xref: /btstack/3rd-party/lc3-google/test/sns.py (revision 4c4eb519208b4224604d94b3ed1931841ddd93bb)
14930cef6SMatthias Ringwald#
24930cef6SMatthias Ringwald# Copyright 2022 Google LLC
34930cef6SMatthias Ringwald#
44930cef6SMatthias Ringwald# Licensed under the Apache License, Version 2.0 (the "License");
54930cef6SMatthias Ringwald# you may not use this file except in compliance with the License.
64930cef6SMatthias Ringwald# You may obtain a copy of the License at
74930cef6SMatthias Ringwald#
84930cef6SMatthias Ringwald#     http://www.apache.org/licenses/LICENSE-2.0
94930cef6SMatthias Ringwald#
104930cef6SMatthias Ringwald# Unless required by applicable law or agreed to in writing, software
114930cef6SMatthias Ringwald# distributed under the License is distributed on an "AS IS" BASIS,
124930cef6SMatthias Ringwald# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
134930cef6SMatthias Ringwald# See the License for the specific language governing permissions and
144930cef6SMatthias Ringwald# limitations under the License.
154930cef6SMatthias Ringwald#
164930cef6SMatthias Ringwald
174930cef6SMatthias Ringwaldimport numpy as np
184930cef6SMatthias Ringwaldimport scipy.fftpack as fftpack
194930cef6SMatthias Ringwald
20*4c4eb519SMatthias Ringwaldimport lc3
214930cef6SMatthias Ringwaldimport tables as T, appendix_c as C
224930cef6SMatthias Ringwald
234930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ###
244930cef6SMatthias Ringwald
254930cef6SMatthias Ringwaldclass Sns:
264930cef6SMatthias Ringwald
274930cef6SMatthias Ringwald    def __init__(self, dt, sr):
284930cef6SMatthias Ringwald
294930cef6SMatthias Ringwald        self.dt = dt
304930cef6SMatthias Ringwald        self.sr = sr
314930cef6SMatthias Ringwald
324930cef6SMatthias Ringwald        (self.ind_lf, self.ind_hf, self.shape, self.gain) = \
334930cef6SMatthias Ringwald            (None, None, None, None)
344930cef6SMatthias Ringwald
354930cef6SMatthias Ringwald        (self.idx_a, self.ls_a, self.idx_b, self.ls_b) = \
364930cef6SMatthias Ringwald            (None, None, None, None)
374930cef6SMatthias Ringwald
384930cef6SMatthias Ringwald    def get_data(self):
394930cef6SMatthias Ringwald
404930cef6SMatthias Ringwald        data = { 'lfcb' : self.ind_lf, 'hfcb' : self.ind_hf,
414930cef6SMatthias Ringwald                 'shape' : self.shape, 'gain' : self.gain,
424930cef6SMatthias Ringwald                 'idx_a' : self.idx_a, 'ls_a' : self.ls_a }
434930cef6SMatthias Ringwald
444930cef6SMatthias Ringwald        if self.idx_b is not None:
454930cef6SMatthias Ringwald            data.update({ 'idx_b' : self.idx_b, 'ls_b' : self.ls_b })
464930cef6SMatthias Ringwald
474930cef6SMatthias Ringwald        return data
484930cef6SMatthias Ringwald
494930cef6SMatthias Ringwald    def get_nbits(self):
504930cef6SMatthias Ringwald
514930cef6SMatthias Ringwald        return 38
524930cef6SMatthias Ringwald
534930cef6SMatthias Ringwald    def spectral_shaping(self, scf, inv, x):
544930cef6SMatthias Ringwald
554930cef6SMatthias Ringwald        ## 3.3.7.4 Scale factors interpolation
564930cef6SMatthias Ringwald
574930cef6SMatthias Ringwald        scf_i = np.empty(4*len(scf))
584930cef6SMatthias Ringwald        scf_i[0     ] = scf[0]
594930cef6SMatthias Ringwald        scf_i[1     ] = scf[0]
604930cef6SMatthias Ringwald        scf_i[2:62:4] = scf[:15] + 1/8 * (scf[1:] - scf[:15])
614930cef6SMatthias Ringwald        scf_i[3:63:4] = scf[:15] + 3/8 * (scf[1:] - scf[:15])
624930cef6SMatthias Ringwald        scf_i[4:64:4] = scf[:15] + 5/8 * (scf[1:] - scf[:15])
634930cef6SMatthias Ringwald        scf_i[5:64:4] = scf[:15] + 7/8 * (scf[1:] - scf[:15])
644930cef6SMatthias Ringwald        scf_i[62    ] = scf[15 ] + 1/8 * (scf[15] - scf[14 ])
654930cef6SMatthias Ringwald        scf_i[63    ] = scf[15 ] + 3/8 * (scf[15] - scf[14 ])
664930cef6SMatthias Ringwald
674930cef6SMatthias Ringwald        n2 = 64 - min(len(x), 64)
684930cef6SMatthias Ringwald
694930cef6SMatthias Ringwald        for i in range(n2):
704930cef6SMatthias Ringwald            scf_i[i] = 0.5 * (scf_i[2*i] + scf_i[2*i+1])
714930cef6SMatthias Ringwald        scf_i = np.append(scf_i[:n2], scf_i[2*n2:])
724930cef6SMatthias Ringwald
734930cef6SMatthias Ringwald        g_sns = np.power(2, [ -scf_i, scf_i ][inv])
744930cef6SMatthias Ringwald
754930cef6SMatthias Ringwald        ## 3.3.7.4 Spectral shaping
764930cef6SMatthias Ringwald
774930cef6SMatthias Ringwald        y = np.empty(len(x))
784930cef6SMatthias Ringwald        I = T.I[self.dt][self.sr]
794930cef6SMatthias Ringwald
804930cef6SMatthias Ringwald        for b in range(len(g_sns)):
814930cef6SMatthias Ringwald            y[I[b]:I[b+1]] = x[I[b]:I[b+1]] * g_sns[b]
824930cef6SMatthias Ringwald
834930cef6SMatthias Ringwald        return y
844930cef6SMatthias Ringwald
854930cef6SMatthias Ringwald
864930cef6SMatthias Ringwaldclass SnsAnalysis(Sns):
874930cef6SMatthias Ringwald
884930cef6SMatthias Ringwald    def __init__(self, dt, sr):
894930cef6SMatthias Ringwald
904930cef6SMatthias Ringwald        super().__init__(dt, sr)
914930cef6SMatthias Ringwald
924930cef6SMatthias Ringwald    def compute_scale_factors(self, e, att):
934930cef6SMatthias Ringwald
944930cef6SMatthias Ringwald        dt = self.dt
954930cef6SMatthias Ringwald
964930cef6SMatthias Ringwald        ## 3.3.7.2.1 Padding
974930cef6SMatthias Ringwald
984930cef6SMatthias Ringwald        n2 = 64 - len(e)
994930cef6SMatthias Ringwald
1004930cef6SMatthias Ringwald        e = np.append(np.empty(n2), e)
1014930cef6SMatthias Ringwald        for i in range(n2):
1024930cef6SMatthias Ringwald            e[2*i+0] = e[2*i+1] = e[n2+i]
1034930cef6SMatthias Ringwald
1044930cef6SMatthias Ringwald        ## 3.3.7.2.2 Smoothing
1054930cef6SMatthias Ringwald
1064930cef6SMatthias Ringwald        e_s = np.zeros(len(e))
1074930cef6SMatthias Ringwald        e_s[0   ] = 0.75 * e[0   ] + 0.25 * e[1   ]
1084930cef6SMatthias Ringwald        e_s[1:63] = 0.25 * e[0:62] + 0.5  * e[1:63] + 0.25 * e[2:64]
1094930cef6SMatthias Ringwald        e_s[  63] = 0.25 * e[  62] + 0.75 * e[  63]
1104930cef6SMatthias Ringwald
1114930cef6SMatthias Ringwald        ## 3.3.7.2.3 Pre-emphasis
1124930cef6SMatthias Ringwald
1134930cef6SMatthias Ringwald        g_tilt = [ 14, 18, 22, 26, 30 ][self.sr]
1144930cef6SMatthias Ringwald        e_p = e_s * (10 ** ((np.arange(64) * g_tilt) / 630))
1154930cef6SMatthias Ringwald
1164930cef6SMatthias Ringwald        ## 3.3.7.2.4 Noise floor
1174930cef6SMatthias Ringwald
1184930cef6SMatthias Ringwald        noise_floor = max(np.average(e_p) * (10 ** (-40/10)), 2 ** -32)
1194930cef6SMatthias Ringwald        e_p = np.fmax(e_p, noise_floor * np.ones(len(e)))
1204930cef6SMatthias Ringwald
1214930cef6SMatthias Ringwald        ## 3.3.7.2.5 Logarithm
1224930cef6SMatthias Ringwald
1234930cef6SMatthias Ringwald        e_l = np.log2(10 ** -31 + e_p) / 2
1244930cef6SMatthias Ringwald
1254930cef6SMatthias Ringwald        ## 3.3.7.2.6 Band energy grouping
1264930cef6SMatthias Ringwald
1274930cef6SMatthias Ringwald        w = [ 1/12, 2/12, 3/12, 3/12, 2/12, 1/12 ]
1284930cef6SMatthias Ringwald
1294930cef6SMatthias Ringwald        e_4 = np.zeros(len(e_l) // 4)
1304930cef6SMatthias Ringwald        e_4[0   ] = w[0] * e_l[0] + np.sum(w[1:] * e_l[:5])
1314930cef6SMatthias Ringwald        e_4[1:15] = [ np.sum(w * e_l[4*i-1:4*i+5]) for i in range(1, 15) ]
1324930cef6SMatthias Ringwald        e_4[  15] = np.sum(w[:5] * e_l[59:64]) + w[5] * e_l[63]
1334930cef6SMatthias Ringwald
1344930cef6SMatthias Ringwald        ## 3.3.7.2.7 Mean removal and scaling, attack handling
1354930cef6SMatthias Ringwald
1364930cef6SMatthias Ringwald        scf = 0.85 * (e_4 - np.average(e_4))
1374930cef6SMatthias Ringwald
1384930cef6SMatthias Ringwald        scf_a = np.zeros(len(scf))
1394930cef6SMatthias Ringwald        scf_a[0   ] = np.average(scf[:3])
1404930cef6SMatthias Ringwald        scf_a[1   ] = np.average(scf[:4])
1414930cef6SMatthias Ringwald        scf_a[2:14] = [ np.average(scf[i:i+5]) for i in range(12) ]
1424930cef6SMatthias Ringwald        scf_a[  14] = np.average(scf[12:])
1434930cef6SMatthias Ringwald        scf_a[  15] = np.average(scf[13:])
1444930cef6SMatthias Ringwald
1454930cef6SMatthias Ringwald        scf_a = (0.5 if self.dt == T.DT_10M else 0.3) * \
1464930cef6SMatthias Ringwald                (scf_a - np.average(scf_a))
1474930cef6SMatthias Ringwald
1484930cef6SMatthias Ringwald        return scf_a if att else scf
1494930cef6SMatthias Ringwald
1504930cef6SMatthias Ringwald    def enum_mpvq(self, v):
1514930cef6SMatthias Ringwald
1524930cef6SMatthias Ringwald        sign = None
1534930cef6SMatthias Ringwald        index = 0
1544930cef6SMatthias Ringwald        x = 0
1554930cef6SMatthias Ringwald
1564930cef6SMatthias Ringwald        for (n, vn) in enumerate(v[::-1]):
1574930cef6SMatthias Ringwald
1584930cef6SMatthias Ringwald            if sign is not None and vn != 0:
1594930cef6SMatthias Ringwald                index = 2*index + sign
1604930cef6SMatthias Ringwald            if vn != 0:
1614930cef6SMatthias Ringwald                sign = 1 if vn < 0 else 0
1624930cef6SMatthias Ringwald
1634930cef6SMatthias Ringwald            index += T.SNS_MPVQ_OFFSETS[n][x]
1644930cef6SMatthias Ringwald            x += abs(vn)
1654930cef6SMatthias Ringwald
1664930cef6SMatthias Ringwald        return (index, bool(sign))
1674930cef6SMatthias Ringwald
1684930cef6SMatthias Ringwald    def quantize(self, scf):
1694930cef6SMatthias Ringwald
1704930cef6SMatthias Ringwald        ## 3.3.7.3.2 Stage 1
1714930cef6SMatthias Ringwald
1724930cef6SMatthias Ringwald        dmse_lf = [ np.sum((scf[:8] - T.SNS_LFCB[i]) ** 2) for i in range(32) ]
1734930cef6SMatthias Ringwald        dmse_hf = [ np.sum((scf[8:] - T.SNS_HFCB[i]) ** 2) for i in range(32) ]
1744930cef6SMatthias Ringwald
1754930cef6SMatthias Ringwald        self.ind_lf = np.argmin(dmse_lf)
1764930cef6SMatthias Ringwald        self.ind_hf = np.argmin(dmse_hf)
1774930cef6SMatthias Ringwald
1784930cef6SMatthias Ringwald        st1 = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf])
1794930cef6SMatthias Ringwald        r1 = scf - st1
1804930cef6SMatthias Ringwald
1814930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2
1824930cef6SMatthias Ringwald
1834930cef6SMatthias Ringwald        t2_rot = fftpack.dct(r1, norm = 'ortho')
1844930cef6SMatthias Ringwald        x = np.abs(t2_rot)
1854930cef6SMatthias Ringwald
1864930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 1
1874930cef6SMatthias Ringwald
1884930cef6SMatthias Ringwald        K = 6
1894930cef6SMatthias Ringwald
1904930cef6SMatthias Ringwald        proj_fac = (K - 1) / sum(np.abs(t2_rot))
1914930cef6SMatthias Ringwald        y3 = np.floor(x * proj_fac).astype(int)
1924930cef6SMatthias Ringwald
1934930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 2
1944930cef6SMatthias Ringwald
1954930cef6SMatthias Ringwald        corr_xy = np.sum(y3 * x)
1964930cef6SMatthias Ringwald        energy_y = np.sum(y3 * y3)
1974930cef6SMatthias Ringwald
1984930cef6SMatthias Ringwald        k0 = sum(y3)
1994930cef6SMatthias Ringwald        for k in range(k0, K):
2004930cef6SMatthias Ringwald            q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y3 + 1)
2014930cef6SMatthias Ringwald            n_best = np.argmax(q_pvq)
2024930cef6SMatthias Ringwald
2034930cef6SMatthias Ringwald            corr_xy += x[n_best]
2044930cef6SMatthias Ringwald            energy_y += 2*y3[n_best] + 1
2054930cef6SMatthias Ringwald            y3[n_best] += 1
2064930cef6SMatthias Ringwald
2074930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 3
2084930cef6SMatthias Ringwald
2094930cef6SMatthias Ringwald        K = 8
2104930cef6SMatthias Ringwald
2114930cef6SMatthias Ringwald        y2 = y3.copy()
2124930cef6SMatthias Ringwald
2134930cef6SMatthias Ringwald        for k in range(sum(y2), K):
2144930cef6SMatthias Ringwald            q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y2 + 1)
2154930cef6SMatthias Ringwald            n_best = np.argmax(q_pvq)
2164930cef6SMatthias Ringwald
2174930cef6SMatthias Ringwald            corr_xy += x[n_best]
2184930cef6SMatthias Ringwald            energy_y += 2*y2[n_best] + 1
2194930cef6SMatthias Ringwald            y2[n_best] += 1
2204930cef6SMatthias Ringwald
2214930cef6SMatthias Ringwald
2224930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 4
2234930cef6SMatthias Ringwald
2244930cef6SMatthias Ringwald        y1 = np.append(y2[:10], [0] * 6)
2254930cef6SMatthias Ringwald
2264930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 5
2274930cef6SMatthias Ringwald
2284930cef6SMatthias Ringwald        corr_xy -= sum(y2[10:] * x[10:])
2294930cef6SMatthias Ringwald        energy_y -= sum(y2[10:] * y2[10:])
2304930cef6SMatthias Ringwald
2314930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 6
2324930cef6SMatthias Ringwald
2334930cef6SMatthias Ringwald        K = 10
2344930cef6SMatthias Ringwald
2354930cef6SMatthias Ringwald        for k in range(sum(y1), K):
2364930cef6SMatthias Ringwald            q_pvq = ((corr_xy + x[:10]) ** 2) / (energy_y + 2*y1[:10] + 1)
2374930cef6SMatthias Ringwald            n_best = np.argmax(q_pvq)
2384930cef6SMatthias Ringwald
2394930cef6SMatthias Ringwald            corr_xy += x[n_best]
2404930cef6SMatthias Ringwald            energy_y += 2*y1[n_best] + 1
2414930cef6SMatthias Ringwald            y1[n_best] += 1
2424930cef6SMatthias Ringwald
2434930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 7
2444930cef6SMatthias Ringwald
2454930cef6SMatthias Ringwald        y0 = np.append(y1[:10], [ 0 ] * 6)
2464930cef6SMatthias Ringwald
2474930cef6SMatthias Ringwald        q_pvq = ((corr_xy + x[10:]) ** 2) / (energy_y + 2*y0[10:] + 1)
2484930cef6SMatthias Ringwald        n_best = 10 + np.argmax(q_pvq)
2494930cef6SMatthias Ringwald
2504930cef6SMatthias Ringwald        y0[n_best] += 1
2514930cef6SMatthias Ringwald
2524930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 8
2534930cef6SMatthias Ringwald
2544930cef6SMatthias Ringwald        y0 *= np.sign(t2_rot).astype(int)
2554930cef6SMatthias Ringwald        y1 *= np.sign(t2_rot).astype(int)
2564930cef6SMatthias Ringwald        y2 *= np.sign(t2_rot).astype(int)
2574930cef6SMatthias Ringwald        y3 *= np.sign(t2_rot).astype(int)
2584930cef6SMatthias Ringwald
2594930cef6SMatthias Ringwald        ## 3.3.7.3.3 Stage 2 Shape search, step 9
2604930cef6SMatthias Ringwald
2614930cef6SMatthias Ringwald        xq = [ y / np.sqrt(sum(y ** 2)) for y in (y0, y1, y2, y3) ]
2624930cef6SMatthias Ringwald
2634930cef6SMatthias Ringwald        ## 3.3.7.3.3 Shape and gain combination determination
2644930cef6SMatthias Ringwald
2654930cef6SMatthias Ringwald        G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS,
2664930cef6SMatthias Ringwald              T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ]
2674930cef6SMatthias Ringwald
2684930cef6SMatthias Ringwald        dMSE = [ [ sum((t2_rot - G[j][i] * xq[j]) ** 2)
2694930cef6SMatthias Ringwald                   for i in range(len(G[j])) ] for j in range(4) ]
2704930cef6SMatthias Ringwald
2714930cef6SMatthias Ringwald        self.shape = np.argmin([ np.min(dMSE[j]) for j in range(4) ])
2724930cef6SMatthias Ringwald        self.gain = np.argmin(dMSE[self.shape])
2734930cef6SMatthias Ringwald
2744930cef6SMatthias Ringwald        gain = G[self.shape][self.gain]
2754930cef6SMatthias Ringwald
2764930cef6SMatthias Ringwald        ## 3.3.7.3.3 Enumeration of the selected PVQ pulse configurations
2774930cef6SMatthias Ringwald
2784930cef6SMatthias Ringwald        if self.shape == 0:
2794930cef6SMatthias Ringwald            (self.idx_a, self.ls_a) = self.enum_mpvq(y0[:10])
2804930cef6SMatthias Ringwald            (self.idx_b, self.ls_b) = self.enum_mpvq(y0[10:])
2814930cef6SMatthias Ringwald        elif self.shape == 1:
2824930cef6SMatthias Ringwald            (self.idx_a, self.ls_a) = self.enum_mpvq(y1[:10])
2834930cef6SMatthias Ringwald            (self.idx_b, self.ls_b) = (None, None)
2844930cef6SMatthias Ringwald        elif self.shape == 2:
2854930cef6SMatthias Ringwald            (self.idx_a, self.ls_a) = self.enum_mpvq(y2)
2864930cef6SMatthias Ringwald            (self.idx_b, self.ls_b) = (None, None)
2874930cef6SMatthias Ringwald        elif self.shape == 3:
2884930cef6SMatthias Ringwald            (self.idx_a, self.ls_a) = self.enum_mpvq(y3)
2894930cef6SMatthias Ringwald            (self.idx_b, self.ls_b) = (None, None)
2904930cef6SMatthias Ringwald
2914930cef6SMatthias Ringwald        ## 3.3.7.3.4 Synthesis of the Quantized scale factor
2924930cef6SMatthias Ringwald
2934930cef6SMatthias Ringwald        scf_q = st1 + gain * fftpack.idct(xq[self.shape], norm = 'ortho')
2944930cef6SMatthias Ringwald
2954930cef6SMatthias Ringwald        return scf_q
2964930cef6SMatthias Ringwald
2974930cef6SMatthias Ringwald    def run(self, eb, att, x):
2984930cef6SMatthias Ringwald
2994930cef6SMatthias Ringwald        scf = self.compute_scale_factors(eb, att)
3004930cef6SMatthias Ringwald        scf_q = self.quantize(scf)
3014930cef6SMatthias Ringwald        y = self.spectral_shaping(scf_q, False, x)
3024930cef6SMatthias Ringwald
3034930cef6SMatthias Ringwald        return y
3044930cef6SMatthias Ringwald
3054930cef6SMatthias Ringwald    def store(self, b):
3064930cef6SMatthias Ringwald
3074930cef6SMatthias Ringwald        shape = self.shape
3084930cef6SMatthias Ringwald        gain_msb_bits = np.array([ 1, 1, 2, 2 ])[shape]
3094930cef6SMatthias Ringwald        gain_lsb_bits = np.array([ 0, 1, 0, 1 ])[shape]
3104930cef6SMatthias Ringwald
3114930cef6SMatthias Ringwald        b.write_uint(self.ind_lf, 5)
3124930cef6SMatthias Ringwald        b.write_uint(self.ind_hf, 5)
3134930cef6SMatthias Ringwald
3144930cef6SMatthias Ringwald        b.write_bit(shape >> 1)
3154930cef6SMatthias Ringwald
3164930cef6SMatthias Ringwald        b.write_uint(self.gain >> gain_lsb_bits, gain_msb_bits)
3174930cef6SMatthias Ringwald
3184930cef6SMatthias Ringwald        b.write_bit(self.ls_a)
3194930cef6SMatthias Ringwald
3204930cef6SMatthias Ringwald        if self.shape == 0:
3214930cef6SMatthias Ringwald            sz_shape_a = 2390004
3224930cef6SMatthias Ringwald            index_joint = self.idx_a + \
3234930cef6SMatthias Ringwald                (2 * self.idx_b + self.ls_b + 2) * sz_shape_a
3244930cef6SMatthias Ringwald
3254930cef6SMatthias Ringwald        elif self.shape == 1:
3264930cef6SMatthias Ringwald            sz_shape_a = 2390004
3274930cef6SMatthias Ringwald            index_joint = self.idx_a + (self.gain & 1) * sz_shape_a
3284930cef6SMatthias Ringwald
3294930cef6SMatthias Ringwald        elif self.shape == 2:
3304930cef6SMatthias Ringwald            index_joint = self.idx_a
3314930cef6SMatthias Ringwald
3324930cef6SMatthias Ringwald        elif self.shape == 3:
3334930cef6SMatthias Ringwald            sz_shape_a = 15158272
3344930cef6SMatthias Ringwald            index_joint = sz_shape_a + (self.gain & 1) + 2 * self.idx_a
3354930cef6SMatthias Ringwald
3364930cef6SMatthias Ringwald        b.write_uint(index_joint, 14 - gain_msb_bits)
3374930cef6SMatthias Ringwald        b.write_uint(index_joint >> (14 - gain_msb_bits), 12)
3384930cef6SMatthias Ringwald
3394930cef6SMatthias Ringwald
3404930cef6SMatthias Ringwaldclass SnsSynthesis(Sns):
3414930cef6SMatthias Ringwald
3424930cef6SMatthias Ringwald    def __init__(self, dt, sr):
3434930cef6SMatthias Ringwald
3444930cef6SMatthias Ringwald        super().__init__(dt, sr)
3454930cef6SMatthias Ringwald
3464930cef6SMatthias Ringwald    def deenum_mpvq(self, index, ls, npulses, n):
3474930cef6SMatthias Ringwald
3484930cef6SMatthias Ringwald        y = np.zeros(n, dtype=np.int)
3494930cef6SMatthias Ringwald        pos = 0
3504930cef6SMatthias Ringwald
3514930cef6SMatthias Ringwald        for i in range(len(y)-1, -1, -1):
3524930cef6SMatthias Ringwald
3534930cef6SMatthias Ringwald            if index > 0:
3544930cef6SMatthias Ringwald                yi = 0
3554930cef6SMatthias Ringwald                while index < T.SNS_MPVQ_OFFSETS[i][npulses - yi]: yi += 1
3564930cef6SMatthias Ringwald                index -= T.SNS_MPVQ_OFFSETS[i][npulses - yi]
3574930cef6SMatthias Ringwald            else:
3584930cef6SMatthias Ringwald                yi = npulses
3594930cef6SMatthias Ringwald
3604930cef6SMatthias Ringwald            y[pos] = [ yi, -yi ][int(ls)]
3614930cef6SMatthias Ringwald            pos += 1
3624930cef6SMatthias Ringwald
3634930cef6SMatthias Ringwald            npulses -= yi
3644930cef6SMatthias Ringwald            if npulses <= 0:
3654930cef6SMatthias Ringwald                break
3664930cef6SMatthias Ringwald
3674930cef6SMatthias Ringwald            if yi > 0:
3684930cef6SMatthias Ringwald                ls = index & 1
3694930cef6SMatthias Ringwald                index >>= 1
3704930cef6SMatthias Ringwald
3714930cef6SMatthias Ringwald        return y
3724930cef6SMatthias Ringwald
3734930cef6SMatthias Ringwald    def unquantize(self):
3744930cef6SMatthias Ringwald
3754930cef6SMatthias Ringwald        ## 3.7.4.2.1-2  SNS VQ Decoding
3764930cef6SMatthias Ringwald
3774930cef6SMatthias Ringwald        y = np.empty(16, dtype=np.int)
3784930cef6SMatthias Ringwald
3794930cef6SMatthias Ringwald        if self.shape == 0:
3804930cef6SMatthias Ringwald            y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10)
3814930cef6SMatthias Ringwald            y[10:] = self.deenum_mpvq(self.idx_b, self.ls_b,  1,  6)
3824930cef6SMatthias Ringwald        elif self.shape == 1:
3834930cef6SMatthias Ringwald            y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10)
3844930cef6SMatthias Ringwald            y[10:] = np.zeros(6, dtype=np.int)
3854930cef6SMatthias Ringwald        elif self.shape == 2:
3864930cef6SMatthias Ringwald            y = self.deenum_mpvq(self.idx_a, self.ls_a, 8, 16)
3874930cef6SMatthias Ringwald        elif self.shape == 3:
3884930cef6SMatthias Ringwald            y = self.deenum_mpvq(self.idx_a, self.ls_a, 6, 16)
3894930cef6SMatthias Ringwald
3904930cef6SMatthias Ringwald        ## 3.7.4.2.3  Unit energy normalization
3914930cef6SMatthias Ringwald
3924930cef6SMatthias Ringwald        y = y / np.sqrt(sum(y ** 2))
3934930cef6SMatthias Ringwald
3944930cef6SMatthias Ringwald        ## 3.7.4.2.4  Reconstruction of the quantized scale factors
3954930cef6SMatthias Ringwald
3964930cef6SMatthias Ringwald        G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS,
3974930cef6SMatthias Ringwald              T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ]
3984930cef6SMatthias Ringwald
3994930cef6SMatthias Ringwald        gain = G[self.shape][self.gain]
4004930cef6SMatthias Ringwald
4014930cef6SMatthias Ringwald        scf = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) \
4024930cef6SMatthias Ringwald                + gain * fftpack.idct(y, norm = 'ortho')
4034930cef6SMatthias Ringwald
4044930cef6SMatthias Ringwald        return scf
4054930cef6SMatthias Ringwald
4064930cef6SMatthias Ringwald    def load(self, b):
4074930cef6SMatthias Ringwald
4084930cef6SMatthias Ringwald        self.ind_lf = b.read_uint(5)
4094930cef6SMatthias Ringwald        self.ind_hf = b.read_uint(5)
4104930cef6SMatthias Ringwald
4114930cef6SMatthias Ringwald        shape_msb = b.read_bit()
4124930cef6SMatthias Ringwald
4134930cef6SMatthias Ringwald        gain_msb_bits = 1 + shape_msb
4144930cef6SMatthias Ringwald        self.gain = b.read_uint(gain_msb_bits)
4154930cef6SMatthias Ringwald
4164930cef6SMatthias Ringwald        self.ls_a = b.read_bit()
4174930cef6SMatthias Ringwald
4184930cef6SMatthias Ringwald        index_joint  = b.read_uint(14 - gain_msb_bits)
4194930cef6SMatthias Ringwald        index_joint |= b.read_uint(12) << (14 - gain_msb_bits)
4204930cef6SMatthias Ringwald
4214930cef6SMatthias Ringwald        if shape_msb == 0:
4224930cef6SMatthias Ringwald            sz_shape_a = 2390004
4234930cef6SMatthias Ringwald
4244930cef6SMatthias Ringwald            if index_joint >= sz_shape_a * 14:
4254930cef6SMatthias Ringwald                raise ValueError('Invalide SNS joint index')
4264930cef6SMatthias Ringwald
4274930cef6SMatthias Ringwald            self.idx_a = index_joint % sz_shape_a
4284930cef6SMatthias Ringwald            index_joint = index_joint // sz_shape_a
4294930cef6SMatthias Ringwald            if index_joint >= 2:
4304930cef6SMatthias Ringwald                self.shape = 0
4314930cef6SMatthias Ringwald                self.idx_b = (index_joint - 2) // 2
4324930cef6SMatthias Ringwald                self.ls_b =  (index_joint - 2)  % 2
4334930cef6SMatthias Ringwald            else:
4344930cef6SMatthias Ringwald                self.shape = 1
4354930cef6SMatthias Ringwald                self.gain = (self.gain << 1) + (index_joint & 1)
4364930cef6SMatthias Ringwald
4374930cef6SMatthias Ringwald        else:
4384930cef6SMatthias Ringwald            sz_shape_a = 15158272
4394930cef6SMatthias Ringwald            if index_joint >= sz_shape_a + 1549824:
4404930cef6SMatthias Ringwald                raise ValueError('Invalide SNS joint index')
4414930cef6SMatthias Ringwald
4424930cef6SMatthias Ringwald            if index_joint < sz_shape_a:
4434930cef6SMatthias Ringwald                self.shape = 2
4444930cef6SMatthias Ringwald                self.idx_a = index_joint
4454930cef6SMatthias Ringwald            else:
4464930cef6SMatthias Ringwald                self.shape = 3
4474930cef6SMatthias Ringwald                index_joint -= sz_shape_a
4484930cef6SMatthias Ringwald                self.gain = (self.gain << 1) + (index_joint % 2)
4494930cef6SMatthias Ringwald                self.idx_a = index_joint // 2
4504930cef6SMatthias Ringwald
4514930cef6SMatthias Ringwald    def run(self, x):
4524930cef6SMatthias Ringwald
4534930cef6SMatthias Ringwald        scf = self.unquantize()
4544930cef6SMatthias Ringwald        y = self.spectral_shaping(scf, True, x)
4554930cef6SMatthias Ringwald
4564930cef6SMatthias Ringwald        return y
4574930cef6SMatthias Ringwald
4584930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ###
4594930cef6SMatthias Ringwald
4604930cef6SMatthias Ringwalddef check_analysis(rng, dt, sr):
4614930cef6SMatthias Ringwald
4624930cef6SMatthias Ringwald    ok = True
4634930cef6SMatthias Ringwald
4644930cef6SMatthias Ringwald    analysis = SnsAnalysis(dt, sr)
4654930cef6SMatthias Ringwald
4664930cef6SMatthias Ringwald    for i in range(10):
4674930cef6SMatthias Ringwald        x = rng.random(T.NE[dt][sr]) * 1e4
4684930cef6SMatthias Ringwald        e = rng.random(min(len(x), 64)) * 1e10
4694930cef6SMatthias Ringwald
4704930cef6SMatthias Ringwald        for att in (0, 1):
4714930cef6SMatthias Ringwald            y = analysis.run(e, att, x)
4724930cef6SMatthias Ringwald            data = analysis.get_data()
4734930cef6SMatthias Ringwald
4744930cef6SMatthias Ringwald            (y_c, data_c) = lc3.sns_analyze(dt, sr, e, att, x)
4754930cef6SMatthias Ringwald
4764930cef6SMatthias Ringwald            for k in data.keys():
4774930cef6SMatthias Ringwald                ok = ok and data_c[k] == data[k]
4784930cef6SMatthias Ringwald
4794930cef6SMatthias Ringwald            ok = ok and lc3.sns_get_nbits() == analysis.get_nbits()
4804930cef6SMatthias Ringwald            ok = ok and np.amax(np.abs(y - y_c)) < 1e-1
4814930cef6SMatthias Ringwald
4824930cef6SMatthias Ringwald    return ok
4834930cef6SMatthias Ringwald
4844930cef6SMatthias Ringwalddef check_synthesis(rng, dt, sr):
4854930cef6SMatthias Ringwald
4864930cef6SMatthias Ringwald    ok = True
4874930cef6SMatthias Ringwald
4884930cef6SMatthias Ringwald    synthesis = SnsSynthesis(dt, sr)
4894930cef6SMatthias Ringwald
4904930cef6SMatthias Ringwald    for i in range(100):
4914930cef6SMatthias Ringwald
4924930cef6SMatthias Ringwald        synthesis.ind_lf = rng.integers(0, 32)
4934930cef6SMatthias Ringwald        synthesis.ind_hf = rng.integers(0, 32)
4944930cef6SMatthias Ringwald
4954930cef6SMatthias Ringwald        shape = rng.integers(0, 4)
4964930cef6SMatthias Ringwald        sz_shape_a = [ 2390004, 2390004, 15158272, 774912 ][shape]
4974930cef6SMatthias Ringwald        sz_shape_b = [ 6, 1, 0, 0 ][shape]
4984930cef6SMatthias Ringwald        synthesis.shape = shape
4994930cef6SMatthias Ringwald        synthesis.gain = rng.integers(0, [ 2, 4, 4, 8 ][shape])
5004930cef6SMatthias Ringwald        synthesis.idx_a = rng.integers(0, sz_shape_a, endpoint=True)
5014930cef6SMatthias Ringwald        synthesis.ls_a = bool(rng.integers(0, 1, endpoint=True))
5024930cef6SMatthias Ringwald        synthesis.idx_b = rng.integers(0, sz_shape_b, endpoint=True)
5034930cef6SMatthias Ringwald        synthesis.ls_b = bool(rng.integers(0, 1, endpoint=True))
5044930cef6SMatthias Ringwald
5054930cef6SMatthias Ringwald        x = rng.random(T.NE[dt][sr]) * 1e4
5064930cef6SMatthias Ringwald
5074930cef6SMatthias Ringwald        y = synthesis.run(x)
5084930cef6SMatthias Ringwald        y_c = lc3.sns_synthesize(dt, sr, synthesis.get_data(), x)
509*4c4eb519SMatthias Ringwald        ok = ok and np.amax(np.abs(y - y_c)) < 2e0
5104930cef6SMatthias Ringwald
5114930cef6SMatthias Ringwald    return ok
5124930cef6SMatthias Ringwald
5134930cef6SMatthias Ringwalddef check_analysis_appendix_c(dt):
5144930cef6SMatthias Ringwald
5154930cef6SMatthias Ringwald    sr = T.SRATE_16K
5164930cef6SMatthias Ringwald    ok = True
5174930cef6SMatthias Ringwald
5184930cef6SMatthias Ringwald    for i in range(len(C.E_B[dt])):
5194930cef6SMatthias Ringwald
5204930cef6SMatthias Ringwald        scf = lc3.sns_compute_scale_factors(dt, sr, C.E_B[dt][i], False)
5214930cef6SMatthias Ringwald        ok = ok and np.amax(np.abs(scf - C.SCF[dt][i])) < 1e-4
5224930cef6SMatthias Ringwald
5234930cef6SMatthias Ringwald        (lf, hf) = lc3.sns_resolve_codebooks(scf)
5244930cef6SMatthias Ringwald        ok = ok and lf == C.IND_LF[dt][i] and hf == C.IND_HF[dt][i]
5254930cef6SMatthias Ringwald
5264930cef6SMatthias Ringwald        (y, yn, shape, gain) = lc3.sns_quantize(scf, lf, hf)
5274930cef6SMatthias Ringwald        ok = ok and np.any(y[0][:16] - C.SNS_Y0[dt][i] == 0)
5284930cef6SMatthias Ringwald        ok = ok and np.any(y[1][:10] - C.SNS_Y1[dt][i] == 0)
5294930cef6SMatthias Ringwald        ok = ok and np.any(y[2][:16] - C.SNS_Y2[dt][i] == 0)
5304930cef6SMatthias Ringwald        ok = ok and np.any(y[3][:16] - C.SNS_Y3[dt][i] == 0)
5314930cef6SMatthias Ringwald        ok = ok and shape == 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i]
5324930cef6SMatthias Ringwald        ok = ok and gain == C.G_IND[dt][i]
5334930cef6SMatthias Ringwald
5344930cef6SMatthias Ringwald        scf_q = lc3.sns_unquantize(lf, hf, yn[shape], shape, gain)
5354930cef6SMatthias Ringwald        ok = ok and np.amax(np.abs(scf_q - C.SCF_Q[dt][i])) < 1e-5
5364930cef6SMatthias Ringwald
5374930cef6SMatthias Ringwald        x = lc3.sns_spectral_shaping(dt, sr, C.SCF_Q[dt][i], False, C.X[dt][i])
5384930cef6SMatthias Ringwald        ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5
5394930cef6SMatthias Ringwald
5404930cef6SMatthias Ringwald        (x, data) = lc3.sns_analyze(dt, sr, C.E_B[dt][i], False, C.X[dt][i])
5414930cef6SMatthias Ringwald        ok = ok and data['lfcb'] == C.IND_LF[dt][i]
5424930cef6SMatthias Ringwald        ok = ok and data['hfcb'] == C.IND_HF[dt][i]
5434930cef6SMatthias Ringwald        ok = ok and data['shape'] == \
5444930cef6SMatthias Ringwald            2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i]
5454930cef6SMatthias Ringwald        ok = ok and data['gain'] == C.G_IND[dt][i]
5464930cef6SMatthias Ringwald        ok = ok and data['idx_a'] == C.IDX_A[dt][i]
5474930cef6SMatthias Ringwald        ok = ok and data['ls_a'] == C.LS_IND_A[dt][i]
5484930cef6SMatthias Ringwald        ok = ok and (C.IDX_B[dt][i] is None or
5494930cef6SMatthias Ringwald            data['idx_b'] == C.IDX_B[dt][i])
5504930cef6SMatthias Ringwald        ok = ok and (C.LS_IND_B[dt][i] is None or
5514930cef6SMatthias Ringwald            data['ls_b'] == C.LS_IND_B[dt][i])
5524930cef6SMatthias Ringwald        ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5
5534930cef6SMatthias Ringwald
5544930cef6SMatthias Ringwald    return ok
5554930cef6SMatthias Ringwald
5564930cef6SMatthias Ringwalddef check_synthesis_appendix_c(dt):
5574930cef6SMatthias Ringwald
5584930cef6SMatthias Ringwald    sr = T.SRATE_16K
5594930cef6SMatthias Ringwald    ok = True
5604930cef6SMatthias Ringwald
5614930cef6SMatthias Ringwald    for i in range(len(C.X_HAT_TNS[dt])):
5624930cef6SMatthias Ringwald
5634930cef6SMatthias Ringwald        data = {
5644930cef6SMatthias Ringwald            'lfcb'  : C.IND_LF[dt][i], 'hfcb' : C.IND_HF[dt][i],
5654930cef6SMatthias Ringwald            'shape' : 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i],
5664930cef6SMatthias Ringwald            'gain'  : C.G_IND[dt][i],
5674930cef6SMatthias Ringwald            'idx_a' : C.IDX_A[dt][i],
5684930cef6SMatthias Ringwald            'ls_a'  : C.LS_IND_A[dt][i],
5694930cef6SMatthias Ringwald            'idx_b' : C.IDX_B[dt][i] if C.IDX_B[dt][i] is not None else 0,
5704930cef6SMatthias Ringwald            'ls_b'  : C.LS_IND_B[dt][i] if C.LS_IND_B[dt][i] is not None else 0,
5714930cef6SMatthias Ringwald        }
5724930cef6SMatthias Ringwald
5734930cef6SMatthias Ringwald        x = lc3.sns_synthesize(dt, sr, data, C.X_HAT_TNS[dt][i])
5744930cef6SMatthias Ringwald        ok = ok and np.amax(np.abs(x - C.X_HAT_SNS[dt][i])) < 1e0
5754930cef6SMatthias Ringwald
5764930cef6SMatthias Ringwald    return ok
5774930cef6SMatthias Ringwald
5784930cef6SMatthias Ringwalddef check():
5794930cef6SMatthias Ringwald
5804930cef6SMatthias Ringwald    rng = np.random.default_rng(1234)
5814930cef6SMatthias Ringwald    ok = True
5824930cef6SMatthias Ringwald
5834930cef6SMatthias Ringwald    for dt in range(T.NUM_DT):
5844930cef6SMatthias Ringwald        for sr in range(T.NUM_SRATE):
5854930cef6SMatthias Ringwald            ok = ok and check_analysis(rng, dt, sr)
5864930cef6SMatthias Ringwald            ok = ok and check_synthesis(rng, dt, sr)
5874930cef6SMatthias Ringwald
5884930cef6SMatthias Ringwald    for dt in range(T.NUM_DT):
5894930cef6SMatthias Ringwald        ok = ok and check_analysis_appendix_c(dt)
5904930cef6SMatthias Ringwald        ok = ok and check_synthesis_appendix_c(dt)
5914930cef6SMatthias Ringwald
5924930cef6SMatthias Ringwald    return ok
5934930cef6SMatthias Ringwald
5944930cef6SMatthias Ringwald### ------------------------------------------------------------------------ ###
595