14930cef6SMatthias Ringwald# 24930cef6SMatthias Ringwald# Copyright 2022 Google LLC 34930cef6SMatthias Ringwald# 44930cef6SMatthias Ringwald# Licensed under the Apache License, Version 2.0 (the "License"); 54930cef6SMatthias Ringwald# you may not use this file except in compliance with the License. 64930cef6SMatthias Ringwald# You may obtain a copy of the License at 74930cef6SMatthias Ringwald# 84930cef6SMatthias Ringwald# http://www.apache.org/licenses/LICENSE-2.0 94930cef6SMatthias Ringwald# 104930cef6SMatthias Ringwald# Unless required by applicable law or agreed to in writing, software 114930cef6SMatthias Ringwald# distributed under the License is distributed on an "AS IS" BASIS, 124930cef6SMatthias Ringwald# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 134930cef6SMatthias Ringwald# See the License for the specific language governing permissions and 144930cef6SMatthias Ringwald# limitations under the License. 154930cef6SMatthias Ringwald# 164930cef6SMatthias Ringwald 174930cef6SMatthias Ringwaldimport numpy as np 184930cef6SMatthias Ringwaldimport scipy.fftpack as fftpack 194930cef6SMatthias Ringwald 20*4c4eb519SMatthias Ringwaldimport lc3 214930cef6SMatthias Ringwaldimport tables as T, appendix_c as C 224930cef6SMatthias Ringwald 234930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ### 244930cef6SMatthias Ringwald 254930cef6SMatthias Ringwaldclass Sns: 264930cef6SMatthias Ringwald 274930cef6SMatthias Ringwald def __init__(self, dt, sr): 284930cef6SMatthias Ringwald 294930cef6SMatthias Ringwald self.dt = dt 304930cef6SMatthias Ringwald self.sr = sr 314930cef6SMatthias Ringwald 324930cef6SMatthias Ringwald (self.ind_lf, self.ind_hf, self.shape, self.gain) = \ 334930cef6SMatthias Ringwald (None, None, None, None) 344930cef6SMatthias Ringwald 354930cef6SMatthias Ringwald (self.idx_a, self.ls_a, self.idx_b, self.ls_b) = \ 364930cef6SMatthias Ringwald (None, None, None, None) 374930cef6SMatthias Ringwald 384930cef6SMatthias Ringwald def get_data(self): 394930cef6SMatthias Ringwald 404930cef6SMatthias Ringwald data = { 'lfcb' : self.ind_lf, 'hfcb' : self.ind_hf, 414930cef6SMatthias Ringwald 'shape' : self.shape, 'gain' : self.gain, 424930cef6SMatthias Ringwald 'idx_a' : self.idx_a, 'ls_a' : self.ls_a } 434930cef6SMatthias Ringwald 444930cef6SMatthias Ringwald if self.idx_b is not None: 454930cef6SMatthias Ringwald data.update({ 'idx_b' : self.idx_b, 'ls_b' : self.ls_b }) 464930cef6SMatthias Ringwald 474930cef6SMatthias Ringwald return data 484930cef6SMatthias Ringwald 494930cef6SMatthias Ringwald def get_nbits(self): 504930cef6SMatthias Ringwald 514930cef6SMatthias Ringwald return 38 524930cef6SMatthias Ringwald 534930cef6SMatthias Ringwald def spectral_shaping(self, scf, inv, x): 544930cef6SMatthias Ringwald 554930cef6SMatthias Ringwald ## 3.3.7.4 Scale factors interpolation 564930cef6SMatthias Ringwald 574930cef6SMatthias Ringwald scf_i = np.empty(4*len(scf)) 584930cef6SMatthias Ringwald scf_i[0 ] = scf[0] 594930cef6SMatthias Ringwald scf_i[1 ] = scf[0] 604930cef6SMatthias Ringwald scf_i[2:62:4] = scf[:15] + 1/8 * (scf[1:] - scf[:15]) 614930cef6SMatthias Ringwald scf_i[3:63:4] = scf[:15] + 3/8 * (scf[1:] - scf[:15]) 624930cef6SMatthias Ringwald scf_i[4:64:4] = scf[:15] + 5/8 * (scf[1:] - scf[:15]) 634930cef6SMatthias Ringwald scf_i[5:64:4] = scf[:15] + 7/8 * (scf[1:] - scf[:15]) 644930cef6SMatthias Ringwald scf_i[62 ] = scf[15 ] + 1/8 * (scf[15] - scf[14 ]) 654930cef6SMatthias Ringwald scf_i[63 ] = scf[15 ] + 3/8 * (scf[15] - scf[14 ]) 664930cef6SMatthias Ringwald 674930cef6SMatthias Ringwald n2 = 64 - min(len(x), 64) 684930cef6SMatthias Ringwald 694930cef6SMatthias Ringwald for i in range(n2): 704930cef6SMatthias Ringwald scf_i[i] = 0.5 * (scf_i[2*i] + scf_i[2*i+1]) 714930cef6SMatthias Ringwald scf_i = np.append(scf_i[:n2], scf_i[2*n2:]) 724930cef6SMatthias Ringwald 734930cef6SMatthias Ringwald g_sns = np.power(2, [ -scf_i, scf_i ][inv]) 744930cef6SMatthias Ringwald 754930cef6SMatthias Ringwald ## 3.3.7.4 Spectral shaping 764930cef6SMatthias Ringwald 774930cef6SMatthias Ringwald y = np.empty(len(x)) 784930cef6SMatthias Ringwald I = T.I[self.dt][self.sr] 794930cef6SMatthias Ringwald 804930cef6SMatthias Ringwald for b in range(len(g_sns)): 814930cef6SMatthias Ringwald y[I[b]:I[b+1]] = x[I[b]:I[b+1]] * g_sns[b] 824930cef6SMatthias Ringwald 834930cef6SMatthias Ringwald return y 844930cef6SMatthias Ringwald 854930cef6SMatthias Ringwald 864930cef6SMatthias Ringwaldclass SnsAnalysis(Sns): 874930cef6SMatthias Ringwald 884930cef6SMatthias Ringwald def __init__(self, dt, sr): 894930cef6SMatthias Ringwald 904930cef6SMatthias Ringwald super().__init__(dt, sr) 914930cef6SMatthias Ringwald 924930cef6SMatthias Ringwald def compute_scale_factors(self, e, att): 934930cef6SMatthias Ringwald 944930cef6SMatthias Ringwald dt = self.dt 954930cef6SMatthias Ringwald 964930cef6SMatthias Ringwald ## 3.3.7.2.1 Padding 974930cef6SMatthias Ringwald 984930cef6SMatthias Ringwald n2 = 64 - len(e) 994930cef6SMatthias Ringwald 1004930cef6SMatthias Ringwald e = np.append(np.empty(n2), e) 1014930cef6SMatthias Ringwald for i in range(n2): 1024930cef6SMatthias Ringwald e[2*i+0] = e[2*i+1] = e[n2+i] 1034930cef6SMatthias Ringwald 1044930cef6SMatthias Ringwald ## 3.3.7.2.2 Smoothing 1054930cef6SMatthias Ringwald 1064930cef6SMatthias Ringwald e_s = np.zeros(len(e)) 1074930cef6SMatthias Ringwald e_s[0 ] = 0.75 * e[0 ] + 0.25 * e[1 ] 1084930cef6SMatthias Ringwald e_s[1:63] = 0.25 * e[0:62] + 0.5 * e[1:63] + 0.25 * e[2:64] 1094930cef6SMatthias Ringwald e_s[ 63] = 0.25 * e[ 62] + 0.75 * e[ 63] 1104930cef6SMatthias Ringwald 1114930cef6SMatthias Ringwald ## 3.3.7.2.3 Pre-emphasis 1124930cef6SMatthias Ringwald 1134930cef6SMatthias Ringwald g_tilt = [ 14, 18, 22, 26, 30 ][self.sr] 1144930cef6SMatthias Ringwald e_p = e_s * (10 ** ((np.arange(64) * g_tilt) / 630)) 1154930cef6SMatthias Ringwald 1164930cef6SMatthias Ringwald ## 3.3.7.2.4 Noise floor 1174930cef6SMatthias Ringwald 1184930cef6SMatthias Ringwald noise_floor = max(np.average(e_p) * (10 ** (-40/10)), 2 ** -32) 1194930cef6SMatthias Ringwald e_p = np.fmax(e_p, noise_floor * np.ones(len(e))) 1204930cef6SMatthias Ringwald 1214930cef6SMatthias Ringwald ## 3.3.7.2.5 Logarithm 1224930cef6SMatthias Ringwald 1234930cef6SMatthias Ringwald e_l = np.log2(10 ** -31 + e_p) / 2 1244930cef6SMatthias Ringwald 1254930cef6SMatthias Ringwald ## 3.3.7.2.6 Band energy grouping 1264930cef6SMatthias Ringwald 1274930cef6SMatthias Ringwald w = [ 1/12, 2/12, 3/12, 3/12, 2/12, 1/12 ] 1284930cef6SMatthias Ringwald 1294930cef6SMatthias Ringwald e_4 = np.zeros(len(e_l) // 4) 1304930cef6SMatthias Ringwald e_4[0 ] = w[0] * e_l[0] + np.sum(w[1:] * e_l[:5]) 1314930cef6SMatthias Ringwald e_4[1:15] = [ np.sum(w * e_l[4*i-1:4*i+5]) for i in range(1, 15) ] 1324930cef6SMatthias Ringwald e_4[ 15] = np.sum(w[:5] * e_l[59:64]) + w[5] * e_l[63] 1334930cef6SMatthias Ringwald 1344930cef6SMatthias Ringwald ## 3.3.7.2.7 Mean removal and scaling, attack handling 1354930cef6SMatthias Ringwald 1364930cef6SMatthias Ringwald scf = 0.85 * (e_4 - np.average(e_4)) 1374930cef6SMatthias Ringwald 1384930cef6SMatthias Ringwald scf_a = np.zeros(len(scf)) 1394930cef6SMatthias Ringwald scf_a[0 ] = np.average(scf[:3]) 1404930cef6SMatthias Ringwald scf_a[1 ] = np.average(scf[:4]) 1414930cef6SMatthias Ringwald scf_a[2:14] = [ np.average(scf[i:i+5]) for i in range(12) ] 1424930cef6SMatthias Ringwald scf_a[ 14] = np.average(scf[12:]) 1434930cef6SMatthias Ringwald scf_a[ 15] = np.average(scf[13:]) 1444930cef6SMatthias Ringwald 1454930cef6SMatthias Ringwald scf_a = (0.5 if self.dt == T.DT_10M else 0.3) * \ 1464930cef6SMatthias Ringwald (scf_a - np.average(scf_a)) 1474930cef6SMatthias Ringwald 1484930cef6SMatthias Ringwald return scf_a if att else scf 1494930cef6SMatthias Ringwald 1504930cef6SMatthias Ringwald def enum_mpvq(self, v): 1514930cef6SMatthias Ringwald 1524930cef6SMatthias Ringwald sign = None 1534930cef6SMatthias Ringwald index = 0 1544930cef6SMatthias Ringwald x = 0 1554930cef6SMatthias Ringwald 1564930cef6SMatthias Ringwald for (n, vn) in enumerate(v[::-1]): 1574930cef6SMatthias Ringwald 1584930cef6SMatthias Ringwald if sign is not None and vn != 0: 1594930cef6SMatthias Ringwald index = 2*index + sign 1604930cef6SMatthias Ringwald if vn != 0: 1614930cef6SMatthias Ringwald sign = 1 if vn < 0 else 0 1624930cef6SMatthias Ringwald 1634930cef6SMatthias Ringwald index += T.SNS_MPVQ_OFFSETS[n][x] 1644930cef6SMatthias Ringwald x += abs(vn) 1654930cef6SMatthias Ringwald 1664930cef6SMatthias Ringwald return (index, bool(sign)) 1674930cef6SMatthias Ringwald 1684930cef6SMatthias Ringwald def quantize(self, scf): 1694930cef6SMatthias Ringwald 1704930cef6SMatthias Ringwald ## 3.3.7.3.2 Stage 1 1714930cef6SMatthias Ringwald 1724930cef6SMatthias Ringwald dmse_lf = [ np.sum((scf[:8] - T.SNS_LFCB[i]) ** 2) for i in range(32) ] 1734930cef6SMatthias Ringwald dmse_hf = [ np.sum((scf[8:] - T.SNS_HFCB[i]) ** 2) for i in range(32) ] 1744930cef6SMatthias Ringwald 1754930cef6SMatthias Ringwald self.ind_lf = np.argmin(dmse_lf) 1764930cef6SMatthias Ringwald self.ind_hf = np.argmin(dmse_hf) 1774930cef6SMatthias Ringwald 1784930cef6SMatthias Ringwald st1 = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) 1794930cef6SMatthias Ringwald r1 = scf - st1 1804930cef6SMatthias Ringwald 1814930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 1824930cef6SMatthias Ringwald 1834930cef6SMatthias Ringwald t2_rot = fftpack.dct(r1, norm = 'ortho') 1844930cef6SMatthias Ringwald x = np.abs(t2_rot) 1854930cef6SMatthias Ringwald 1864930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 1 1874930cef6SMatthias Ringwald 1884930cef6SMatthias Ringwald K = 6 1894930cef6SMatthias Ringwald 1904930cef6SMatthias Ringwald proj_fac = (K - 1) / sum(np.abs(t2_rot)) 1914930cef6SMatthias Ringwald y3 = np.floor(x * proj_fac).astype(int) 1924930cef6SMatthias Ringwald 1934930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 2 1944930cef6SMatthias Ringwald 1954930cef6SMatthias Ringwald corr_xy = np.sum(y3 * x) 1964930cef6SMatthias Ringwald energy_y = np.sum(y3 * y3) 1974930cef6SMatthias Ringwald 1984930cef6SMatthias Ringwald k0 = sum(y3) 1994930cef6SMatthias Ringwald for k in range(k0, K): 2004930cef6SMatthias Ringwald q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y3 + 1) 2014930cef6SMatthias Ringwald n_best = np.argmax(q_pvq) 2024930cef6SMatthias Ringwald 2034930cef6SMatthias Ringwald corr_xy += x[n_best] 2044930cef6SMatthias Ringwald energy_y += 2*y3[n_best] + 1 2054930cef6SMatthias Ringwald y3[n_best] += 1 2064930cef6SMatthias Ringwald 2074930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 3 2084930cef6SMatthias Ringwald 2094930cef6SMatthias Ringwald K = 8 2104930cef6SMatthias Ringwald 2114930cef6SMatthias Ringwald y2 = y3.copy() 2124930cef6SMatthias Ringwald 2134930cef6SMatthias Ringwald for k in range(sum(y2), K): 2144930cef6SMatthias Ringwald q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y2 + 1) 2154930cef6SMatthias Ringwald n_best = np.argmax(q_pvq) 2164930cef6SMatthias Ringwald 2174930cef6SMatthias Ringwald corr_xy += x[n_best] 2184930cef6SMatthias Ringwald energy_y += 2*y2[n_best] + 1 2194930cef6SMatthias Ringwald y2[n_best] += 1 2204930cef6SMatthias Ringwald 2214930cef6SMatthias Ringwald 2224930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 4 2234930cef6SMatthias Ringwald 2244930cef6SMatthias Ringwald y1 = np.append(y2[:10], [0] * 6) 2254930cef6SMatthias Ringwald 2264930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 5 2274930cef6SMatthias Ringwald 2284930cef6SMatthias Ringwald corr_xy -= sum(y2[10:] * x[10:]) 2294930cef6SMatthias Ringwald energy_y -= sum(y2[10:] * y2[10:]) 2304930cef6SMatthias Ringwald 2314930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 6 2324930cef6SMatthias Ringwald 2334930cef6SMatthias Ringwald K = 10 2344930cef6SMatthias Ringwald 2354930cef6SMatthias Ringwald for k in range(sum(y1), K): 2364930cef6SMatthias Ringwald q_pvq = ((corr_xy + x[:10]) ** 2) / (energy_y + 2*y1[:10] + 1) 2374930cef6SMatthias Ringwald n_best = np.argmax(q_pvq) 2384930cef6SMatthias Ringwald 2394930cef6SMatthias Ringwald corr_xy += x[n_best] 2404930cef6SMatthias Ringwald energy_y += 2*y1[n_best] + 1 2414930cef6SMatthias Ringwald y1[n_best] += 1 2424930cef6SMatthias Ringwald 2434930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 7 2444930cef6SMatthias Ringwald 2454930cef6SMatthias Ringwald y0 = np.append(y1[:10], [ 0 ] * 6) 2464930cef6SMatthias Ringwald 2474930cef6SMatthias Ringwald q_pvq = ((corr_xy + x[10:]) ** 2) / (energy_y + 2*y0[10:] + 1) 2484930cef6SMatthias Ringwald n_best = 10 + np.argmax(q_pvq) 2494930cef6SMatthias Ringwald 2504930cef6SMatthias Ringwald y0[n_best] += 1 2514930cef6SMatthias Ringwald 2524930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 8 2534930cef6SMatthias Ringwald 2544930cef6SMatthias Ringwald y0 *= np.sign(t2_rot).astype(int) 2554930cef6SMatthias Ringwald y1 *= np.sign(t2_rot).astype(int) 2564930cef6SMatthias Ringwald y2 *= np.sign(t2_rot).astype(int) 2574930cef6SMatthias Ringwald y3 *= np.sign(t2_rot).astype(int) 2584930cef6SMatthias Ringwald 2594930cef6SMatthias Ringwald ## 3.3.7.3.3 Stage 2 Shape search, step 9 2604930cef6SMatthias Ringwald 2614930cef6SMatthias Ringwald xq = [ y / np.sqrt(sum(y ** 2)) for y in (y0, y1, y2, y3) ] 2624930cef6SMatthias Ringwald 2634930cef6SMatthias Ringwald ## 3.3.7.3.3 Shape and gain combination determination 2644930cef6SMatthias Ringwald 2654930cef6SMatthias Ringwald G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS, 2664930cef6SMatthias Ringwald T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ] 2674930cef6SMatthias Ringwald 2684930cef6SMatthias Ringwald dMSE = [ [ sum((t2_rot - G[j][i] * xq[j]) ** 2) 2694930cef6SMatthias Ringwald for i in range(len(G[j])) ] for j in range(4) ] 2704930cef6SMatthias Ringwald 2714930cef6SMatthias Ringwald self.shape = np.argmin([ np.min(dMSE[j]) for j in range(4) ]) 2724930cef6SMatthias Ringwald self.gain = np.argmin(dMSE[self.shape]) 2734930cef6SMatthias Ringwald 2744930cef6SMatthias Ringwald gain = G[self.shape][self.gain] 2754930cef6SMatthias Ringwald 2764930cef6SMatthias Ringwald ## 3.3.7.3.3 Enumeration of the selected PVQ pulse configurations 2774930cef6SMatthias Ringwald 2784930cef6SMatthias Ringwald if self.shape == 0: 2794930cef6SMatthias Ringwald (self.idx_a, self.ls_a) = self.enum_mpvq(y0[:10]) 2804930cef6SMatthias Ringwald (self.idx_b, self.ls_b) = self.enum_mpvq(y0[10:]) 2814930cef6SMatthias Ringwald elif self.shape == 1: 2824930cef6SMatthias Ringwald (self.idx_a, self.ls_a) = self.enum_mpvq(y1[:10]) 2834930cef6SMatthias Ringwald (self.idx_b, self.ls_b) = (None, None) 2844930cef6SMatthias Ringwald elif self.shape == 2: 2854930cef6SMatthias Ringwald (self.idx_a, self.ls_a) = self.enum_mpvq(y2) 2864930cef6SMatthias Ringwald (self.idx_b, self.ls_b) = (None, None) 2874930cef6SMatthias Ringwald elif self.shape == 3: 2884930cef6SMatthias Ringwald (self.idx_a, self.ls_a) = self.enum_mpvq(y3) 2894930cef6SMatthias Ringwald (self.idx_b, self.ls_b) = (None, None) 2904930cef6SMatthias Ringwald 2914930cef6SMatthias Ringwald ## 3.3.7.3.4 Synthesis of the Quantized scale factor 2924930cef6SMatthias Ringwald 2934930cef6SMatthias Ringwald scf_q = st1 + gain * fftpack.idct(xq[self.shape], norm = 'ortho') 2944930cef6SMatthias Ringwald 2954930cef6SMatthias Ringwald return scf_q 2964930cef6SMatthias Ringwald 2974930cef6SMatthias Ringwald def run(self, eb, att, x): 2984930cef6SMatthias Ringwald 2994930cef6SMatthias Ringwald scf = self.compute_scale_factors(eb, att) 3004930cef6SMatthias Ringwald scf_q = self.quantize(scf) 3014930cef6SMatthias Ringwald y = self.spectral_shaping(scf_q, False, x) 3024930cef6SMatthias Ringwald 3034930cef6SMatthias Ringwald return y 3044930cef6SMatthias Ringwald 3054930cef6SMatthias Ringwald def store(self, b): 3064930cef6SMatthias Ringwald 3074930cef6SMatthias Ringwald shape = self.shape 3084930cef6SMatthias Ringwald gain_msb_bits = np.array([ 1, 1, 2, 2 ])[shape] 3094930cef6SMatthias Ringwald gain_lsb_bits = np.array([ 0, 1, 0, 1 ])[shape] 3104930cef6SMatthias Ringwald 3114930cef6SMatthias Ringwald b.write_uint(self.ind_lf, 5) 3124930cef6SMatthias Ringwald b.write_uint(self.ind_hf, 5) 3134930cef6SMatthias Ringwald 3144930cef6SMatthias Ringwald b.write_bit(shape >> 1) 3154930cef6SMatthias Ringwald 3164930cef6SMatthias Ringwald b.write_uint(self.gain >> gain_lsb_bits, gain_msb_bits) 3174930cef6SMatthias Ringwald 3184930cef6SMatthias Ringwald b.write_bit(self.ls_a) 3194930cef6SMatthias Ringwald 3204930cef6SMatthias Ringwald if self.shape == 0: 3214930cef6SMatthias Ringwald sz_shape_a = 2390004 3224930cef6SMatthias Ringwald index_joint = self.idx_a + \ 3234930cef6SMatthias Ringwald (2 * self.idx_b + self.ls_b + 2) * sz_shape_a 3244930cef6SMatthias Ringwald 3254930cef6SMatthias Ringwald elif self.shape == 1: 3264930cef6SMatthias Ringwald sz_shape_a = 2390004 3274930cef6SMatthias Ringwald index_joint = self.idx_a + (self.gain & 1) * sz_shape_a 3284930cef6SMatthias Ringwald 3294930cef6SMatthias Ringwald elif self.shape == 2: 3304930cef6SMatthias Ringwald index_joint = self.idx_a 3314930cef6SMatthias Ringwald 3324930cef6SMatthias Ringwald elif self.shape == 3: 3334930cef6SMatthias Ringwald sz_shape_a = 15158272 3344930cef6SMatthias Ringwald index_joint = sz_shape_a + (self.gain & 1) + 2 * self.idx_a 3354930cef6SMatthias Ringwald 3364930cef6SMatthias Ringwald b.write_uint(index_joint, 14 - gain_msb_bits) 3374930cef6SMatthias Ringwald b.write_uint(index_joint >> (14 - gain_msb_bits), 12) 3384930cef6SMatthias Ringwald 3394930cef6SMatthias Ringwald 3404930cef6SMatthias Ringwaldclass SnsSynthesis(Sns): 3414930cef6SMatthias Ringwald 3424930cef6SMatthias Ringwald def __init__(self, dt, sr): 3434930cef6SMatthias Ringwald 3444930cef6SMatthias Ringwald super().__init__(dt, sr) 3454930cef6SMatthias Ringwald 3464930cef6SMatthias Ringwald def deenum_mpvq(self, index, ls, npulses, n): 3474930cef6SMatthias Ringwald 3484930cef6SMatthias Ringwald y = np.zeros(n, dtype=np.int) 3494930cef6SMatthias Ringwald pos = 0 3504930cef6SMatthias Ringwald 3514930cef6SMatthias Ringwald for i in range(len(y)-1, -1, -1): 3524930cef6SMatthias Ringwald 3534930cef6SMatthias Ringwald if index > 0: 3544930cef6SMatthias Ringwald yi = 0 3554930cef6SMatthias Ringwald while index < T.SNS_MPVQ_OFFSETS[i][npulses - yi]: yi += 1 3564930cef6SMatthias Ringwald index -= T.SNS_MPVQ_OFFSETS[i][npulses - yi] 3574930cef6SMatthias Ringwald else: 3584930cef6SMatthias Ringwald yi = npulses 3594930cef6SMatthias Ringwald 3604930cef6SMatthias Ringwald y[pos] = [ yi, -yi ][int(ls)] 3614930cef6SMatthias Ringwald pos += 1 3624930cef6SMatthias Ringwald 3634930cef6SMatthias Ringwald npulses -= yi 3644930cef6SMatthias Ringwald if npulses <= 0: 3654930cef6SMatthias Ringwald break 3664930cef6SMatthias Ringwald 3674930cef6SMatthias Ringwald if yi > 0: 3684930cef6SMatthias Ringwald ls = index & 1 3694930cef6SMatthias Ringwald index >>= 1 3704930cef6SMatthias Ringwald 3714930cef6SMatthias Ringwald return y 3724930cef6SMatthias Ringwald 3734930cef6SMatthias Ringwald def unquantize(self): 3744930cef6SMatthias Ringwald 3754930cef6SMatthias Ringwald ## 3.7.4.2.1-2 SNS VQ Decoding 3764930cef6SMatthias Ringwald 3774930cef6SMatthias Ringwald y = np.empty(16, dtype=np.int) 3784930cef6SMatthias Ringwald 3794930cef6SMatthias Ringwald if self.shape == 0: 3804930cef6SMatthias Ringwald y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10) 3814930cef6SMatthias Ringwald y[10:] = self.deenum_mpvq(self.idx_b, self.ls_b, 1, 6) 3824930cef6SMatthias Ringwald elif self.shape == 1: 3834930cef6SMatthias Ringwald y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10) 3844930cef6SMatthias Ringwald y[10:] = np.zeros(6, dtype=np.int) 3854930cef6SMatthias Ringwald elif self.shape == 2: 3864930cef6SMatthias Ringwald y = self.deenum_mpvq(self.idx_a, self.ls_a, 8, 16) 3874930cef6SMatthias Ringwald elif self.shape == 3: 3884930cef6SMatthias Ringwald y = self.deenum_mpvq(self.idx_a, self.ls_a, 6, 16) 3894930cef6SMatthias Ringwald 3904930cef6SMatthias Ringwald ## 3.7.4.2.3 Unit energy normalization 3914930cef6SMatthias Ringwald 3924930cef6SMatthias Ringwald y = y / np.sqrt(sum(y ** 2)) 3934930cef6SMatthias Ringwald 3944930cef6SMatthias Ringwald ## 3.7.4.2.4 Reconstruction of the quantized scale factors 3954930cef6SMatthias Ringwald 3964930cef6SMatthias Ringwald G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS, 3974930cef6SMatthias Ringwald T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ] 3984930cef6SMatthias Ringwald 3994930cef6SMatthias Ringwald gain = G[self.shape][self.gain] 4004930cef6SMatthias Ringwald 4014930cef6SMatthias Ringwald scf = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) \ 4024930cef6SMatthias Ringwald + gain * fftpack.idct(y, norm = 'ortho') 4034930cef6SMatthias Ringwald 4044930cef6SMatthias Ringwald return scf 4054930cef6SMatthias Ringwald 4064930cef6SMatthias Ringwald def load(self, b): 4074930cef6SMatthias Ringwald 4084930cef6SMatthias Ringwald self.ind_lf = b.read_uint(5) 4094930cef6SMatthias Ringwald self.ind_hf = b.read_uint(5) 4104930cef6SMatthias Ringwald 4114930cef6SMatthias Ringwald shape_msb = b.read_bit() 4124930cef6SMatthias Ringwald 4134930cef6SMatthias Ringwald gain_msb_bits = 1 + shape_msb 4144930cef6SMatthias Ringwald self.gain = b.read_uint(gain_msb_bits) 4154930cef6SMatthias Ringwald 4164930cef6SMatthias Ringwald self.ls_a = b.read_bit() 4174930cef6SMatthias Ringwald 4184930cef6SMatthias Ringwald index_joint = b.read_uint(14 - gain_msb_bits) 4194930cef6SMatthias Ringwald index_joint |= b.read_uint(12) << (14 - gain_msb_bits) 4204930cef6SMatthias Ringwald 4214930cef6SMatthias Ringwald if shape_msb == 0: 4224930cef6SMatthias Ringwald sz_shape_a = 2390004 4234930cef6SMatthias Ringwald 4244930cef6SMatthias Ringwald if index_joint >= sz_shape_a * 14: 4254930cef6SMatthias Ringwald raise ValueError('Invalide SNS joint index') 4264930cef6SMatthias Ringwald 4274930cef6SMatthias Ringwald self.idx_a = index_joint % sz_shape_a 4284930cef6SMatthias Ringwald index_joint = index_joint // sz_shape_a 4294930cef6SMatthias Ringwald if index_joint >= 2: 4304930cef6SMatthias Ringwald self.shape = 0 4314930cef6SMatthias Ringwald self.idx_b = (index_joint - 2) // 2 4324930cef6SMatthias Ringwald self.ls_b = (index_joint - 2) % 2 4334930cef6SMatthias Ringwald else: 4344930cef6SMatthias Ringwald self.shape = 1 4354930cef6SMatthias Ringwald self.gain = (self.gain << 1) + (index_joint & 1) 4364930cef6SMatthias Ringwald 4374930cef6SMatthias Ringwald else: 4384930cef6SMatthias Ringwald sz_shape_a = 15158272 4394930cef6SMatthias Ringwald if index_joint >= sz_shape_a + 1549824: 4404930cef6SMatthias Ringwald raise ValueError('Invalide SNS joint index') 4414930cef6SMatthias Ringwald 4424930cef6SMatthias Ringwald if index_joint < sz_shape_a: 4434930cef6SMatthias Ringwald self.shape = 2 4444930cef6SMatthias Ringwald self.idx_a = index_joint 4454930cef6SMatthias Ringwald else: 4464930cef6SMatthias Ringwald self.shape = 3 4474930cef6SMatthias Ringwald index_joint -= sz_shape_a 4484930cef6SMatthias Ringwald self.gain = (self.gain << 1) + (index_joint % 2) 4494930cef6SMatthias Ringwald self.idx_a = index_joint // 2 4504930cef6SMatthias Ringwald 4514930cef6SMatthias Ringwald def run(self, x): 4524930cef6SMatthias Ringwald 4534930cef6SMatthias Ringwald scf = self.unquantize() 4544930cef6SMatthias Ringwald y = self.spectral_shaping(scf, True, x) 4554930cef6SMatthias Ringwald 4564930cef6SMatthias Ringwald return y 4574930cef6SMatthias Ringwald 4584930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ### 4594930cef6SMatthias Ringwald 4604930cef6SMatthias Ringwalddef check_analysis(rng, dt, sr): 4614930cef6SMatthias Ringwald 4624930cef6SMatthias Ringwald ok = True 4634930cef6SMatthias Ringwald 4644930cef6SMatthias Ringwald analysis = SnsAnalysis(dt, sr) 4654930cef6SMatthias Ringwald 4664930cef6SMatthias Ringwald for i in range(10): 4674930cef6SMatthias Ringwald x = rng.random(T.NE[dt][sr]) * 1e4 4684930cef6SMatthias Ringwald e = rng.random(min(len(x), 64)) * 1e10 4694930cef6SMatthias Ringwald 4704930cef6SMatthias Ringwald for att in (0, 1): 4714930cef6SMatthias Ringwald y = analysis.run(e, att, x) 4724930cef6SMatthias Ringwald data = analysis.get_data() 4734930cef6SMatthias Ringwald 4744930cef6SMatthias Ringwald (y_c, data_c) = lc3.sns_analyze(dt, sr, e, att, x) 4754930cef6SMatthias Ringwald 4764930cef6SMatthias Ringwald for k in data.keys(): 4774930cef6SMatthias Ringwald ok = ok and data_c[k] == data[k] 4784930cef6SMatthias Ringwald 4794930cef6SMatthias Ringwald ok = ok and lc3.sns_get_nbits() == analysis.get_nbits() 4804930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(y - y_c)) < 1e-1 4814930cef6SMatthias Ringwald 4824930cef6SMatthias Ringwald return ok 4834930cef6SMatthias Ringwald 4844930cef6SMatthias Ringwalddef check_synthesis(rng, dt, sr): 4854930cef6SMatthias Ringwald 4864930cef6SMatthias Ringwald ok = True 4874930cef6SMatthias Ringwald 4884930cef6SMatthias Ringwald synthesis = SnsSynthesis(dt, sr) 4894930cef6SMatthias Ringwald 4904930cef6SMatthias Ringwald for i in range(100): 4914930cef6SMatthias Ringwald 4924930cef6SMatthias Ringwald synthesis.ind_lf = rng.integers(0, 32) 4934930cef6SMatthias Ringwald synthesis.ind_hf = rng.integers(0, 32) 4944930cef6SMatthias Ringwald 4954930cef6SMatthias Ringwald shape = rng.integers(0, 4) 4964930cef6SMatthias Ringwald sz_shape_a = [ 2390004, 2390004, 15158272, 774912 ][shape] 4974930cef6SMatthias Ringwald sz_shape_b = [ 6, 1, 0, 0 ][shape] 4984930cef6SMatthias Ringwald synthesis.shape = shape 4994930cef6SMatthias Ringwald synthesis.gain = rng.integers(0, [ 2, 4, 4, 8 ][shape]) 5004930cef6SMatthias Ringwald synthesis.idx_a = rng.integers(0, sz_shape_a, endpoint=True) 5014930cef6SMatthias Ringwald synthesis.ls_a = bool(rng.integers(0, 1, endpoint=True)) 5024930cef6SMatthias Ringwald synthesis.idx_b = rng.integers(0, sz_shape_b, endpoint=True) 5034930cef6SMatthias Ringwald synthesis.ls_b = bool(rng.integers(0, 1, endpoint=True)) 5044930cef6SMatthias Ringwald 5054930cef6SMatthias Ringwald x = rng.random(T.NE[dt][sr]) * 1e4 5064930cef6SMatthias Ringwald 5074930cef6SMatthias Ringwald y = synthesis.run(x) 5084930cef6SMatthias Ringwald y_c = lc3.sns_synthesize(dt, sr, synthesis.get_data(), x) 509*4c4eb519SMatthias Ringwald ok = ok and np.amax(np.abs(y - y_c)) < 2e0 5104930cef6SMatthias Ringwald 5114930cef6SMatthias Ringwald return ok 5124930cef6SMatthias Ringwald 5134930cef6SMatthias Ringwalddef check_analysis_appendix_c(dt): 5144930cef6SMatthias Ringwald 5154930cef6SMatthias Ringwald sr = T.SRATE_16K 5164930cef6SMatthias Ringwald ok = True 5174930cef6SMatthias Ringwald 5184930cef6SMatthias Ringwald for i in range(len(C.E_B[dt])): 5194930cef6SMatthias Ringwald 5204930cef6SMatthias Ringwald scf = lc3.sns_compute_scale_factors(dt, sr, C.E_B[dt][i], False) 5214930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(scf - C.SCF[dt][i])) < 1e-4 5224930cef6SMatthias Ringwald 5234930cef6SMatthias Ringwald (lf, hf) = lc3.sns_resolve_codebooks(scf) 5244930cef6SMatthias Ringwald ok = ok and lf == C.IND_LF[dt][i] and hf == C.IND_HF[dt][i] 5254930cef6SMatthias Ringwald 5264930cef6SMatthias Ringwald (y, yn, shape, gain) = lc3.sns_quantize(scf, lf, hf) 5274930cef6SMatthias Ringwald ok = ok and np.any(y[0][:16] - C.SNS_Y0[dt][i] == 0) 5284930cef6SMatthias Ringwald ok = ok and np.any(y[1][:10] - C.SNS_Y1[dt][i] == 0) 5294930cef6SMatthias Ringwald ok = ok and np.any(y[2][:16] - C.SNS_Y2[dt][i] == 0) 5304930cef6SMatthias Ringwald ok = ok and np.any(y[3][:16] - C.SNS_Y3[dt][i] == 0) 5314930cef6SMatthias Ringwald ok = ok and shape == 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i] 5324930cef6SMatthias Ringwald ok = ok and gain == C.G_IND[dt][i] 5334930cef6SMatthias Ringwald 5344930cef6SMatthias Ringwald scf_q = lc3.sns_unquantize(lf, hf, yn[shape], shape, gain) 5354930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(scf_q - C.SCF_Q[dt][i])) < 1e-5 5364930cef6SMatthias Ringwald 5374930cef6SMatthias Ringwald x = lc3.sns_spectral_shaping(dt, sr, C.SCF_Q[dt][i], False, C.X[dt][i]) 5384930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5 5394930cef6SMatthias Ringwald 5404930cef6SMatthias Ringwald (x, data) = lc3.sns_analyze(dt, sr, C.E_B[dt][i], False, C.X[dt][i]) 5414930cef6SMatthias Ringwald ok = ok and data['lfcb'] == C.IND_LF[dt][i] 5424930cef6SMatthias Ringwald ok = ok and data['hfcb'] == C.IND_HF[dt][i] 5434930cef6SMatthias Ringwald ok = ok and data['shape'] == \ 5444930cef6SMatthias Ringwald 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i] 5454930cef6SMatthias Ringwald ok = ok and data['gain'] == C.G_IND[dt][i] 5464930cef6SMatthias Ringwald ok = ok and data['idx_a'] == C.IDX_A[dt][i] 5474930cef6SMatthias Ringwald ok = ok and data['ls_a'] == C.LS_IND_A[dt][i] 5484930cef6SMatthias Ringwald ok = ok and (C.IDX_B[dt][i] is None or 5494930cef6SMatthias Ringwald data['idx_b'] == C.IDX_B[dt][i]) 5504930cef6SMatthias Ringwald ok = ok and (C.LS_IND_B[dt][i] is None or 5514930cef6SMatthias Ringwald data['ls_b'] == C.LS_IND_B[dt][i]) 5524930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5 5534930cef6SMatthias Ringwald 5544930cef6SMatthias Ringwald return ok 5554930cef6SMatthias Ringwald 5564930cef6SMatthias Ringwalddef check_synthesis_appendix_c(dt): 5574930cef6SMatthias Ringwald 5584930cef6SMatthias Ringwald sr = T.SRATE_16K 5594930cef6SMatthias Ringwald ok = True 5604930cef6SMatthias Ringwald 5614930cef6SMatthias Ringwald for i in range(len(C.X_HAT_TNS[dt])): 5624930cef6SMatthias Ringwald 5634930cef6SMatthias Ringwald data = { 5644930cef6SMatthias Ringwald 'lfcb' : C.IND_LF[dt][i], 'hfcb' : C.IND_HF[dt][i], 5654930cef6SMatthias Ringwald 'shape' : 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i], 5664930cef6SMatthias Ringwald 'gain' : C.G_IND[dt][i], 5674930cef6SMatthias Ringwald 'idx_a' : C.IDX_A[dt][i], 5684930cef6SMatthias Ringwald 'ls_a' : C.LS_IND_A[dt][i], 5694930cef6SMatthias Ringwald 'idx_b' : C.IDX_B[dt][i] if C.IDX_B[dt][i] is not None else 0, 5704930cef6SMatthias Ringwald 'ls_b' : C.LS_IND_B[dt][i] if C.LS_IND_B[dt][i] is not None else 0, 5714930cef6SMatthias Ringwald } 5724930cef6SMatthias Ringwald 5734930cef6SMatthias Ringwald x = lc3.sns_synthesize(dt, sr, data, C.X_HAT_TNS[dt][i]) 5744930cef6SMatthias Ringwald ok = ok and np.amax(np.abs(x - C.X_HAT_SNS[dt][i])) < 1e0 5754930cef6SMatthias Ringwald 5764930cef6SMatthias Ringwald return ok 5774930cef6SMatthias Ringwald 5784930cef6SMatthias Ringwalddef check(): 5794930cef6SMatthias Ringwald 5804930cef6SMatthias Ringwald rng = np.random.default_rng(1234) 5814930cef6SMatthias Ringwald ok = True 5824930cef6SMatthias Ringwald 5834930cef6SMatthias Ringwald for dt in range(T.NUM_DT): 5844930cef6SMatthias Ringwald for sr in range(T.NUM_SRATE): 5854930cef6SMatthias Ringwald ok = ok and check_analysis(rng, dt, sr) 5864930cef6SMatthias Ringwald ok = ok and check_synthesis(rng, dt, sr) 5874930cef6SMatthias Ringwald 5884930cef6SMatthias Ringwald for dt in range(T.NUM_DT): 5894930cef6SMatthias Ringwald ok = ok and check_analysis_appendix_c(dt) 5904930cef6SMatthias Ringwald ok = ok and check_synthesis_appendix_c(dt) 5914930cef6SMatthias Ringwald 5924930cef6SMatthias Ringwald return ok 5934930cef6SMatthias Ringwald 5944930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ### 595