number) && (rx_len <= LL_MAX_PAYLOAD)) {
860 
861             bool rx_buffer_available = receive_prepare_rx_bufffer();
862             if (rx_buffer_available){
863                 // update state
864                 ctx.next_expected_sequence_number = 1 - sequence_number;
865 
866                 // register pdu fetch
867                 ctx.rx_pdu_received = true;
868             }
869         }
870 
871         // report outgoing packet as ack'ed and free if confirmed by peer
872         bool tx_acked = ctx.transmit_sequence_number != next_expected_sequence_number;
873         if (tx_acked){
874             if (ctx.num_tx_pdus_on_controller > 0){
875                 ll_pdu_t * acked_pdu = ctx.tx_buffer_pdu[ctx.next_tx_buffer];
876             	btstack_assert(acked_pdu != NULL);
877             	// if non link-layer packet, free buffer and report as completed
878 				if ((acked_pdu != &ll_tx_packet) && (acked_pdu != &ll_empty_packet)){
879 					btstack_memory_ll_pdu_free(acked_pdu);
880 					ctx.tx_buffer_pdu[ctx.next_tx_buffer] = NULL;
881 					ctx.num_completed++;
882 				}
883 				// next buffer
884 				ctx.num_tx_pdus_on_controller--;
885 				ctx.next_tx_buffer = (ctx.next_tx_buffer + 1 ) & 1;
886 			}
887             ctx.transmit_sequence_number = next_expected_sequence_number;
888         }
889 
890         // packet received, now prepare for AutoTX
891 		radio_prepare_auto_tx(packet_end_ticks, rx_len);
892     }
893 }
894 
895 static void radio_on_tx_timeout(void ){
896     radio_state = RADIO_TX_TIMEOUT;
897     printf( "<>>>>>>>>TXE\n\r" );
898 }
899 
900 static void radio_on_rx_timeout(void ){
901     switch (ll_state){
902         case LL_STATE_ADVERTISING:
903             radio_state = RADIO_RX_ERROR;
904             break;
905         default:
906             break;
907     }
908 }
909 
910 static void radio_on_rx_error(IrqErrorCode_t errorCode ){
911 	uint16_t packet_end_ticks = hal_timer_get_ticks();
912 	uint8_t rx_buffer[2];
913 	uint8_t rx_len;
914     switch (ll_state){
915         case LL_STATE_ADVERTISING:
916             radio_state = RADIO_RX_ERROR;
917             break;
918 		case LL_STATE_CONNECTED:
919 			// get len from rx pdu header
920 			SX1280HalReadBuffer(SX1280_RX0_OFFSET, rx_buffer, 2);
921 			rx_len = rx_buffer[1];
922 			radio_prepare_auto_tx(packet_end_ticks, rx_len);
923 			break;
924         default:
925             break;
926     }
927 }
928 
929 const static RadioCallbacks_t Callbacks =
930 {
931     &radio_on_tx_done,     // txDone
932     &radio_on_rx_done,     // rxDone
933     NULL,                  // syncWordDone
934     NULL,                  // headerDone
935     &radio_on_tx_timeout,  // txTimeout
936     &radio_on_rx_timeout,  // rxTimeout
937     &radio_on_rx_error,    // rxError
938     NULL,                  // rangingDone
939     NULL,                  // cadDone
940 };
941 
942 // Link Layer
943 
944 static void ll_emit_hci_event(const hci_event_t * event, ...){
945     va_list argptr;
946     va_start(argptr, event);
947     uint16_t length = hci_event_create_from_template_and_arglist(ll_outgoing_hci_event, event, argptr);
948     va_end(argptr);
949     controller_packet_handler(HCI_EVENT_PACKET, ll_outgoing_hci_event, length);
950 }
951 
952 void ll_init(void){
953 
954     // setup memory pools
955     btstack_memory_pool_create(&ll_pdu_pool, ll_pdu_pool_storage, MAX_NUM_LL_PDUS, sizeof(ll_pdu_t));
956 
957     // set test bd addr 33:33:33:33:33:33
958     memset(ctx.bd_addr_le, 0x33, 6);
959 
960     // default channels, advertising interval
961     ctx.adv_map = 0x7;
962     ctx.adv_interval_us = 1280000;
963 
964     // init timer
965     hal_timer_init();
966     hal_timer_set_callback(&radio_timer_handler);
967 }
968 
969 void ll_radio_on(void){
970 
971     Radio.Init( (RadioCallbacks_t *) &Callbacks );
972     Radio.SetRegulatorMode( USE_DCDC ); // Can also be set in LDO mode but consume more power
973     Radio.SetInterruptMode( );
974     Radio.SetDioIrqParams( RX_TX_IRQ_MASK, RX_TX_IRQ_MASK, IRQ_RADIO_NONE, IRQ_RADIO_NONE );
975 
976     ModulationParams_t modulationParams;
977     modulationParams.PacketType = PACKET_TYPE_BLE;
978     modulationParams.Params.Ble.BitrateBandwidth = GFSK_BLE_BR_1_000_BW_1_2;
979     modulationParams.Params.Ble.ModulationIndex = GFSK_BLE_MOD_IND_0_50;
980     modulationParams.Params.Ble.ModulationShaping = RADIO_MOD_SHAPING_BT_0_5;
981 
982     Radio.SetStandby( STDBY_RC );
983     Radio.SetPacketType( modulationParams.PacketType );
984     Radio.SetModulationParams( &modulationParams );
985     Radio.SetBufferBaseAddresses( SX1280_TX0_OFFSET, SX1280_RX0_OFFSET );
986     Radio.SetTxParams( TX_PARAMS_OUTPUT_POWER, TX_PARAMS_RAMP_TIME );
987 
988     // Go back to Frequcency Synthesis Mode, reduces transition time between Rx<->TX
989     Radio.SetAutoFS(1);
990 
991     uint16_t fw_version = SX1280GetFirmwareVersion();
992     printf("FW Version: 0x%04x\n", fw_version);
993 
994 	// quick test
995 	uint8_t data[] = {1, 2, 4, 8, 16, 32, 64, 128,  1, 2, 4, 8, 16, 32, 64, 128,  1, 2, 4, 8, 16, 32, 64, 128,  1, 2, 4, 8, 16, 32, 64, 128 };
996 	Radio.WriteBuffer(0, data, sizeof(data));
997 	uint8_t check[32];
998 	Radio.ReadBuffer(0, check, sizeof(data));
999 	if (memcmp(data, check, sizeof(data)) != 0) {
1000 		printf("GOOD: "); printf_hexdump(data, sizeof(data));
1001 		printf("BAD:  "); printf_hexdump(check, sizeof(data));
1002 		btstack_assert(false);
1003 	}
1004 
1005     ll_state = LL_STATE_STANDBY;
1006 }
1007 
1008 static void ll_handle_conn_ind(ll_pdu_t * rx_packet){
1009     printf("Connect Req: ");
1010     printf_hexdump(&rx_packet->header, rx_packet->len + 2);
1011 
1012     uint8_t * init_addr = &rx_packet->payload[0];
1013     uint8_t * adv_addr =  &rx_packet->payload[6];
1014     uint8_t   chan_sel = (rx_packet->header >> 5) & 1;
1015 
1016     // verify AdvA
1017     if (memcmp(ctx.bd_addr_le, adv_addr, 6) != 0){
1018         // differs, go back to adv sending
1019         radio_state = RADIO_LOWPOWER;
1020         return;
1021     }
1022 
1023     // TODO: get remote addr type
1024     ctx.peer_addr_type = 0;
1025     memcpy(ctx.peer_addr, init_addr, 6);
1026 
1027     // get params for HCI event
1028     const uint8_t * ll_data = &rx_packet->payload[12];
1029 
1030     ctx.aa                        = little_endian_read_32(ll_data, 0);
1031     uint8_t crc_init_0            = ll_data[4];
1032     uint8_t crc_init_1            = ll_data[5];
1033     uint8_t crc_init_2            = ll_data[6];
1034     uint8_t win_size              = ll_data[7];
1035     uint16_t win_offset           = little_endian_read_16(ll_data, 8);
1036     uint16_t conn_interval_1250us = little_endian_read_16(ll_data, 10);
1037     ctx.conn_latency              = little_endian_read_16(ll_data, 12);
1038     ctx.supervision_timeout_10ms  = little_endian_read_16(ll_data, 14);
1039     const uint8_t * channel_map = &ll_data[16];
1040     uint8_t hop = ll_data[21] & 0x1f;
1041     uint8_t sca = ll_data[21] >> 5;
1042 
1043     UNUSED(sca);
1044     UNUSED(win_offset);
1045     UNUSED(win_size);
1046 
1047 	ctx_set_conn_interval(conn_interval_1250us);
1048 
1049     // convert to us
1050     ctx.supervision_timeout_us  = ctx.supervision_timeout_10ms  * 10000;
1051     ctx.connection_event = 0;
1052     ctx.packet_nr_in_connection_event = 0;
1053     ctx.next_expected_sequence_number = 0;
1054     ctx.transmit_sequence_number = 0;
1055 
1056     // set AA
1057     Radio.SetBleAccessAddress(ctx.aa);
1058 
1059     // set CRC init value
1060     Radio.WriteRegister(0x9c7, crc_init_2);
1061     Radio.WriteRegister(0x9c8, crc_init_1);
1062     Radio.WriteRegister(0x9c9, crc_init_0);
1063 
1064     printf("Connection interval %u us\n", ctx.conn_interval_us);
1065     printf("Connection timeout  %u us\n", ctx.supervision_timeout_us);
1066     printf("AA %08x\n", ctx.aa);
1067     printf("CRC Init 0x%02x%02x%02x\n", crc_init_2, crc_init_1, crc_init_0);
1068 
1069     // init hopping
1070     hopping_init( &h );
1071     hopping_set_channel_map( &h, channel_map);
1072     ctx.channel_selection_algorithm = ctx.csa2_support & chan_sel;
1073     switch (ctx.channel_selection_algorithm){
1074         case 0:
1075             hopping_csa1_set_hop_increment(  &h, hop );
1076             break;
1077         case 1:
1078             hopping_csa2_set_access_address( &h, ctx.aa);
1079             break;
1080         default:
1081             break;
1082     }
1083     next_channel();
1084 
1085     start_hopping();
1086 
1087     radio_auto_tx_on();
1088 
1089 	// pre-load tx pdu
1090 	ctx.num_tx_pdus_on_controller = 0;
1091 	ctx.next_tx_buffer = 0;
1092 	preload_tx_buffer();
1093 
1094     // get next packet
1095     ll_state = LL_STATE_CONNECTED;
1096 
1097     receive_first_master();
1098     ll_send_connection_complete = true;
1099 }
1100 
1101 static void ll_queue_control_tx(void){
1102     hal_cpu_disable_irqs();
1103     btstack_linked_queue_enqueue(&ctx.tx_queue, (btstack_linked_item_t *) &ll_tx_packet);
1104     hal_cpu_enable_irqs();
1105 }
1106 
1107 static void ll_handle_control(ll_pdu_t * rx_packet){
1108     ll_pdu_t * tx_packet = &ll_tx_packet;
1109     uint8_t opcode = rx_packet->payload[0];
1110     switch (opcode){
1111         case PDU_DATA_LLCTRL_TYPE_VERSION_IND:
1112             tx_packet->len = 6;
1113             tx_packet->header = PDU_DATA_LLID_CTRL;
1114             tx_packet->payload[0] = PDU_DATA_LLCTRL_TYPE_VERSION_IND;
1115             tx_packet->payload[1] = 0x06; // VersNr = Bluetooth Core V4.0
1116             little_endian_store_16(tx_packet->payload, 2, BLUETOOTH_COMPANY_ID_BLUEKITCHEN_GMBH);
1117             little_endian_store_16(tx_packet->payload, 4, 0);
1118             ll_queue_control_tx();
1119             printf("Queue Version Ind\n");
1120             break;
1121         case PDU_DATA_LLCTRL_TYPE_FEATURE_REQ:
1122             tx_packet->len = 9;
1123             tx_packet->header = PDU_DATA_LLID_CTRL;
1124             tx_packet->payload[0] = PDU_DATA_LLCTRL_TYPE_FEATURE_RSP;
1125             // TODO: set features of our controller
1126             memset(&tx_packet->payload[1], 0, 8);
1127             ll_queue_control_tx();
1128             printf("Queue Feature Rsp\n");
1129             break;
1130         case PDU_DATA_LLCTRL_TYPE_CHAN_MAP_IND:
1131             memcpy((uint8_t *) ctx.channel_map_update_map, &rx_packet->payload[1], 5);
1132             ctx.channel_map_update_instant   = little_endian_read_16(rx_packet->payload, 6);
1133             ctx.channel_map_update_pending   = true;
1134             break;
1135         case PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND:
1136             ctx.conn_param_update_win_size        = rx_packet->payload[1];
1137             ctx.conn_param_update_win_offset      = little_endian_read_16(rx_packet->payload, 2);
1138             ctx.conn_param_update_interval_1250us = little_endian_read_16(rx_packet->payload, 4);
1139             ctx.conn_param_update_latency         = little_endian_read_16(rx_packet->payload, 6);
1140             ctx.conn_param_update_timeout_us      = little_endian_read_16(rx_packet->payload, 8) * 10000;
1141             ctx.conn_param_update_instant         = little_endian_read_16(rx_packet->payload, 10);
1142             ctx.conn_param_update_pending         = true;
1143             log_info("PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND, conn interval %u 1250us at instant %u",
1144                      (unsigned int) ctx.conn_param_update_interval_1250us, ctx.conn_param_update_instant);
1145             break;
1146         case PDU_DATA_LLCTRL_TYPE_TERMINATE_IND:
1147             printf("Terminate!\n");
1148             ll_terminate();
1149             break;
1150         default:
1151             btstack_assert(false);
1152             printf("Unhandled LL Control PDU 0x%02x\n", opcode);
1153             break;
1154     }
1155 }
1156 
1157 static void ll_handle_data(ll_pdu_t * rx_packet){
1158     if (ll_state != LL_STATE_CONNECTED) return;
1159     btstack_assert(rx_packet->len <= LL_MAX_PAYLOAD);
1160     uint8_t acl_packet[4 + LL_MAX_PAYLOAD];
1161     // ACL Header
1162     uint8_t ll_id = rx_packet->header & 3;
1163     acl_packet[0] = 0x01;
1164     acl_packet[1] = ll_id << 4;
1165     little_endian_store_16(acl_packet, 2, rx_packet->len);
1166     memcpy(&acl_packet[4], rx_packet->payload, rx_packet->len);
1167     (*controller_packet_handler)(HCI_ACL_DATA_PACKET, acl_packet, rx_packet->len + 4);
1168 }
1169 
1170 void ll_set_scan_parameters(uint8_t le_scan_type, uint16_t le_scan_interval, uint16_t le_scan_window, uint8_t own_address_type, uint8_t scanning_filter_policy){
1171     // TODO .. store other params
1172     ll_scan_interval_us = ((uint32_t) le_scan_interval) * 625;
1173     ll_scan_window_us   = ((uint32_t) le_scan_window)   * 625;
1174     log_info("LE Scan Params: window %lu, interval %lu ms", ll_scan_interval_us, ll_scan_window_us);
1175 }
1176 
1177 static uint8_t ll_start_scanning(uint8_t filter_duplicates){
1178 #if 0
1179     // COMMAND DISALLOWED if wrong state.
1180     if (ll_state != LL_STATE_STANDBY)  return 0x0c;
1181 
1182     ll_state = LL_STATE_SCANNING;
1183 
1184     log_info("LE Scan Start: window %lu, interval %lu ms", ll_scan_interval_us, ll_scan_window_us);
1185 
1186     // reset timer and capature events
1187     NRF_TIMER0->TASKS_CLEAR = 1;
1188     NRF_TIMER0->TASKS_STOP  = 1;
1189     NRF_TIMER0->EVENTS_COMPARE[0] = 0;
1190     NRF_TIMER0->EVENTS_COMPARE[1] = 0;
1191 
1192     // limit scanning
1193     if (ll_scan_window_us < ll_scan_interval_us){
1194         // setup PPI to disable radio after end of scan_window
1195         NRF_TIMER0->CC[1]    = ll_scan_window_us;
1196         NRF_PPI->CHENSET     = 1 << 22; // TIMER0->EVENTS_COMPARE[1] ->  RADIO->TASKS_DISABLE
1197     }
1198 
1199     // set timer to trigger IRQ for next scan interval
1200     NRF_TIMER0->CC[0]    = ll_scan_interval_us;
1201     NRF_TIMER0->INTENSET = TIMER_INTENSET_COMPARE0_Enabled << TIMER_INTENSET_COMPARE0_Pos;
1202 
1203     // next channel to scan
1204     int adv_channel = (random_generator_next() % 3) + 37;
1205     log_debug("LE Scan Channel: %u", adv_channel);
1206 
1207     // start receiving
1208     NRF_TIMER0->TASKS_START = 1;
1209     radio_receive_on_channel(adv_channel);
1210 #endif
1211     return 0;
1212 }
1213 
1214 static uint8_t ll_stop_scanning(void){
1215 #if 0
1216     // COMMAND DISALLOWED if wrong state.
1217     if (ll_state != LL_STATE_SCANNING)  return 0x0c;
1218 
1219     log_info("LE Scan Stop");
1220 
1221     ll_state = LL_STATE_STANDBY;
1222 
1223     // stop radio
1224     radio_disable();
1225 
1226 #endif
1227     return 0;
1228 }
1229 
1230 uint8_t ll_set_scan_enable(uint8_t le_scan_enable, uint8_t filter_duplicates){
1231     if (le_scan_enable){
1232         return ll_start_scanning(filter_duplicates);
1233     } else {
1234         return ll_stop_scanning();
1235     }
1236 }
1237 
1238 static uint8_t ll_start_advertising(void){
1239     // COMMAND DISALLOWED if wrong state.
1240     if (ll_state != LL_STATE_STANDBY) return ERROR_CODE_COMMAND_DISALLOWED;
1241     log_info("Start Advertising on channels 0x%0x, interval %lu us", ctx.adv_map, ctx.adv_interval_us);
1242     start_advertising();
1243     return ERROR_CODE_SUCCESS;
1244 }
1245 
1246 static uint8_t ll_stop_advertising(void){
1247     // COMMAND DISALLOWED if wrong state.
1248     if (ll_state != LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED;
1249 
1250     // TODO:
1251     return ERROR_CODE_SUCCESS;
1252 }
1253 
1254 uint8_t ll_set_advertise_enable(uint8_t le_adv_enable){
1255     if (le_adv_enable){
1256         return ll_start_advertising();
1257     } else {
1258         return ll_stop_advertising();
1259     }
1260 }
1261 
1262 uint8_t ll_set_advertising_parameters(uint16_t advertising_interval_min, uint16_t advertising_interval_max,
1263                                       uint8_t advertising_type, uint8_t own_address_type, uint8_t peer_address_types, uint8_t * peer_address,
1264                                       uint8_t advertising_channel_map, uint8_t advertising_filter_policy){
1265 
1266     // validate channel map
1267     if (advertising_channel_map == 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1268     if ((advertising_channel_map & 0xf8) != 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1269 
1270     // validate advertising interval
1271     if (advertising_interval_min < 0x20)   return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1272     if (advertising_interval_min > 0x4000) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1273     if (advertising_interval_max < 0x20)   return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1274     if (advertising_interval_max > 0x4000) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1275     if (advertising_interval_min > advertising_interval_max) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
1276 
1277     ctx.adv_map = advertising_channel_map;
1278     ctx.adv_interval_us = advertising_interval_max * 625;
1279     ctx.adv_type= advertising_type;
1280 
1281     // TODO: validate other params
1282     // TODO: process other params
1283 
1284     return ERROR_CODE_SUCCESS;
1285 }
1286 
1287 uint8_t ll_set_advertising_data(uint8_t adv_len, const uint8_t * adv_data){
1288     // COMMAND DISALLOWED if wrong state.
1289     if (ll_state == LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED;
1290     if (adv_len > 31) return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE;
1291     ctx.adv_len = adv_len;
1292     memcpy(ctx.adv_data, adv_data, adv_len);
1293 
1294     return ERROR_CODE_SUCCESS;
1295 }
1296 
1297 uint8_t ll_set_scan_response_data(uint8_t adv_len, const uint8_t * adv_data){
1298 	// COMMAND DISALLOWED if wrong state.
1299 	if (ll_state == LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED;
1300 	if (adv_len > 31) return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE;
1301 	ctx.scan_resp_len = adv_len;
1302 	memcpy(ctx.scan_resp_data, adv_data, adv_len);
1303 
1304 	return ERROR_CODE_SUCCESS;
1305 }
1306 
1307 void ll_execute_once(void){
1308     // process received packets
1309     while (1){
1310         ll_pdu_t * rx_packet = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.rx_queue);
1311         if (rx_packet == NULL) break;
1312         if (rx_packet->len > 0){
1313             if ((rx_packet->flags & LL_PDU_FLAG_DATA_PDU) == 0){
1314                 // ADV PDU
1315                 // connect ind?
1316                 if ((rx_packet->header & 0x0f) == PDU_ADV_TYPE_CONNECT_IND){
1317                     ll_handle_conn_ind(rx_packet);
1318                 }
1319                 else {
1320                     radio_state = RADIO_LOWPOWER;
1321                 }
1322             } else {
1323                 // DATA PDU
1324                 uint8_t ll_id = rx_packet->header & 3;
1325                 if (ll_id == PDU_DATA_LLID_CTRL) {
1326                     ll_handle_control(rx_packet);
1327                 } else {
1328                     ll_handle_data(rx_packet);
1329                 }
1330             }
1331         }
1332         // free packet
1333         btstack_memory_ll_pdu_free(rx_packet);
1334     }
1335 
1336     switch ( ll_state ){
1337         case LL_STATE_ADVERTISING:
1338             ll_advertising_statemachine();
1339             break;
1340         default:
1341             break;
1342     }
1343 
1344     // generate HCI events
1345 
1346     // report num complete packets
1347     /** critical section start */
1348     hal_cpu_disable_irqs();
1349     uint8_t num_completed = ctx.num_completed;
1350     ctx.num_completed = 0;
1351     hal_cpu_enable_irqs();
1352     /** critical section end */
1353     if (num_completed > 0){
1354         ll_emit_hci_event(&hci_event_number_of_completed_packets_1, 1, HCI_CON_HANDLE, num_completed);
1355     }
1356 
1357     // report connection event
1358     if (ll_send_connection_complete){
1359         ll_send_connection_complete = false;
1360         ll_emit_hci_event(&hci_subevent_le_connection_complete,
1361                                  ERROR_CODE_SUCCESS, HCI_CON_HANDLE, 0x01 /* slave */, ctx.peer_addr_type, ctx.peer_addr,
1362                                  ctx.conn_interval_1250us, ctx.conn_latency, ctx.supervision_timeout_10ms, 0 /* master clock accuracy */);
1363     }
1364 
1365     // report disconnection event
1366     if (ll_send_disconnected){
1367         ll_send_disconnected = false;
1368         ll_emit_hci_event(&hci_event_disconnection_complete, ERROR_CODE_SUCCESS, HCI_CON_HANDLE, 0);
1369     }
1370 }
1371 bool ll_reserve_acl_packet(void){
1372     if (ll_reserved_acl_buffer == NULL){
1373         ll_reserved_acl_buffer = btstack_memory_ll_pdu_get();
1374     }
1375     return ll_reserved_acl_buffer != NULL;
1376 }
1377 
1378 void ll_queue_acl_packet(const uint8_t * packet, uint16_t size){
1379     btstack_assert(ll_reserved_acl_buffer != NULL);
1380 
1381     ll_pdu_t * tx_packet = ll_reserved_acl_buffer;
1382     ll_reserved_acl_buffer = NULL;
1383 
1384     switch ((packet[1] >> 4) & 0x03){
1385         case 0:
1386         case 2:
1387             tx_packet->header = PDU_DATA_LLID_DATA_START;
1388             break;
1389         case 1:
1390             tx_packet->header = PDU_DATA_LLID_DATA_CONTINUE;
1391             break;
1392         case 3:
1393             while(1);
1394             break;
1395         default:
1396             break;
1397     }
1398     tx_packet->len = size - 4;
1399     memcpy(tx_packet->payload, &packet[4], size - 4);
1400     btstack_linked_queue_enqueue(&ctx.tx_queue, (btstack_linked_item_t *) tx_packet);
1401 }
1402 
1403 void ll_register_packet_handler(void (*packet_handler)(uint8_t packet_type, uint8_t * packet, uint16_t size)){
1404     controller_packet_handler = packet_handler;
1405 }
1406