1 /* 2 * Copyright (C) 2020 BlueKitchen GmbH 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the copyright holders nor the names of 14 * contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 4. Any redistribution, use, or modification is done solely for 17 * personal benefit and not for any commercial purpose or for 18 * monetary gain. 19 * 20 * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS 24 * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 30 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Please inquire about commercial licensing options at 34 * [email protected] 35 * 36 */ 37 38 #define BTSTACK_FILE__ "ll_sx1280.c" 39 40 #define DEBUG 41 42 #include <string.h> 43 44 #include "ll.h" 45 46 #include "hw.h" 47 #include "radio.h" 48 #include "sx1280.h" 49 #include "debug.h" 50 #include "btstack_config.h" 51 #include "btstack_debug.h" 52 #include "btstack_memory.h" 53 #include "btstack_memory_pool.h" 54 #include "btstack_linked_queue.h" 55 #include "bluetooth_company_id.h" 56 #include "hal_cpu.h" 57 #include "hci_event.h" 58 #include "hopping.h" 59 #include "hal_timer.h" 60 61 62 // 63 // configuration 64 // 65 66 #define AUTO_RX_TX_TIME_US 86 67 68 #define TX_PARAMS_RAMP_TIME RADIO_RAMP_02_US 69 70 // set output power in dBM, range [-18..+13] dBm - Bluetooth LE max is 10 dBM 71 #define TX_PARAMS_OUTPUT_POWER 10 72 73 74 75 #define ACL_LE_MAX_PAYLOAD 31 76 #define ADV_MAX_PAYLOAD (6+6+22) 77 #define LL_MAX_PAYLOAD 37 78 79 // split 256 bytes data buffer into 2 rx and 2 tx buffers 80 #define SX1280_RX0_OFFSET 0 81 #define SX1280_RX1_OFFSET 64 82 #define SX1280_TX0_OFFSET 128 83 #define SX1280_TX1_OFFSET 192 84 85 86 // Mask of IRQs to listen in tx and rx mode 87 #define RX_TX_IRQ_MASK (IRQ_RX_DONE | IRQ_TX_DONE | IRQ_RX_TX_TIMEOUT | IRQ_CRC_ERROR) 88 89 // sync hop delay - time we prepare for next connection event 90 #define SYNC_HOP_DELAY_US 600 91 92 // num tx buffers for use by link layer 93 #define HCI_NUM_TX_BUFFERS_LL 4 94 95 // num rx buffers 96 #define HCI_NUM_RX_BUFFERS 16 97 98 // total number PDU buffers 99 #define MAX_NUM_LL_PDUS (HCI_NUM_TX_BUFFERS_STACK + HCI_NUM_TX_BUFFERS_LL + HCI_NUM_RX_BUFFERS) 100 101 // HCI Connection Handle used for all HCI events/connections 102 #define HCI_CON_HANDLE 0x0001 103 104 // convert us to ticks, rounding to the closest tick count 105 // @note us must be <= 1000000 us = 1 s 106 #define US_TO_TICKS(US) (((((uint32_t)(US)) * 4096) + 6125) / 125000L) 107 108 // ADV PDU Types 109 enum pdu_adv_type { 110 PDU_ADV_TYPE_ADV_IND = 0x00, 111 PDU_ADV_TYPE_DIRECT_IND = 0x01, 112 PDU_ADV_TYPE_NONCONN_IND = 0x02, 113 PDU_ADV_TYPE_SCAN_REQ = 0x03, 114 PDU_ADV_TYPE_AUX_SCAN_REQ = PDU_ADV_TYPE_SCAN_REQ, 115 PDU_ADV_TYPE_SCAN_RSP = 0x04, 116 PDU_ADV_TYPE_CONNECT_IND = 0x05, 117 PDU_ADV_TYPE_AUX_CONNECT_REQ = PDU_ADV_TYPE_CONNECT_IND, 118 PDU_ADV_TYPE_SCAN_IND = 0x06, 119 PDU_ADV_TYPE_EXT_IND = 0x07, 120 PDU_ADV_TYPE_AUX_ADV_IND = PDU_ADV_TYPE_EXT_IND, 121 PDU_ADV_TYPE_AUX_SCAN_RSP = PDU_ADV_TYPE_EXT_IND, 122 PDU_ADV_TYPE_AUX_SYNC_IND = PDU_ADV_TYPE_EXT_IND, 123 PDU_ADV_TYPE_AUX_CHAIN_IND = PDU_ADV_TYPE_EXT_IND, 124 PDU_ADV_TYPE_AUX_CONNECT_RSP = 0x08, 125 }; 126 127 // DATA PDU Types 128 enum pdu_data_llid { 129 PDU_DATA_LLID_RESV = 0x00, 130 PDU_DATA_LLID_DATA_CONTINUE = 0x01, 131 PDU_DATA_LLID_DATA_START = 0x02, 132 PDU_DATA_LLID_CTRL = 0x03, 133 }; 134 135 // DATA Link Layer Control Types 136 enum pdu_data_llctrl_type { 137 PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND = 0x00, 138 PDU_DATA_LLCTRL_TYPE_CHAN_MAP_IND = 0x01, 139 PDU_DATA_LLCTRL_TYPE_TERMINATE_IND = 0x02, 140 PDU_DATA_LLCTRL_TYPE_ENC_REQ = 0x03, 141 PDU_DATA_LLCTRL_TYPE_ENC_RSP = 0x04, 142 PDU_DATA_LLCTRL_TYPE_START_ENC_REQ = 0x05, 143 PDU_DATA_LLCTRL_TYPE_START_ENC_RSP = 0x06, 144 PDU_DATA_LLCTRL_TYPE_UNKNOWN_RSP = 0x07, 145 PDU_DATA_LLCTRL_TYPE_FEATURE_REQ = 0x08, 146 PDU_DATA_LLCTRL_TYPE_FEATURE_RSP = 0x09, 147 PDU_DATA_LLCTRL_TYPE_PAUSE_ENC_REQ = 0x0A, 148 PDU_DATA_LLCTRL_TYPE_PAUSE_ENC_RSP = 0x0B, 149 PDU_DATA_LLCTRL_TYPE_VERSION_IND = 0x0C, 150 PDU_DATA_LLCTRL_TYPE_REJECT_IND = 0x0D, 151 PDU_DATA_LLCTRL_TYPE_SLAVE_FEATURE_REQ = 0x0E, 152 PDU_DATA_LLCTRL_TYPE_CONN_PARAM_REQ = 0x0F, 153 PDU_DATA_LLCTRL_TYPE_CONN_PARAM_RSP = 0x10, 154 PDU_DATA_LLCTRL_TYPE_REJECT_EXT_IND = 0x11, 155 PDU_DATA_LLCTRL_TYPE_PING_REQ = 0x12, 156 PDU_DATA_LLCTRL_TYPE_PING_RSP = 0x13, 157 PDU_DATA_LLCTRL_TYPE_LENGTH_REQ = 0x14, 158 PDU_DATA_LLCTRL_TYPE_LENGTH_RSP = 0x15, 159 PDU_DATA_LLCTRL_TYPE_PHY_REQ = 0x16, 160 PDU_DATA_LLCTRL_TYPE_PHY_RSP = 0x17, 161 PDU_DATA_LLCTRL_TYPE_PHY_UPD_IND = 0x18, 162 PDU_DATA_LLCTRL_TYPE_MIN_USED_CHAN_IND = 0x19, 163 }; 164 165 // Radio State 166 typedef enum { 167 RADIO_LOWPOWER, 168 RADIO_RX_ERROR, 169 RADIO_TX_TIMEOUT, 170 RADIO_W4_TX_DONE_TO_RX, 171 RADIO_W4_TIMER, 172 } radio_state_t; 173 174 // Link Layer State 175 typedef enum { 176 LL_STATE_STANDBY, 177 LL_STATE_SCANNING, 178 LL_STATE_ADVERTISING, 179 LL_STATE_INITIATING, 180 LL_STATE_CONNECTED 181 } ll_state_t; 182 183 // Link Layer PDU Flags 184 typedef enum { 185 LL_PDU_FLAG_DATA_PDU = 1, 186 } ll_pdu_flags; 187 188 // Link Layer PDU, used in linked list 189 typedef struct { 190 // header 191 void * item; 192 hci_con_handle_t con_handle; 193 uint8_t flags; 194 // over the air data 195 uint8_t header; 196 uint8_t len; 197 uint8_t payload[LL_MAX_PAYLOAD]; 198 } ll_pdu_t; 199 200 // channel table: freq in hertz and whitening seed 201 static const struct { 202 uint32_t freq_hz; 203 uint8_t whitening; 204 } channel_table[] = { 205 { 2404000000, 0x01 /* 00000001 */ }, 206 { 2406000000, 0x41 /* 01000001 */ }, 207 { 2408000000, 0x21 /* 00100001 */ }, 208 { 2410000000, 0x61 /* 01100001 */ }, 209 { 2412000000, 0x11 /* 00010001 */ }, 210 { 2414000000, 0x51 /* 01010001 */ }, 211 { 2416000000, 0x31 /* 00110001 */ }, 212 { 2418000000, 0x71 /* 01110001 */ }, 213 { 2420000000, 0x09 /* 00001001 */ }, 214 { 2422000000, 0x49 /* 01001001 */ }, 215 { 2424000000, 0x29 /* 00101001 */ }, 216 { 2428000000, 0x69 /* 01101001 */ }, 217 { 2430000000, 0x19 /* 00011001 */ }, 218 { 2432000000, 0x59 /* 01011001 */ }, 219 { 2434000000, 0x39 /* 00111001 */ }, 220 { 2436000000, 0x79 /* 01111001 */ }, 221 { 2438000000, 0x05 /* 00000101 */ }, 222 { 2440000000, 0x45 /* 01000101 */ }, 223 { 2442000000, 0x25 /* 00100101 */ }, 224 { 2444000000, 0x65 /* 01100101 */ }, 225 { 2446000000, 0x15 /* 00010101 */ }, 226 { 2448000000, 0x55 /* 01010101 */ }, 227 { 2450000000, 0x35 /* 00110101 */ }, 228 { 2452000000, 0x75 /* 01110101 */ }, 229 { 2454000000, 0x0d /* 00001101 */ }, 230 { 2456000000, 0x4d /* 01001101 */ }, 231 { 2458000000, 0x2d /* 00101101 */ }, 232 { 2460000000, 0x6d /* 01101101 */ }, 233 { 2462000000, 0x1d /* 00011101 */ }, 234 { 2464000000, 0x5d /* 01011101 */ }, 235 { 2466000000, 0x3d /* 00111101 */ }, 236 { 2468000000, 0x7d /* 01111101 */ }, 237 { 2470000000, 0x03 /* 00000011 */ }, 238 { 2472000000, 0x43 /* 01000011 */ }, 239 { 2474000000, 0x23 /* 00100011 */ }, 240 { 2476000000, 0x63 /* 01100011 */ }, 241 { 2478000000, 0x13 /* 00010011 */ }, 242 { 2402000000, 0x53 /* 01010011 */ }, 243 { 2426000000, 0x33 /* 00110011 */ }, 244 { 2480000000, 0x73 /* 01110011 */ }, 245 }; 246 247 // tx buffer offset 248 static uint8_t tx_buffer_offset[] = { 249 SX1280_TX0_OFFSET, 250 SX1280_TX1_OFFSET 251 }; 252 253 // hopping context 254 static hopping_t h; 255 256 static struct { 257 258 volatile bool synced; 259 260 volatile uint16_t packet_nr_in_connection_event; 261 262 volatile uint16_t conn_interval_1250us; 263 volatile uint32_t conn_interval_us; 264 volatile uint16_t conn_interval_ticks; 265 266 volatile uint16_t conn_latency; 267 268 volatile uint16_t supervision_timeout_10ms; 269 volatile uint32_t supervision_timeout_us; 270 271 // 272 volatile uint32_t time_without_any_packets_us; 273 274 // access address 275 volatile uint32_t aa; 276 277 // start of current connection event 278 volatile uint16_t anchor_ticks; 279 280 // latest time to send tx packet before sync hop 281 volatile uint16_t conn_latest_tx_ticks; 282 283 // timeout for sync relative to anchor 284 volatile uint16_t conn_sync_hop_ticks; 285 286 // current channel 287 volatile uint8_t channel; 288 289 // CSA #2 supported 290 uint8_t csa2_support; 291 292 // channels selection algorithm index (1 for csa #2) 293 volatile uint8_t channel_selection_algorithm; 294 295 // current connection event, first one starts with 0 296 // - needed for connection param and channel map updates as well as encryption 297 volatile uint16_t connection_event; 298 299 // pending channel map update 300 volatile bool channel_map_update_pending; 301 volatile uint16_t channel_map_update_instant; 302 volatile uint8_t channel_map_update_map[5]; 303 304 // pending connection param update 305 volatile bool conn_param_update_pending; 306 volatile uint16_t conn_param_update_instant; 307 volatile uint8_t conn_param_update_win_size; 308 volatile uint16_t conn_param_update_win_offset; 309 volatile uint16_t conn_param_update_interval_1250us; 310 volatile uint16_t conn_param_update_latency; 311 volatile uint32_t conn_param_update_timeout_us; 312 313 // our bd_addr as little endian 314 uint8_t bd_addr_le[6]; 315 316 // peer addr 317 uint8_t peer_addr_type; 318 uint8_t peer_addr[6]; 319 320 // adv data 321 uint8_t adv_len; 322 uint8_t adv_data[31]; 323 324 // adv param 325 uint8_t adv_map; 326 uint32_t adv_interval_us; 327 328 // adv data 329 uint8_t scan_resp_len; 330 uint8_t scan_resp_data[31]; 331 332 // next expected sequence number 333 volatile uint8_t next_expected_sequence_number; 334 335 // transmit sequence number 336 volatile uint8_t transmit_sequence_number; 337 338 // num completed packets 339 volatile uint8_t num_completed; 340 341 // rx queue 342 btstack_linked_queue_t rx_queue; 343 344 // current incoming packet 345 ll_pdu_t * rx_pdu; 346 347 // rx packet ready 348 bool rx_pdu_received; 349 350 // tx queue of outgoing pdus 351 btstack_linked_queue_t tx_queue; 352 353 // pdus transferred into controller tx buffers 354 ll_pdu_t * tx_buffer_pdu[2]; 355 356 // manage tx packets on controller 357 uint8_t num_tx_pdus_on_controller; 358 359 // index of next tx buffer to send 360 uint8_t next_tx_buffer; 361 362 } ctx; 363 364 static radio_state_t radio_state = RADIO_LOWPOWER; 365 366 // Buffer pool 367 static ll_pdu_t ll_pdu_pool_storage[MAX_NUM_LL_PDUS]; 368 static btstack_memory_pool_t ll_pdu_pool; 369 370 // single ll control response 371 static ll_pdu_t ll_tx_packet; 372 373 // Link Layer State 374 static ll_state_t ll_state; 375 static uint32_t ll_scan_interval_us; 376 static uint32_t ll_scan_window_us; 377 378 static ll_pdu_t * ll_reserved_acl_buffer; 379 static void (*controller_packet_handler)(uint8_t packet_type, uint8_t * packet, uint16_t size); 380 381 static uint8_t ll_outgoing_hci_event[258]; 382 static bool ll_send_disconnected; 383 static bool ll_send_connection_complete; 384 385 // prototypes 386 static void radio_set_timer_ticks(uint32_t anchor_offset_ticks); 387 388 389 // memory pool for acl-le pdus 390 static ll_pdu_t * btstack_memory_ll_pdu_get(void){ 391 void * buffer = btstack_memory_pool_get(&ll_pdu_pool); 392 if (buffer){ 393 memset(buffer, 0, sizeof(ll_pdu_t)); 394 } 395 return (ll_pdu_t *) buffer; 396 } 397 398 static void btstack_memory_ll_pdu_free(ll_pdu_t *acl_le_pdu){ 399 btstack_memory_pool_free(&ll_pdu_pool, acl_le_pdu); 400 } 401 402 static void radio_auto_tx_on(void){ 403 // SetAutoTX(150 ms) - direct write / ignore compensation 404 uint8_t buf[2]; 405 big_endian_store_16(buf, 0, AUTO_RX_TX_TIME_US); 406 SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 ); 407 } 408 409 static void radio_auto_tx_off(void){ 410 // SetAutoTX(0) - direct write / ignore compensation 411 uint8_t buf[2] = { 0, 0 }; 412 SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 ); 413 } 414 415 static bool receive_prepare_rx_bufffer(void){ 416 if (ctx.rx_pdu == NULL){ 417 ctx.rx_pdu = btstack_memory_ll_pdu_get(); 418 } 419 if (ctx.rx_pdu == NULL){ 420 printf("No free RX buffer\n"); 421 return false; 422 } else { 423 return true; 424 } 425 } 426 427 static void receive_response(void){ 428 if (receive_prepare_rx_bufffer()) { 429 // 150 us would be enough, but the timeout seems to apply for AutoTx as well, so we use 250 us 430 Radio.SetRx( ( TickTime_t ) { RADIO_TICK_SIZE_0015_US, 16 } ); 431 } 432 } 433 434 static void receive_first_master(void){ 435 if (receive_prepare_rx_bufffer()){ 436 Radio.SetRx( ( TickTime_t ) { RADIO_TICK_SIZE_1000_US, 1000 } ); 437 } 438 } 439 440 static void receive_master(void){ 441 if (receive_prepare_rx_bufffer()) { 442 Radio.SetRx((TickTime_t) {RADIO_TICK_SIZE_1000_US, 1}); 443 } 444 } 445 446 static void setup_adv_pdu(uint8_t offset, uint8_t header, uint8_t len, const uint8_t * data){ 447 uint8_t buffer[39]; 448 buffer[0] = header; 449 buffer[1] = 6 + len; 450 memcpy(&buffer[2], ctx.bd_addr_le, 6); 451 memcpy(&buffer[8], data, len); 452 uint16_t packet_size = 2 + buffer[1]; 453 SX1280HalWriteBuffer( offset, buffer, packet_size ); 454 } 455 456 static void send_adv(void){ 457 458 // enable AutoTX for potential Scan Response 459 // TODO: only if adv type allows for scanning 460 radio_auto_tx_on(); 461 462 SX1280SetBufferBaseAddresses( SX1280_TX0_OFFSET, SX1280_RX0_OFFSET); 463 SX1280SetTx( ( TickTime_t ){ RADIO_TICK_SIZE_1000_US, 1 } ); 464 } 465 466 static void select_channel(uint8_t channel){ 467 // Set Whitening seed 468 Radio.SetWhiteningSeed( channel_table[channel].whitening ); 469 470 // Sel Frequency 471 Radio.SetRfFrequency( channel_table[channel].freq_hz ); 472 } 473 474 static void next_channel(void){ 475 switch (ctx.channel_selection_algorithm){ 476 case 0: 477 ctx.channel = hopping_csa1_get_next_channel( &h ); 478 break; 479 case 1: 480 ctx.channel = hopping_csa2_get_channel_for_counter( &h, ctx.connection_event); 481 break; 482 default: 483 break; 484 } 485 select_channel(ctx.channel); 486 } 487 488 static void ll_advertising_statemachine(void){ 489 switch ( radio_state) { 490 case RADIO_RX_ERROR: 491 case RADIO_LOWPOWER: 492 // find next channel 493 while (ctx.channel < 40){ 494 ctx.channel++; 495 if ((ctx.adv_map & (1 << (ctx.channel - 37))) != 0) { 496 // Set Channel 497 select_channel(ctx.channel); 498 radio_state = RADIO_W4_TX_DONE_TO_RX; 499 send_adv(); 500 break; 501 } 502 if (ctx.channel >= 40){ 503 // Set timer 504 radio_state = RADIO_W4_TIMER; 505 uint32_t adv_interval_ticks = US_TO_TICKS(ctx.adv_interval_us); 506 radio_set_timer_ticks(adv_interval_ticks); 507 } 508 } 509 break; 510 default: 511 break; 512 } 513 } 514 515 static void start_advertising(void){ 516 517 Radio.StopAutoTx(); 518 519 PacketParams_t packetParams; 520 packetParams.PacketType = PACKET_TYPE_BLE; 521 packetParams.Params.Ble.BlePacketType = BLE_EYELONG_1_0; 522 packetParams.Params.Ble.ConnectionState = BLE_PAYLOAD_LENGTH_MAX_37_BYTES; 523 packetParams.Params.Ble.CrcField = BLE_CRC_3B; 524 packetParams.Params.Ble.Whitening = RADIO_WHITENING_ON; 525 Radio.SetPacketParams( &packetParams ); 526 527 // Set CRC init value 0x555555 528 Radio.WriteRegister(0x9c7, 0x55 ); 529 Radio.WriteRegister(0x9c8, 0x55 ); 530 Radio.WriteRegister(0x9c9, 0x55 ); 531 532 // Set AccessAddress for ADV packets 533 Radio.SetBleAdvertizerAccessAddress( ); 534 535 // prepare adv and scan data in tx0 and tx1 536 setup_adv_pdu(SX1280_TX0_OFFSET, PDU_ADV_TYPE_ADV_IND, ctx.adv_len, ctx.adv_data); 537 setup_adv_pdu(SX1280_TX1_OFFSET, PDU_ADV_TYPE_SCAN_RSP, ctx.scan_resp_len, ctx.scan_resp_data); 538 539 radio_state = RADIO_LOWPOWER; 540 ll_state = LL_STATE_ADVERTISING; 541 542 // prepare 543 ctx.channel = 36; 544 ctx.anchor_ticks = hal_timer_get_ticks(); 545 546 // and get started 547 ll_advertising_statemachine(); 548 } 549 550 static void start_hopping(void){ 551 PacketParams_t packetParams; 552 packetParams.PacketType = PACKET_TYPE_BLE; 553 packetParams.Params.Ble.BlePacketType = BLE_EYELONG_1_0; 554 packetParams.Params.Ble.ConnectionState = BLE_PAYLOAD_LENGTH_MAX_31_BYTES; 555 packetParams.Params.Ble.CrcField = BLE_CRC_3B; 556 packetParams.Params.Ble.Whitening = RADIO_WHITENING_ON; 557 Radio.SetPacketParams( &packetParams ); 558 559 } 560 561 static void radio_stop_timer(void){ 562 hal_timer_stop(); 563 } 564 565 static void radio_set_timer_ticks(uint32_t anchor_offset_ticks){ 566 radio_stop_timer(); 567 // set timer for next radio event relative to anchor 568 uint16_t timeout_ticks = (uint16_t) (ctx.anchor_ticks + anchor_offset_ticks); 569 hal_timer_start(timeout_ticks); 570 } 571 572 static void ctx_set_conn_interval(uint16_t conn_interval_1250us){ 573 ctx.conn_interval_1250us = conn_interval_1250us; 574 ctx.conn_interval_us = ctx.conn_interval_1250us * 1250; 575 ctx.conn_interval_ticks = US_TO_TICKS(ctx.conn_interval_us); 576 ctx.conn_sync_hop_ticks = US_TO_TICKS(ctx.conn_interval_us - SYNC_HOP_DELAY_US); 577 578 // latest time to send a packet before getting ready for next cnonection event 579 uint16_t max_packet_time_incl_ifs_us = 500; 580 ctx.conn_latest_tx_ticks = US_TO_TICKS(ctx.conn_interval_us - SYNC_HOP_DELAY_US - max_packet_time_incl_ifs_us); 581 } 582 583 static void ll_terminate(void){ 584 ll_state = LL_STATE_STANDBY; 585 ctx.conn_param_update_pending = false; 586 ctx.channel_map_update_pending = false; 587 // stop sync hop timer 588 radio_stop_timer(); 589 // free outgoing tx packets 590 uint8_t i; 591 for (i=0;i<2;i++){ 592 if ((ctx.tx_buffer_pdu[i] != NULL) && (ctx.tx_buffer_pdu[i] != &ll_tx_packet)){ 593 btstack_memory_ll_pdu_free(ctx.tx_buffer_pdu[i]); 594 ctx.tx_buffer_pdu[i] = NULL; 595 } 596 } 597 ctx.num_tx_pdus_on_controller = 0; 598 // free queued tx packets 599 while (true){ 600 ll_pdu_t * tx_packet = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.tx_queue); 601 if (tx_packet != NULL) { 602 btstack_memory_ll_pdu_free(tx_packet); 603 } else { 604 break; 605 } 606 } 607 // disable auto tx 608 Radio.StopAutoTx(); 609 // notify host stack 610 ll_send_disconnected = true; 611 } 612 613 // load queued tx pdu into next free tx buffer 614 static void preload_tx_buffer(void){ 615 if (ctx.num_tx_pdus_on_controller >= 2) return; 616 617 ll_pdu_t * tx_pdu = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.tx_queue); 618 if (tx_pdu == NULL) return; 619 620 const uint16_t max_packet_len = 2 + 27; 621 uint8_t index = (ctx.next_tx_buffer + ctx.num_tx_pdus_on_controller) & 1; 622 ctx.tx_buffer_pdu[index] = tx_pdu; 623 SX1280HalWriteBuffer( tx_buffer_offset[index], (uint8_t *) &ctx.tx_buffer_pdu[index]->header, max_packet_len); 624 625 ctx.num_tx_pdus_on_controller++; 626 // printf("preload %u bytes into %u\n", ctx.tx_buffer_pdu[index]->len, index); 627 } 628 629 static void radio_timer_handler(void){ 630 631 uint16_t t0 = hal_timer_get_ticks(); 632 633 switch (ll_state){ 634 case LL_STATE_CONNECTED: 635 // check supervision timeout 636 ctx.time_without_any_packets_us += ctx.conn_interval_us; 637 if (ctx.time_without_any_packets_us > ctx.supervision_timeout_us) { 638 printf("Supervision timeout\n\n"); 639 ll_terminate(); 640 return; 641 } 642 643 // prepare next connection event 644 ctx.connection_event++; 645 ctx.anchor_ticks += ctx.conn_interval_ticks; 646 647 ctx.packet_nr_in_connection_event = 0; 648 next_channel(); 649 650 if (ctx.channel_map_update_pending && (ctx.channel_map_update_instant == ctx.connection_event)) { 651 hopping_set_channel_map( &h, (const uint8_t *) &ctx.channel_map_update_map ); 652 ctx.channel_map_update_pending = false; 653 } 654 655 if (ctx.conn_param_update_pending && ((ctx.conn_param_update_instant) == ctx.connection_event) ) { 656 ctx_set_conn_interval(ctx.conn_param_update_interval_1250us); 657 ctx.conn_latency = ctx.conn_param_update_latency; 658 ctx.supervision_timeout_us = ctx.conn_param_update_timeout_us; 659 ctx.conn_param_update_pending = false; 660 661 log_info("Conn param update now"); 662 663 radio_stop_timer(); 664 ctx.synced = false; 665 } 666 667 // preload tx pdu 668 preload_tx_buffer(); 669 670 if (ctx.synced){ 671 // restart radio timer (might get overwritten by first packet) 672 radio_set_timer_ticks(ctx.conn_sync_hop_ticks); 673 674 receive_master(); 675 } else { 676 // just wait longer 677 receive_first_master(); 678 } 679 680 // printf("--SYNC-Ch %02u-Event %04u - t %08u--\n", ctx.channel, ctx.connection_event, t0); 681 break; 682 case LL_STATE_ADVERTISING: 683 // send adv on all configured channels 684 ctx.channel = 36; 685 ctx.anchor_ticks = t0; 686 radio_stop_timer(); 687 ll_advertising_statemachine(); 688 radio_state = RADIO_LOWPOWER; 689 break; 690 default: 691 break; 692 } 693 694 } 695 696 static void radio_fetch_rx_pdu(void){ 697 698 if (!ctx.rx_pdu_received) return; 699 ctx.rx_pdu_received = false; 700 701 // fetch reserved rx pdu 702 ll_pdu_t * rx_packet = ctx.rx_pdu; 703 btstack_assert(rx_packet != NULL); 704 705 // read max packet 706 uint16_t max_packet_len = 2 + 27; 707 SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_packet->header, max_packet_len); 708 709 // queue if not empty 710 if (rx_packet->len != 0){ 711 712 // packet used 713 ctx.rx_pdu = NULL; 714 715 // mark as data packet 716 rx_packet->flags |= LL_PDU_FLAG_DATA_PDU; 717 718 // queue received packet 719 btstack_linked_queue_enqueue(&ctx.rx_queue, (btstack_linked_item_t *) rx_packet); 720 } 721 } 722 723 /** Radio IRQ handlers */ 724 static void radio_on_tx_done(void ){ 725 switch (radio_state){ 726 case RADIO_W4_TX_DONE_TO_RX: 727 receive_response(); 728 break; 729 default: 730 break; 731 } 732 switch (ll_state){ 733 case LL_STATE_CONNECTED: 734 radio_fetch_rx_pdu(); 735 preload_tx_buffer(); 736 break; 737 default: 738 break; 739 } 740 } 741 static void radio_prepare_auto_tx(uint16_t packet_end_ticks, uint8_t rx_len){ 742 // restart supervision timeout 743 ctx.time_without_any_packets_us = 0; 744 745 // check if we can sent a full packet before sync hop 746 int16_t now_ticks = packet_end_ticks - ctx.anchor_ticks; 747 if (ctx.synced && (now_ticks > ctx.conn_latest_tx_ticks)){ 748 // disable AutoTX to abort sending of next packet 749 Radio.SetFs(); 750 log_info("Close before Sync hop: now %u > %u", now_ticks, ctx.conn_latest_tx_ticks); 751 752 // get rx pdu and 753 radio_fetch_rx_pdu(); 754 return; 755 } 756 757 // setup empty packet in ll buffer if no tx packet was preloaded 758 if (ctx.num_tx_pdus_on_controller == 0) { 759 ctx.tx_buffer_pdu[ctx.next_tx_buffer] = &ll_tx_packet; 760 ctx.num_tx_pdus_on_controller++; 761 ll_tx_packet.header = PDU_DATA_LLID_DATA_CONTINUE; 762 ll_tx_packet.len = 0; 763 } 764 765 // setup pdu header 766 uint8_t packet_header[2]; 767 uint8_t md = btstack_linked_queue_empty(&ctx.tx_queue) ? 0 : 1; 768 packet_header[0] = (md << 4) | (ctx.transmit_sequence_number << 3) | (ctx.next_expected_sequence_number << 2) | ctx.tx_buffer_pdu[ctx.next_tx_buffer]->header; 769 packet_header[1] = ctx.tx_buffer_pdu[ctx.next_tx_buffer]->len; 770 771 // select outgoing tx buffer and update pdu header 772 SX1280SetBufferBaseAddresses( tx_buffer_offset[ctx.next_tx_buffer], SX1280_RX0_OFFSET); 773 SX1280HalWriteBuffer( tx_buffer_offset[ctx.next_tx_buffer], (uint8_t *) packet_header, sizeof(packet_header)); 774 775 // update operating state 776 SX1280AutoTxWillStart(); 777 778 // set anchor on first packet in connection event 779 if (ctx.packet_nr_in_connection_event == 0){ 780 781 // preamble (1) + aa (4) + header (1) + len (1) + payload (len) + crc (3) -- ISR handler ca. 35 us 782 uint16_t timestamp_delay = (10 + rx_len) * 8 - 35; 783 uint16_t packet_start_ticks = packet_end_ticks - US_TO_TICKS(timestamp_delay); 784 785 ctx.anchor_ticks = packet_start_ticks; 786 ctx.synced = true; 787 radio_set_timer_ticks(ctx.conn_sync_hop_ticks); 788 } 789 790 ctx.packet_nr_in_connection_event++; 791 792 // printf("RX %02x -- tx buffer %u, %02x %02x\n", rx_header, ctx.next_tx_buffer, packet_header[0], packet_header[1]); 793 } 794 795 static void radio_on_rx_done(void ){ 796 uint16_t packet_end_ticks = hal_timer_get_ticks(); 797 798 if (ll_state == LL_STATE_ADVERTISING){ 799 800 // get rx pdu header 801 uint8_t rx_header; 802 SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_header, 1); 803 804 // check for Scan Request 805 uint8_t pdu_type = rx_header & 0x0f; 806 if (pdu_type == PDU_ADV_TYPE_SCAN_REQ){ 807 // scan request, select TX1 for active AutoTx 808 SX1280SetBufferBaseAddresses( SX1280_TX1_OFFSET, SX1280_RX0_OFFSET); 809 } else { 810 811 // fetch reserved rx pdu 812 ll_pdu_t * rx_packet = ctx.rx_pdu; 813 btstack_assert(rx_packet != NULL); 814 ctx.rx_pdu = NULL; 815 816 // no data packet 817 rx_packet->flags = 0; 818 uint16_t max_packet_len = 2 + LL_MAX_PAYLOAD; 819 820 // no scan request, disable auto tx and read complete buffer 821 radio_auto_tx_off(); 822 SX1280HalReadBuffer( SX1280_RX0_OFFSET, &rx_packet->header, max_packet_len); 823 824 // queue received packet 825 btstack_linked_queue_enqueue(&ctx.rx_queue, (btstack_linked_item_t *) rx_packet); 826 } 827 828 } else if (ll_state == LL_STATE_CONNECTED){ 829 830 // get and parse rx pdu header 831 uint8_t rx_buffer[2]; 832 SX1280HalReadBuffer( SX1280_RX0_OFFSET, rx_buffer, 2); 833 uint8_t rx_header = rx_buffer[0]; 834 uint8_t rx_len = rx_buffer[1]; 835 uint8_t next_expected_sequence_number = (rx_header >> 2) & 1; 836 uint8_t sequence_number = (rx_header >> 3) & 1; 837 // more data field not used yet 838 // uint8_t more_data = (rx_packet->header >> 4) & 1; 839 840 // only accept packets where len <= payload size 841 if (rx_len <= LL_MAX_PAYLOAD){ 842 // update state 843 ctx.next_expected_sequence_number = 1 - sequence_number; 844 845 // register pdu fetch 846 ctx.rx_pdu_received = true; 847 } 848 849 // report outgoing packet as ack'ed and free if confirmed by peer 850 bool tx_acked = ctx.transmit_sequence_number != next_expected_sequence_number; 851 if (tx_acked){ 852 if (ctx.num_tx_pdus_on_controller > 0){ 853 btstack_assert(ctx.tx_buffer_pdu[ctx.next_tx_buffer] != NULL); 854 // if non link-layer packet, free buffer and report as completed 855 if (ctx.tx_buffer_pdu[ctx.next_tx_buffer] != &ll_tx_packet){ 856 btstack_memory_ll_pdu_free(ctx.tx_buffer_pdu[ctx.next_tx_buffer]); 857 ctx.tx_buffer_pdu[ctx.next_tx_buffer] = NULL; 858 ctx.num_completed++; 859 } 860 // next buffer 861 ctx.num_tx_pdus_on_controller--; 862 ctx.next_tx_buffer = (ctx.next_tx_buffer + 1 ) & 1; 863 } 864 ctx.transmit_sequence_number = next_expected_sequence_number; 865 } 866 867 // packet received, now prepare for AutoTX 868 radio_prepare_auto_tx(packet_end_ticks, rx_len); 869 } 870 } 871 872 static void radio_on_tx_timeout(void ){ 873 radio_state = RADIO_TX_TIMEOUT; 874 printf( "<>>>>>>>>TXE\n\r" ); 875 } 876 877 static void radio_on_rx_timeout(void ){ 878 switch (ll_state){ 879 case LL_STATE_ADVERTISING: 880 radio_state = RADIO_RX_ERROR; 881 break; 882 default: 883 break; 884 } 885 } 886 887 static void radio_on_rx_error(IrqErrorCode_t errorCode ){ 888 uint16_t packet_end_ticks = hal_timer_get_ticks(); 889 uint8_t rx_buffer[2]; 890 uint8_t rx_len; 891 switch (ll_state){ 892 case LL_STATE_ADVERTISING: 893 radio_state = RADIO_RX_ERROR; 894 break; 895 case LL_STATE_CONNECTED: 896 // get len from rx pdu header 897 SX1280HalReadBuffer(SX1280_RX0_OFFSET, rx_buffer, 2); 898 rx_len = rx_buffer[1]; 899 radio_prepare_auto_tx(packet_end_ticks, rx_len); 900 break; 901 default: 902 break; 903 } 904 } 905 906 const static RadioCallbacks_t Callbacks = 907 { 908 &radio_on_tx_done, // txDone 909 &radio_on_rx_done, // rxDone 910 NULL, // syncWordDone 911 NULL, // headerDone 912 &radio_on_tx_timeout, // txTimeout 913 &radio_on_rx_timeout, // rxTimeout 914 &radio_on_rx_error, // rxError 915 NULL, // rangingDone 916 NULL, // cadDone 917 }; 918 919 // Link Layer 920 921 static void ll_emit_hci_event(const hci_event_t * event, ...){ 922 va_list argptr; 923 va_start(argptr, event); 924 uint16_t length = hci_event_create_from_template_and_arglist(ll_outgoing_hci_event, event, argptr); 925 va_end(argptr); 926 controller_packet_handler(HCI_EVENT_PACKET, ll_outgoing_hci_event, length); 927 } 928 929 void ll_init(void){ 930 931 // setup memory pools 932 btstack_memory_pool_create(&ll_pdu_pool, ll_pdu_pool_storage, MAX_NUM_LL_PDUS, sizeof(ll_pdu_t)); 933 934 // set test bd addr 33:33:33:33:33:33 935 memset(ctx.bd_addr_le, 0x33, 6); 936 937 // default channels, advertising interval 938 ctx.adv_map = 0x7; 939 ctx.adv_interval_us = 1280000; 940 941 // init timer 942 hal_timer_init(); 943 hal_timer_set_callback(&radio_timer_handler); 944 } 945 946 void ll_radio_on(void){ 947 948 Radio.Init( (RadioCallbacks_t *) &Callbacks ); 949 Radio.SetRegulatorMode( USE_DCDC ); // Can also be set in LDO mode but consume more power 950 Radio.SetInterruptMode( ); 951 Radio.SetDioIrqParams( RX_TX_IRQ_MASK, RX_TX_IRQ_MASK, IRQ_RADIO_NONE, IRQ_RADIO_NONE ); 952 953 ModulationParams_t modulationParams; 954 modulationParams.PacketType = PACKET_TYPE_BLE; 955 modulationParams.Params.Ble.BitrateBandwidth = GFSK_BLE_BR_1_000_BW_1_2; 956 modulationParams.Params.Ble.ModulationIndex = GFSK_BLE_MOD_IND_0_50; 957 modulationParams.Params.Ble.ModulationShaping = RADIO_MOD_SHAPING_BT_0_5; 958 959 Radio.SetStandby( STDBY_RC ); 960 Radio.SetPacketType( modulationParams.PacketType ); 961 Radio.SetModulationParams( &modulationParams ); 962 Radio.SetBufferBaseAddresses( SX1280_TX0_OFFSET, SX1280_RX0_OFFSET ); 963 Radio.SetTxParams( TX_PARAMS_OUTPUT_POWER, TX_PARAMS_RAMP_TIME ); 964 965 // Go back to Frequcency Synthesis Mode, reduces transition time between Rx<->TX 966 Radio.SetAutoFS(1); 967 968 // quick test 969 uint8_t data[] = {1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 }; 970 Radio.WriteBuffer(0, data, sizeof(data)); 971 uint8_t check[32]; 972 Radio.ReadBuffer(0, check, sizeof(data)); 973 if (memcmp(data, check, sizeof(data)) != 0) { 974 printf("GOOD: "); printf_hexdump(data, sizeof(data)); 975 printf("BAD: "); printf_hexdump(check, sizeof(data)); 976 btstack_assert(false); 977 } 978 979 ll_state = LL_STATE_STANDBY; 980 } 981 982 static void ll_handle_conn_ind(ll_pdu_t * rx_packet){ 983 printf("Connect Req: "); 984 printf_hexdump(&rx_packet->header, rx_packet->len + 2); 985 986 uint8_t * init_addr = &rx_packet->payload[0]; 987 uint8_t * adv_addr = &rx_packet->payload[6]; 988 uint8_t chan_sel = (rx_packet->header >> 5) & 1; 989 990 // verify AdvA 991 if (memcmp(ctx.bd_addr_le, adv_addr, 6) != 0){ 992 // differs, go back to adv sending 993 radio_state = RADIO_LOWPOWER; 994 return; 995 } 996 997 // TODO: get remote addr type 998 ctx.peer_addr_type = 0; 999 memcpy(ctx.peer_addr, init_addr, 6); 1000 1001 // get params for HCI event 1002 const uint8_t * ll_data = &rx_packet->payload[12]; 1003 1004 ctx.aa = little_endian_read_32(ll_data, 0); 1005 uint8_t crc_init_0 = ll_data[4]; 1006 uint8_t crc_init_1 = ll_data[5]; 1007 uint8_t crc_init_2 = ll_data[6]; 1008 uint8_t win_size = ll_data[7]; 1009 uint16_t win_offset = little_endian_read_16(ll_data, 8); 1010 uint16_t conn_interval_1250us = little_endian_read_16(ll_data, 10); 1011 ctx.conn_latency = little_endian_read_16(ll_data, 12); 1012 ctx.supervision_timeout_10ms = little_endian_read_16(ll_data, 14); 1013 const uint8_t * channel_map = &ll_data[16]; 1014 uint8_t hop = ll_data[21] & 0x1f; 1015 uint8_t sca = ll_data[21] >> 5; 1016 1017 UNUSED(sca); 1018 UNUSED(win_offset); 1019 UNUSED(win_size); 1020 1021 ctx_set_conn_interval(conn_interval_1250us); 1022 1023 // convert to us 1024 ctx.supervision_timeout_us = ctx.supervision_timeout_10ms * 10000; 1025 ctx.connection_event = 0; 1026 ctx.packet_nr_in_connection_event = 0; 1027 ctx.next_expected_sequence_number = 0; 1028 ctx.transmit_sequence_number = 0; 1029 1030 // set AA 1031 Radio.SetBleAccessAddress(ctx.aa); 1032 1033 // set CRC init value 1034 Radio.WriteRegister(0x9c7, crc_init_2); 1035 Radio.WriteRegister(0x9c8, crc_init_1); 1036 Radio.WriteRegister(0x9c9, crc_init_0); 1037 1038 printf("Connection interval %u us\n", ctx.conn_interval_us); 1039 printf("Connection timeout %u us\n", ctx.supervision_timeout_us); 1040 printf("AA %08x\n", ctx.aa); 1041 printf("CRC Init 0x%02x%02x%02x\n", crc_init_2, crc_init_1, crc_init_0); 1042 1043 // init hopping 1044 hopping_init( &h ); 1045 hopping_set_channel_map( &h, channel_map); 1046 ctx.channel_selection_algorithm = ctx.csa2_support & chan_sel; 1047 switch (ctx.channel_selection_algorithm){ 1048 case 0: 1049 hopping_csa1_set_hop_increment( &h, hop ); 1050 break; 1051 case 1: 1052 hopping_csa2_set_access_address( &h, ctx.aa); 1053 break; 1054 default: 1055 break; 1056 } 1057 next_channel(); 1058 1059 start_hopping(); 1060 1061 radio_auto_tx_on(); 1062 1063 // pre-load tx pdu 1064 ctx.num_tx_pdus_on_controller = 0; 1065 ctx.next_tx_buffer = 0; 1066 preload_tx_buffer(); 1067 1068 // get next packet 1069 ll_state = LL_STATE_CONNECTED; 1070 1071 receive_first_master(); 1072 ll_send_connection_complete = true; 1073 } 1074 1075 static void ll_handle_control(ll_pdu_t * rx_packet){ 1076 ll_pdu_t * tx_packet = &ll_tx_packet; 1077 uint8_t opcode = rx_packet->payload[0]; 1078 switch (opcode){ 1079 case PDU_DATA_LLCTRL_TYPE_VERSION_IND: 1080 tx_packet->len = 6; 1081 tx_packet->header = PDU_DATA_LLID_CTRL; 1082 tx_packet->payload[0] = PDU_DATA_LLCTRL_TYPE_VERSION_IND; 1083 tx_packet->payload[1] = 0x06; // VersNr = Bluetooth Core V4.0 1084 little_endian_store_16(tx_packet->payload, 2, BLUETOOTH_COMPANY_ID_BLUEKITCHEN_GMBH); 1085 little_endian_store_16(tx_packet->payload, 4, 0); 1086 btstack_linked_queue_enqueue(&ctx.tx_queue, (btstack_linked_item_t *) tx_packet); 1087 printf("Queue Version Ind\n"); 1088 break; 1089 case PDU_DATA_LLCTRL_TYPE_FEATURE_REQ: 1090 tx_packet->len = 9; 1091 tx_packet->header = PDU_DATA_LLID_CTRL; 1092 tx_packet->payload[0] = PDU_DATA_LLCTRL_TYPE_FEATURE_RSP; 1093 // TODO: set features of our controller 1094 memset(&tx_packet->payload[1], 0, 8); 1095 btstack_linked_queue_enqueue(&ctx.tx_queue, (btstack_linked_item_t *) tx_packet); 1096 printf("Queue Feature Rsp\n"); 1097 break; 1098 case PDU_DATA_LLCTRL_TYPE_CHAN_MAP_IND: 1099 memcpy((uint8_t *) ctx.channel_map_update_map, &rx_packet->payload[1], 5); 1100 ctx.channel_map_update_instant = little_endian_read_16(rx_packet->payload, 6); 1101 ctx.channel_map_update_pending = true; 1102 break; 1103 case PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND: 1104 ctx.conn_param_update_win_size = tx_packet->payload[1]; 1105 ctx.conn_param_update_win_offset = little_endian_read_16(rx_packet->payload, 2); 1106 ctx.conn_param_update_interval_1250us = little_endian_read_16(rx_packet->payload, 4); 1107 ctx.conn_param_update_latency = little_endian_read_16(rx_packet->payload, 6); 1108 ctx.conn_param_update_timeout_us = little_endian_read_16(rx_packet->payload, 8) * 10000; 1109 ctx.conn_param_update_instant = little_endian_read_16(rx_packet->payload, 10); 1110 ctx.conn_param_update_pending = true; 1111 log_info("PDU_DATA_LLCTRL_TYPE_CONN_UPDATE_IND, conn interval %u 1250us at instant %u", 1112 (unsigned int) ctx.conn_param_update_interval_1250us, ctx.conn_param_update_instant); 1113 break; 1114 case PDU_DATA_LLCTRL_TYPE_TERMINATE_IND: 1115 printf("Terminate!\n"); 1116 ll_terminate(); 1117 break; 1118 default: 1119 break; 1120 } 1121 } 1122 1123 static void ll_handle_data(ll_pdu_t * rx_packet){ 1124 if (ll_state != LL_STATE_CONNECTED) return; 1125 btstack_assert(rx_packet->len <= LL_MAX_PAYLOAD); 1126 uint8_t acl_packet[4 + LL_MAX_PAYLOAD]; 1127 // ACL Header 1128 uint8_t ll_id = rx_packet->header & 3; 1129 acl_packet[0] = 0x01; 1130 acl_packet[1] = ll_id << 4; 1131 little_endian_store_16(acl_packet, 2, rx_packet->len); 1132 memcpy(&acl_packet[4], rx_packet->payload, rx_packet->len); 1133 (*controller_packet_handler)(HCI_ACL_DATA_PACKET, acl_packet, rx_packet->len + 4); 1134 } 1135 1136 void ll_set_scan_parameters(uint8_t le_scan_type, uint16_t le_scan_interval, uint16_t le_scan_window, uint8_t own_address_type, uint8_t scanning_filter_policy){ 1137 // TODO .. store other params 1138 ll_scan_interval_us = ((uint32_t) le_scan_interval) * 625; 1139 ll_scan_window_us = ((uint32_t) le_scan_window) * 625; 1140 log_info("LE Scan Params: window %lu, interval %lu ms", ll_scan_interval_us, ll_scan_window_us); 1141 } 1142 1143 static uint8_t ll_start_scanning(uint8_t filter_duplicates){ 1144 #if 0 1145 // COMMAND DISALLOWED if wrong state. 1146 if (ll_state != LL_STATE_STANDBY) return 0x0c; 1147 1148 ll_state = LL_STATE_SCANNING; 1149 1150 log_info("LE Scan Start: window %lu, interval %lu ms", ll_scan_interval_us, ll_scan_window_us); 1151 1152 // reset timer and capature events 1153 NRF_TIMER0->TASKS_CLEAR = 1; 1154 NRF_TIMER0->TASKS_STOP = 1; 1155 NRF_TIMER0->EVENTS_COMPARE[0] = 0; 1156 NRF_TIMER0->EVENTS_COMPARE[1] = 0; 1157 1158 // limit scanning 1159 if (ll_scan_window_us < ll_scan_interval_us){ 1160 // setup PPI to disable radio after end of scan_window 1161 NRF_TIMER0->CC[1] = ll_scan_window_us; 1162 NRF_PPI->CHENSET = 1 << 22; // TIMER0->EVENTS_COMPARE[1] -> RADIO->TASKS_DISABLE 1163 } 1164 1165 // set timer to trigger IRQ for next scan interval 1166 NRF_TIMER0->CC[0] = ll_scan_interval_us; 1167 NRF_TIMER0->INTENSET = TIMER_INTENSET_COMPARE0_Enabled << TIMER_INTENSET_COMPARE0_Pos; 1168 1169 // next channel to scan 1170 int adv_channel = (random_generator_next() % 3) + 37; 1171 log_debug("LE Scan Channel: %u", adv_channel); 1172 1173 // start receiving 1174 NRF_TIMER0->TASKS_START = 1; 1175 radio_receive_on_channel(adv_channel); 1176 #endif 1177 return 0; 1178 } 1179 1180 static uint8_t ll_stop_scanning(void){ 1181 #if 0 1182 // COMMAND DISALLOWED if wrong state. 1183 if (ll_state != LL_STATE_SCANNING) return 0x0c; 1184 1185 log_info("LE Scan Stop"); 1186 1187 ll_state = LL_STATE_STANDBY; 1188 1189 // stop radio 1190 radio_disable(); 1191 1192 #endif 1193 return 0; 1194 } 1195 1196 uint8_t ll_set_scan_enable(uint8_t le_scan_enable, uint8_t filter_duplicates){ 1197 if (le_scan_enable){ 1198 return ll_start_scanning(filter_duplicates); 1199 } else { 1200 return ll_stop_scanning(); 1201 } 1202 } 1203 1204 static uint8_t ll_start_advertising(void){ 1205 // COMMAND DISALLOWED if wrong state. 1206 if (ll_state != LL_STATE_STANDBY) return ERROR_CODE_COMMAND_DISALLOWED; 1207 log_info("Start Advertising on channels 0x%0x, interval %lu us", ctx.adv_map, ctx.adv_interval_us); 1208 start_advertising(); 1209 return ERROR_CODE_SUCCESS; 1210 } 1211 1212 static uint8_t ll_stop_advertising(void){ 1213 // COMMAND DISALLOWED if wrong state. 1214 if (ll_state != LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED; 1215 1216 // TODO: 1217 return ERROR_CODE_SUCCESS; 1218 } 1219 1220 uint8_t ll_set_advertise_enable(uint8_t le_adv_enable){ 1221 if (le_adv_enable){ 1222 return ll_start_advertising(); 1223 } else { 1224 return ll_stop_advertising(); 1225 } 1226 } 1227 1228 uint8_t ll_set_advertising_parameters(uint16_t advertising_interval_min, uint16_t advertising_interval_max, 1229 uint8_t advertising_type, uint8_t own_address_type, uint8_t peer_address_types, uint8_t * peer_address, 1230 uint8_t advertising_channel_map, uint8_t advertising_filter_policy){ 1231 1232 // validate channel map 1233 if (advertising_channel_map == 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1234 if ((advertising_channel_map & 0xf8) != 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1235 1236 // validate advertising interval 1237 if (advertising_interval_min < 0x20) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1238 if (advertising_interval_min > 0x4000) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1239 if (advertising_interval_max < 0x20) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1240 if (advertising_interval_max > 0x4000) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1241 if (advertising_interval_min > advertising_interval_max) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; 1242 1243 ctx.adv_map = advertising_channel_map; 1244 ctx.adv_interval_us = advertising_interval_max * 625; 1245 1246 // TODO: validate other params 1247 // TODO: process other params 1248 1249 return ERROR_CODE_SUCCESS; 1250 } 1251 1252 uint8_t ll_set_advertising_data(uint8_t adv_len, const uint8_t * adv_data){ 1253 // COMMAND DISALLOWED if wrong state. 1254 if (ll_state == LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED; 1255 if (adv_len > 31) return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE; 1256 ctx.adv_len = adv_len; 1257 memcpy(ctx.adv_data, adv_data, adv_len); 1258 1259 return ERROR_CODE_SUCCESS; 1260 } 1261 1262 uint8_t ll_set_scan_response_data(uint8_t adv_len, const uint8_t * adv_data){ 1263 // COMMAND DISALLOWED if wrong state. 1264 if (ll_state == LL_STATE_ADVERTISING) return ERROR_CODE_COMMAND_DISALLOWED; 1265 if (adv_len > 31) return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE; 1266 ctx.scan_resp_len = adv_len; 1267 memcpy(ctx.scan_resp_data, adv_data, adv_len); 1268 1269 return ERROR_CODE_SUCCESS; 1270 } 1271 1272 void ll_execute_once(void){ 1273 // process received packets 1274 while (1){ 1275 ll_pdu_t * rx_packet = (ll_pdu_t *) btstack_linked_queue_dequeue(&ctx.rx_queue); 1276 if (rx_packet == NULL) break; 1277 if (rx_packet->len > 0){ 1278 if ((rx_packet->flags & LL_PDU_FLAG_DATA_PDU) == 0){ 1279 // ADV PDU 1280 // connect ind? 1281 if ((rx_packet->header & 0x0f) == PDU_ADV_TYPE_CONNECT_IND){ 1282 ll_handle_conn_ind(rx_packet); 1283 } 1284 else { 1285 radio_state = RADIO_LOWPOWER; 1286 } 1287 } else { 1288 // DATA PDU 1289 uint8_t ll_id = rx_packet->header & 3; 1290 if (ll_id == PDU_DATA_LLID_CTRL) { 1291 ll_handle_control(rx_packet); 1292 } else { 1293 ll_handle_data(rx_packet); 1294 } 1295 } 1296 } 1297 // free packet 1298 btstack_memory_ll_pdu_free(rx_packet); 1299 } 1300 1301 switch ( ll_state ){ 1302 case LL_STATE_ADVERTISING: 1303 ll_advertising_statemachine(); 1304 break; 1305 default: 1306 break; 1307 } 1308 1309 // generate HCI events 1310 1311 // report num complete packets 1312 /** critical section start */ 1313 hal_cpu_disable_irqs(); 1314 uint8_t num_completed = ctx.num_completed; 1315 ctx.num_completed = 0; 1316 hal_cpu_enable_irqs(); 1317 /** critical section end */ 1318 if (num_completed > 0){ 1319 ll_emit_hci_event(&hci_event_number_of_completed_packets_1, 1, HCI_CON_HANDLE, num_completed); 1320 } 1321 1322 // report connection event 1323 if (ll_send_connection_complete){ 1324 ll_send_connection_complete = false; 1325 ll_emit_hci_event(&hci_subevent_le_connection_complete, 1326 ERROR_CODE_SUCCESS, HCI_CON_HANDLE, 0x01 /* slave */, ctx.peer_addr_type, ctx.peer_addr, 1327 ctx.conn_interval_1250us, ctx.conn_latency, ctx.supervision_timeout_10ms, 0 /* master clock accuracy */); 1328 } 1329 1330 // report disconnection event 1331 if (ll_send_disconnected){ 1332 ll_send_disconnected = false; 1333 ll_emit_hci_event(&hci_event_disconnection_complete, ERROR_CODE_SUCCESS, HCI_CON_HANDLE, 0); 1334 } 1335 } 1336 bool ll_reserve_acl_packet(void){ 1337 if (ll_reserved_acl_buffer == NULL){ 1338 ll_reserved_acl_buffer = btstack_memory_ll_pdu_get(); 1339 } 1340 return ll_reserved_acl_buffer != NULL; 1341 } 1342 1343 void ll_queue_acl_packet(const uint8_t * packet, uint16_t size){ 1344 btstack_assert(ll_reserved_acl_buffer != NULL); 1345 1346 ll_pdu_t * tx_packet = ll_reserved_acl_buffer; 1347 ll_reserved_acl_buffer = NULL; 1348 1349 switch ((packet[1] >> 4) & 0x03){ 1350 case 0: 1351 case 2: 1352 tx_packet->header = PDU_DATA_LLID_DATA_START; 1353 break; 1354 case 1: 1355 tx_packet->header = PDU_DATA_LLID_DATA_CONTINUE; 1356 break; 1357 case 3: 1358 while(1); 1359 break; 1360 default: 1361 break; 1362 } 1363 tx_packet->len = size - 4; 1364 memcpy(tx_packet->payload, &packet[4], size - 4); 1365 btstack_linked_queue_enqueue(&ctx.tx_queue, (btstack_linked_item_t *) tx_packet); 1366 } 1367 1368 void ll_register_packet_handler(void (*packet_handler)(uint8_t packet_type, uint8_t * packet, uint16_t size)){ 1369 controller_packet_handler = packet_handler; 1370 } 1371