1 /****************************************************************************** 2 * 3 * Copyright 2021 Google, Inc. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at: 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 * 17 ******************************************************************************/ 18 19 #include "tns.h" 20 #include "tables.h" 21 22 23 /* ---------------------------------------------------------------------------- 24 * Filter Coefficients 25 * -------------------------------------------------------------------------- */ 26 27 /** 28 * Resolve LPC Weighting indication according bitrate 29 * dt, nbytes Duration and size of the frame 30 * return True when LPC Weighting enabled 31 */ 32 static bool resolve_lpc_weighting(enum lc3_dt dt, int nbytes) 33 { 34 return nbytes < (dt == LC3_DT_7M5 ? 360/8 : 480/8); 35 } 36 37 /** 38 * Return dot product of 2 vectors 39 * a, b, n The 2 vectors of size `n` 40 * return sum( a[i] * b[i] ), i = [0..n-1] 41 */ 42 static inline float dot(const float *a, const float *b, int n) 43 { 44 float v = 0; 45 46 while (n--) 47 v += *(a++) * *(b++); 48 49 return v; 50 } 51 52 /** 53 * LPC Coefficients 54 * dt, bw Duration and bandwidth of the frame 55 * x Spectral coefficients 56 * gain, a Output the prediction gains and LPC coefficients 57 */ 58 static void compute_lpc_coeffs(enum lc3_dt dt, enum lc3_bandwidth bw, 59 const float *x, float *gain, float (*a)[9]) 60 { 61 static const int sub_7m5_nb[] = { 9, 26, 43, 60 }; 62 static const int sub_7m5_wb[] = { 9, 46, 83, 120 }; 63 static const int sub_7m5_sswb[] = { 9, 66, 123, 180 }; 64 static const int sub_7m5_swb[] = { 9, 46, 82, 120, 159, 200, 240 }; 65 static const int sub_7m5_fb[] = { 9, 56, 103, 150, 200, 250, 300 }; 66 67 static const int sub_10m_nb[] = { 12, 34, 57, 80 }; 68 static const int sub_10m_wb[] = { 12, 61, 110, 160 }; 69 static const int sub_10m_sswb[] = { 12, 88, 164, 240 }; 70 static const int sub_10m_swb[] = { 12, 61, 110, 160, 213, 266, 320 }; 71 static const int sub_10m_fb[] = { 12, 74, 137, 200, 266, 333, 400 }; 72 73 /* --- Normalized autocorrelation --- */ 74 75 static const float lag_window[] = { 76 1.00000000e+00, 9.98028026e-01, 9.92135406e-01, 9.82391584e-01, 77 9.68910791e-01, 9.51849807e-01, 9.31404933e-01, 9.07808230e-01, 78 8.81323137e-01 79 }; 80 81 const int *sub = (const int * const [LC3_NUM_DT][LC3_NUM_SRATE]){ 82 { sub_7m5_nb, sub_7m5_wb, sub_7m5_sswb, sub_7m5_swb, sub_7m5_fb }, 83 { sub_10m_nb, sub_10m_wb, sub_10m_sswb, sub_10m_swb, sub_10m_fb }, 84 }[dt][bw]; 85 86 int nfilters = 1 + (bw >= LC3_BANDWIDTH_SWB); 87 88 const float *xs, *xe = x + *sub; 89 float r[2][9]; 90 91 for (int f = 0; f < nfilters; f++) { 92 float c[9][3]; 93 94 for (int s = 0; s < 3; s++) { 95 xs = xe, xe = x + *(++sub); 96 97 for (int k = 0; k < 9; k++) 98 c[k][s] = dot(xs, xs + k, (xe - xs) - k); 99 } 100 101 float e0 = c[0][0], e1 = c[0][1], e2 = c[0][2]; 102 103 r[f][0] = 3; 104 for (int k = 1; k < 9; k++) 105 r[f][k] = e0 == 0 || e1 == 0 || e2 == 0 ? 0 : 106 (c[k][0]/e0 + c[k][1]/e1 + c[k][2]/e2) * lag_window[k]; 107 } 108 109 /* --- Levinson-Durbin recursion --- */ 110 111 for (int f = 0; f < nfilters; f++) { 112 float *a0 = a[f], a1[9]; 113 float err = r[f][0], rc; 114 115 gain[f] = err; 116 117 a0[0] = 1; 118 for (int k = 1; k < 9; ) { 119 120 rc = -r[f][k]; 121 for (int i = 1; i < k; i++) 122 rc -= a0[i] * r[f][k-i]; 123 124 rc /= err; 125 err *= 1 - rc * rc; 126 127 for (int i = 1; i < k; i++) 128 a1[i] = a0[i] + rc * a0[k-i]; 129 a1[k++] = rc; 130 131 rc = -r[f][k]; 132 for (int i = 1; i < k; i++) 133 rc -= a1[i] * r[f][k-i]; 134 135 rc /= err; 136 err *= 1 - rc * rc; 137 138 for (int i = 1; i < k; i++) 139 a0[i] = a1[i] + rc * a1[k-i]; 140 a0[k++] = rc; 141 } 142 143 gain[f] /= err; 144 } 145 } 146 147 /** 148 * LPC Weighting 149 * gain, a Prediction gain and LPC coefficients, weighted as output 150 */ 151 static void lpc_weighting(float pred_gain, float *a) 152 { 153 float gamma = 1. - (1. - 0.85) * (2. - pred_gain) / (2. - 1.5), g = 1; 154 for (int i = 1; i < 9; i++) 155 a[i] *= (g *= gamma); 156 } 157 158 /** 159 * LPC reflection 160 * a LPC coefficients 161 * rc Output refelection coefficients 162 */ 163 static void lpc_reflection(const float *a, float *rc) 164 { 165 float e, b[2][7], *b0, *b1; 166 167 rc[7] = a[1+7]; 168 e = 1 - rc[7] * rc[7]; 169 170 b1 = b[1]; 171 for (int i = 0; i < 7; i++) 172 b1[i] = (a[1+i] - rc[7] * a[7-i]) / e; 173 174 for (int k = 6; k > 0; k--) { 175 b0 = b1, b1 = b[k & 1]; 176 177 rc[k] = b0[k]; 178 e = 1 - rc[k] * rc[k]; 179 180 for (int i = 0; i < k; i++) 181 b1[i] = (b0[i] - rc[k] * b0[k-1-i]) / e; 182 } 183 184 rc[0] = b1[0]; 185 } 186 187 /** 188 * Quantization of RC coefficients 189 * rc Refelection coefficients 190 * rc_order Return order of coefficients 191 * rc_i Return quantized coefficients 192 */ 193 static void quantize_rc(const float *rc, int *rc_order, int *rc_q) 194 { 195 /* Quantization table, sin(delta * (i + 0.5)), delta = Pi / 17 */ 196 197 static float q_thr[] = { 198 9.22683595e-02, 2.73662990e-01, 4.45738356e-01, 6.02634636e-01, 199 7.39008917e-01, 8.50217136e-01, 9.32472229e-01, 9.82973100e-01 200 }; 201 202 *rc_order = 8; 203 204 for (int i = 0; i < 8; i++) { 205 float rc_m = fabsf(rc[i]); 206 207 rc_q[i] = 4 * (rc_m >= q_thr[4]); 208 for (int j = 0; j < 4 && rc_m >= q_thr[rc_q[i]]; j++, rc_q[i]++); 209 210 if (rc[i] < 0) 211 rc_q[i] = -rc_q[i]; 212 213 *rc_order = rc_q[i] != 0 ? 8 : *rc_order - 1; 214 } 215 } 216 217 /** 218 * Unquantization of RC coefficients 219 * rc_q Quantized coefficients 220 * rc_order Order of coefficients 221 * rc Return refelection coefficients 222 */ 223 static void unquantize_rc(const int *rc_q, int rc_order, float rc[8]) 224 { 225 /* Quantization table, sin(delta * i), delta = Pi / 17 */ 226 227 static float q_inv[] = { 228 0.00000000e+00, 1.83749517e-01, 3.61241664e-01, 5.26432173e-01, 229 6.73695641e-01, 7.98017215e-01, 8.95163302e-01, 9.61825645e-01, 230 9.95734176e-01 231 }; 232 233 int i; 234 235 for (i = 0; i < rc_order; i++) { 236 float rc_m = q_inv[LC3_ABS(rc_q[i])]; 237 rc[i] = rc_q[i] < 0 ? -rc_m : rc_m; 238 } 239 } 240 241 242 /* ---------------------------------------------------------------------------- 243 * Filtering 244 * -------------------------------------------------------------------------- */ 245 246 /** 247 * Forward filtering 248 * dt, bw Duration and bandwidth of the frame 249 * rc_order, rc Order of coefficients, and coefficients 250 * x Spectral coefficients, filtered as output 251 */ 252 static void forward_filtering( 253 enum lc3_dt dt, enum lc3_bandwidth bw, 254 const int rc_order[2], const float rc[2][8], float *x) 255 { 256 int nfilters = 1 + (bw >= LC3_BANDWIDTH_SWB); 257 int nf = LC3_NE(dt, bw) >> (nfilters - 1); 258 int i0, ie = 3*(3 + dt); 259 260 float s[8] = { 0 }; 261 262 for (int f = 0; f < nfilters; f++) { 263 264 i0 = ie; 265 ie = nf * (1 + f); 266 267 if (!rc_order[f]) 268 continue; 269 270 for (int i = i0; i < ie; i++) { 271 float xi = x[i]; 272 float s0, s1 = xi; 273 274 for (int k = 0; k < rc_order[f]; k++) { 275 s0 = s[k]; 276 s[k] = s1; 277 278 s1 = rc[f][k] * xi + s0; 279 xi += rc[f][k] * s0; 280 } 281 282 x[i] = xi; 283 } 284 } 285 } 286 287 /** 288 * Inverse filtering 289 * dt, bw Duration and bandwidth of the frame 290 * rc_order, rc Order of coefficients, and unquantized coefficients 291 * x Spectral coefficients, filtered as output 292 */ 293 static void inverse_filtering( 294 enum lc3_dt dt, enum lc3_bandwidth bw, 295 const int rc_order[2], const float rc[2][8], float *x) 296 { 297 int nfilters = 1 + (bw >= LC3_BANDWIDTH_SWB); 298 int nf = LC3_NE(dt, bw) >> (nfilters - 1); 299 int i0, ie = 3*(3 + dt); 300 301 float s[8] = { 0 }; 302 303 for (int f = 0; f < nfilters; f++) { 304 305 i0 = ie; 306 ie = nf * (1 + f); 307 308 if (!rc_order[f]) 309 continue; 310 311 for (int i = i0; i < ie; i++) { 312 float xi = x[i]; 313 314 xi -= s[7] * rc[f][7]; 315 for (int k = 6; k >= 0; k--) { 316 xi -= s[k] * rc[f][k]; 317 s[k+1] = s[k] + rc[f][k] * xi; 318 } 319 s[0] = xi; 320 x[i] = xi; 321 } 322 323 for (int k = 7; k >= rc_order[f]; k--) 324 s[k] = 0; 325 } 326 } 327 328 329 /* ---------------------------------------------------------------------------- 330 * Interface 331 * -------------------------------------------------------------------------- */ 332 333 /** 334 * TNS analysis 335 */ 336 void lc3_tns_analyze(enum lc3_dt dt, enum lc3_bandwidth bw, 337 bool nn_flag, int nbytes, struct lc3_tns_data *data, float *x) 338 { 339 /* Processing steps : 340 * - Determine the LPC (Linear Predictive Coding) Coefficients 341 * - Check is the filtering is disabled 342 * - The coefficients are weighted on low bitrates and predicition gain 343 * - Convert to reflection coefficients and quantize 344 * - Finally filter the spectral coefficients */ 345 346 float pred_gain[2], a[2][9]; 347 float rc[2][8]; 348 349 data->nfilters = 1 + (bw >= LC3_BANDWIDTH_SWB); 350 data->lpc_weighting = resolve_lpc_weighting(dt, nbytes); 351 352 compute_lpc_coeffs(dt, bw, x, pred_gain, a); 353 354 for (int f = 0; f < data->nfilters; f++) { 355 356 data->rc_order[f] = 0; 357 if (nn_flag || pred_gain[f] <= 1.5) 358 continue; 359 360 if (data->lpc_weighting && pred_gain[f] < 2) 361 lpc_weighting(pred_gain[f], a[f]); 362 363 lpc_reflection(a[f], rc[f]); 364 365 quantize_rc(rc[f], &data->rc_order[f], data->rc[f]); 366 unquantize_rc(data->rc[f], data->rc_order[f], rc[f]); 367 } 368 369 forward_filtering(dt, bw, data->rc_order, rc, x); 370 } 371 372 /** 373 * TNS synthesis 374 */ 375 void lc3_tns_synthesize(enum lc3_dt dt, enum lc3_bandwidth bw, 376 const struct lc3_tns_data *data, float *x) 377 { 378 float rc[2][8] = { }; 379 380 for (int f = 0; f < data->nfilters; f++) 381 if (data->rc_order[f]) 382 unquantize_rc(data->rc[f], data->rc_order[f], rc[f]); 383 384 inverse_filtering(dt, bw, data->rc_order, rc, x); 385 } 386 387 /** 388 * Bit consumption of bitstream data 389 */ 390 int lc3_tns_get_nbits(const struct lc3_tns_data *data) 391 { 392 int nbits = 0; 393 394 for (int f = 0; f < data->nfilters; f++) { 395 396 int nbits_2048 = 2048; 397 int rc_order = data->rc_order[f]; 398 399 nbits_2048 += rc_order > 0 ? lc3_tns_order_bits 400 [data->lpc_weighting][rc_order-1] : 0; 401 402 for (int i = 0; i < rc_order; i++) 403 nbits_2048 += lc3_tns_coeffs_bits[i][8 + data->rc[f][i]]; 404 405 nbits += (nbits_2048 + (1 << 11) - 1) >> 11; 406 } 407 408 return nbits; 409 } 410 411 /** 412 * Put bitstream data 413 */ 414 void lc3_tns_put_data(lc3_bits_t *bits, const struct lc3_tns_data *data) 415 { 416 for (int f = 0; f < data->nfilters; f++) { 417 int rc_order = data->rc_order[f]; 418 419 lc3_put_bits(bits, rc_order > 0, 1); 420 if (rc_order <= 0) 421 continue; 422 423 lc3_put_symbol(bits, 424 lc3_tns_order_models + data->lpc_weighting, rc_order-1); 425 426 for (int i = 0; i < rc_order; i++) 427 lc3_put_symbol(bits, 428 lc3_tns_coeffs_models + i, 8 + data->rc[f][i]); 429 } 430 } 431 432 /** 433 * Get bitstream data 434 */ 435 void lc3_tns_get_data(lc3_bits_t *bits, 436 enum lc3_dt dt, enum lc3_bandwidth bw, int nbytes, lc3_tns_data_t *data) 437 { 438 data->nfilters = 1 + (bw >= LC3_BANDWIDTH_SWB); 439 data->lpc_weighting = resolve_lpc_weighting(dt, nbytes); 440 441 for (int f = 0; f < data->nfilters; f++) { 442 443 data->rc_order[f] = lc3_get_bit(bits); 444 if (!data->rc_order[f]) 445 continue; 446 447 data->rc_order[f] += lc3_get_symbol(bits, 448 lc3_tns_order_models + data->lpc_weighting); 449 450 for (int i = 0; i < data->rc_order[f]; i++) 451 data->rc[f][i] = (int)lc3_get_symbol(bits, 452 lc3_tns_coeffs_models + i) - 8; 453 } 454 } 455