xref: /btstack/3rd-party/lc3-google/src/ltpf.c (revision 2281ada7921e55288a45180ce35a34d9af2af65c)
1 /******************************************************************************
2  *
3  *  Copyright 2021 Google, Inc.
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 #include "ltpf.h"
20 #include "tables.h"
21 
22 
23 /* ----------------------------------------------------------------------------
24  *  Resampling
25  * -------------------------------------------------------------------------- */
26 
27 /**
28  * Resample to 12.8 KHz (cf. 3.3.9.3-4) Template
29  * sr              Samplerate source of the frame
30  * hp50            State of the High-Pass 50 Hz filter
31  * x               [-d..-1] Previous, [0..ns-1] Current samples
32  * y, n            [0..n-1] Output `n` processed samples
33  *
34  * The number of previous samples `d` accessed on `x` is :
35  *   d: { 10, 20, 30, 40, 60 } - 1 for samplerates from 8KHz to 48KHz
36  */
37 static inline void resample_12k8_template(const enum lc3_srate sr,
38     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
39 {
40     /* --- Parameters  ---
41      * p: Resampling factor, from 4 to 24
42      * w: Half width of polyphase filter
43      *
44      * bn, an: High-Pass Biquad coefficients,
45      * with `bn` support of rescaling resampling factor.
46      * Note that it's an High-Pass filter, so we have `b0 = b2`,
47      * in the following steps we use `b0` as `b2`. */
48 
49     const int p = 192 / LC3_SRATE_KHZ(sr);
50     const int w = 5 * LC3_SRATE_KHZ(sr) / 8;
51 
52     const int b_scale = p >> (sr == LC3_SRATE_8K);
53     const float a1 = -1.965293373, b1 = -1.965589417 * b_scale;
54     const float a2 =  0.965885461, b2 =  0.982794708 * b_scale;
55 
56     /* --- Resampling ---
57      * The value `15*8 * n` is divisible by all resampling factors `p`,
58      * integer and fractionnal position can be determined at compilation
59      * time while unrolling the loops by 8 samples.
60      * The biquad filter implementation chosen in the `Direct Form 2`. */
61 
62     const float *h = lc3_ltpf_h12k8 + 119;
63     x -= w;
64 
65     for (int i = 0; i < n; i += 8, x += 120/p)
66         for (int j = 0; j < 15*8; j += 15) {
67             float un, yn;
68             int e, f, k;
69 
70             e = j / p, f = j % p;
71             for (un = 0, k = 1-w; k <= w; k++)
72                 un += x[e+k] * h[k*p - f];
73 
74             yn = b2 * un + hp50->s1;
75             hp50->s1 = b1 * un - a1 * yn + hp50->s2;
76             hp50->s2 = b2 * un - a2 * yn;
77             *(y++) = yn;
78         }
79 }
80 
81 /**
82  * LTPF Resample to 12.8 KHz implementations for each samplerates
83  */
84 
85 static void resample_8k_12k8(
86     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
87 {
88     resample_12k8_template(LC3_SRATE_8K, hp50, x, y, n);
89 }
90 
91 static void resample_16k_12k8(
92     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
93 {
94     resample_12k8_template(LC3_SRATE_16K, hp50, x, y, n);
95 }
96 
97 static void resample_24k_12k8(
98     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
99 {
100     resample_12k8_template(LC3_SRATE_24K, hp50, x, y, n);
101 }
102 
103 static void resample_32k_12k8(
104     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
105 {
106     resample_12k8_template(LC3_SRATE_32K, hp50, x, y, n);
107 }
108 
109 static void resample_48k_12k8(
110     struct lc3_ltpf_hp50_state *hp50, const float *x, float *y, int n)
111 {
112     resample_12k8_template(LC3_SRATE_48K, hp50, x, y, n);
113 }
114 
115 static void (* const resample_12k8[])
116     (struct lc3_ltpf_hp50_state *, const float *, float *, int ) =
117 {
118     [LC3_SRATE_8K ] = resample_8k_12k8,
119     [LC3_SRATE_16K] = resample_16k_12k8,
120     [LC3_SRATE_24K] = resample_24k_12k8,
121     [LC3_SRATE_32K] = resample_32k_12k8,
122     [LC3_SRATE_48K] = resample_48k_12k8,
123 };
124 
125 /**
126  * Resample to 6.4 KHz (cf. 3.3.9.3-4)
127  * x               [-3..-1] Previous, [0..n-1] Current samples
128  * y, n            [0..n-1] Output `n` processed samples
129  */
130 static void resample_6k4(const float *x, float *y, int n)
131 {
132     static const float h[] = { 0.2819382921, 0.2353512128, 0.1236796411 };
133     float xn2 = x[-3], xn1 = x[-2], x0 = x[-1], x1, x2;
134 
135     for (const float *ye = y + n; y < ye; xn2 = x0, xn1 = x1, x0 = x2) {
136         x1 = *(x++); x2 = *(x++);
137 
138         *(y++) = x0 * h[0] + (xn1 + x1) * h[1] + (xn2 + x2) * h[2];
139     }
140 }
141 
142 
143 /* ----------------------------------------------------------------------------
144  *  Analysis
145  * -------------------------------------------------------------------------- */
146 
147 /**
148  * Return dot product of 2 vectors
149  * a, b, n         The 2 vectors of size `n`
150  * return          sum( a[i] * b[i] ), i = [0..n-1]
151  */
152 static inline float dot(const float *a, const float *b, int n)
153 {
154     float v = 0;
155 
156     while (n--)
157         v += *(a++) * *(b++);
158 
159     return v;
160 }
161 
162 /**
163  * Return vector of correlations
164  * a, b, n         The 2 vector of size `n` to correlate
165  * y, nc           Output the correlation vector of size `nc`
166  *
167  * The size `n` of input vectors must be multiple of 16
168  */
169 static void correlate(
170     const float *a, const float *b, int n, float *y, int nc)
171 {
172     for (const float *ye = y + nc; y < ye; )
173         *(y++) = dot(a, b--, n);
174 }
175 
176 /**
177  * Search the maximum value and returns its argument
178  * x, n            The input vector of size `n`
179  * x_max           Return the maximum value
180  * return          Return the argument of the maximum
181  */
182 static int argmax(const float *x, int n, float *x_max)
183 {
184     int arg = 0;
185 
186     *x_max = x[arg = 0];
187     for (int i = 1; i < n; i++)
188         if (*x_max < x[i])
189             *x_max = x[arg = i];
190 
191     return arg;
192 }
193 
194 /**
195  * Search the maximum weithed value and returns its argument
196  * x, n            The input vector of size `n`
197  * w_incr          Increment of the weight
198  * x_max, xw_max   Return the maximum not weighted value
199  * return          Return the argument of the weigthed maximum
200  */
201 static int argmax_weighted(
202     const float *x, int n, float w_incr, float *x_max)
203 {
204     int arg;
205 
206     float xw_max = (*x_max = x[arg = 0]);
207     float w = 1 + w_incr;
208 
209     for (int i = 1; i < n; i++, w += w_incr)
210         if (xw_max < x[i] * w)
211             xw_max = (*x_max = x[arg = i]) * w;
212 
213     return arg;
214 }
215 
216 /**
217  * Interpolate from pitch detected value (3.3.9.8)
218  * x, n            [-2..-1] Previous, [0..n] Current input
219  * d               The phase of interpolation (0 to 3)
220  * return          The interpolated vector
221  *
222  * The size `n` of vectors must be multiple of 4
223  */
224 static void interpolate(const float *x, int n, int d, float *y)
225 {
226     static const float h4[][8] = {
227         { 2.09880463e-01, 5.83527575e-01, 2.09880463e-01                 },
228         { 1.06999186e-01, 5.50075002e-01, 3.35690625e-01, 6.69885837e-03 },
229         { 3.96711478e-02, 4.59220930e-01, 4.59220930e-01, 3.96711478e-02 },
230         { 6.69885837e-03, 3.35690625e-01, 5.50075002e-01, 1.06999186e-01 },
231     };
232 
233     const float *h = h4[d];
234     float x3 = x[-2], x2 = x[-1], x1, x0;
235 
236     x1 = (*x++);
237     for (const float *ye = y + n; y < ye; ) {
238         *(y++) = (x0 = *(x++)) * h[0] + x1 * h[1] + x2 * h[2] + x3 * h[3];
239         *(y++) = (x3 = *(x++)) * h[0] + x0 * h[1] + x1 * h[2] + x2 * h[3];
240         *(y++) = (x2 = *(x++)) * h[0] + x3 * h[1] + x0 * h[2] + x1 * h[3];
241         *(y++) = (x1 = *(x++)) * h[0] + x2 * h[1] + x3 * h[2] + x0 * h[3];
242     }
243 }
244 
245 /**
246  * Interpolate autocorrelation (3.3.9.7)
247  * x               [-4..-1] Previous, [0..4] Current input
248  * d               The phase of interpolation (-3 to 3)
249  * return          The interpolated value
250  */
251 static float interpolate_4(const float *x, int d)
252 {
253     static const float h4[][8] = {
254         {  1.53572770e-02, -4.72963246e-02,  8.35788573e-02,  8.98638285e-01,
255            8.35788573e-02, -4.72963246e-02,  1.53572770e-02,                 },
256         {  2.74547165e-03,  4.59833449e-03, -7.54404636e-02,  8.17488686e-01,
257            3.30182571e-01, -1.05835916e-01,  2.86823405e-02, -2.87456116e-03 },
258         { -3.00125103e-03,  2.95038503e-02, -1.30305021e-01,  6.03297008e-01,
259            6.03297008e-01, -1.30305021e-01,  2.95038503e-02, -3.00125103e-03 },
260         { -2.87456116e-03,  2.86823405e-02, -1.05835916e-01,  3.30182571e-01,
261            8.17488686e-01, -7.54404636e-02,  4.59833449e-03,  2.74547165e-03 },
262     };
263 
264     const float *h = h4[(4+d) % 4];
265 
266     float y = d < 0 ? x[-4] * *(h++) :
267               d > 0 ? x[ 4] * *(h+7) : 0;
268 
269     y += x[-3] * h[0] + x[-2] * h[1] + x[-1] * h[2] + x[0] * h[3] +
270          x[ 1] * h[4] + x[ 2] * h[5] + x[ 3] * h[6];
271 
272     return y;
273 }
274 
275 /**
276  * Pitch detection algorithm (3.3.9.5-6)
277  * ltpf            Context of analysis
278  * x, n            [-114..-17] Previous, [0..n-1] Current 6.4KHz samples
279  * tc              Return the pitch-lag estimation
280  * return          True when pitch present
281  */
282 static bool detect_pitch(
283     struct lc3_ltpf_analysis *ltpf, const float *x, int n, int *tc)
284 {
285     float rm1, rm2;
286     float r[98];
287 
288     const int r0 = 17, nr = 98;
289     int k0 = LC3_MAX(   0, ltpf->tc-4);
290     int nk = LC3_MIN(nr-1, ltpf->tc+4) - k0 + 1;
291 
292     correlate(x, x - r0, n, r, nr);
293 
294     int t1 = argmax_weighted(r, nr, -.5/(nr-1), &rm1);
295     int t2 = k0 + argmax(r + k0, nk, &rm2);
296 
297     const float *x1 = x - (r0 + t1);
298     const float *x2 = x - (r0 + t2);
299 
300     float nc1 = rm1 <= 0 ? 0 :
301         rm1 / sqrtf(dot(x, x, n) * dot(x1, x1, n));
302 
303     float nc2 = rm2 <= 0 ? 0 :
304         rm2 / sqrtf(dot(x, x, n) * dot(x2, x2, n));
305 
306     int t1sel = nc2 <= 0.85 * nc1;
307     ltpf->tc = (t1sel ? t1 : t2);
308 
309     *tc = r0 + ltpf->tc;
310     return (t1sel ? nc1 : nc2) > 0.6;
311 }
312 
313 /**
314  * Pitch-lag parameter (3.3.9.7)
315  * x, n            [-232..-28] Previous, [0..n-1] Current 12.8KHz samples
316  * tc              Pitch-lag estimation
317  * pitch           The pitch value, in fixed .4
318  * return          The bitstream pitch index value
319  */
320 static int refine_pitch(const float *x, int n, int tc, int *pitch)
321 {
322     float r[17], rm;
323     int e, f;
324 
325     int r0 = LC3_MAX( 32, 2*tc - 4);
326     int nr = LC3_MIN(228, 2*tc + 4) - r0 + 1;
327 
328     correlate(x, x - (r0 - 4), n, r, nr + 8);
329 
330     e = r0 + argmax(r + 4, nr, &rm);
331     const float *re = r + (e - (r0 - 4));
332 
333     float dm = interpolate_4(re, f = 0);
334     for (int i = 1; i <= 3; i++) {
335         float d;
336 
337         if (e >= 127 && ((i & 1) | (e >= 157)))
338             continue;
339 
340         if ((d = interpolate_4(re, i)) > dm)
341             dm = d, f = i;
342 
343         if (e > 32 && (d = interpolate_4(re, -i)) > dm)
344             dm = d, f = -i;
345     }
346 
347     e -=   (f < 0);
348     f += 4*(f < 0);
349 
350     *pitch = 4*e + f;
351     return e < 127 ? 4*e +  f       - 128 :
352            e < 157 ? 2*e + (f >> 1) + 126 : e + 283;
353 }
354 
355 /**
356  * LTPF Analysis
357  */
358 bool lc3_ltpf_analyse(enum lc3_dt dt, enum lc3_srate sr,
359     struct lc3_ltpf_analysis *ltpf, const float *x, struct lc3_ltpf_data *data)
360 {
361     /* --- Resampling to 12.8 KHz --- */
362 
363     int z_12k8 = sizeof(ltpf->x_12k8) / sizeof(float);
364     int n_12k8 = dt == LC3_DT_7M5 ? 96 : 128;
365 
366     memmove(ltpf->x_12k8, ltpf->x_12k8 + n_12k8,
367         (z_12k8 - n_12k8) * sizeof(float));
368 
369     float *x_12k8 = ltpf->x_12k8 + (z_12k8 - n_12k8);
370     resample_12k8[sr](&ltpf->hp50, x, x_12k8, n_12k8);
371 
372     x_12k8 -= (dt == LC3_DT_7M5 ? 44 :  24);
373 
374     /* --- Resampling to 6.4 KHz --- */
375 
376     int z_6k4 = sizeof(ltpf->x_6k4) / sizeof(float);
377     int n_6k4 = n_12k8 >> 1;
378 
379     memmove(ltpf->x_6k4, ltpf->x_6k4 + n_6k4,
380         (z_6k4 - n_6k4) * sizeof(float));
381 
382     float *x_6k4 = ltpf->x_6k4 + (z_6k4 - n_6k4);
383     resample_6k4(x_12k8, x_6k4, n_6k4);
384 
385     /* --- Pitch detection --- */
386 
387     int tc, pitch = 0;
388     float nc = 0;
389 
390     bool pitch_present = detect_pitch(ltpf, x_6k4, n_6k4, &tc);
391 
392     if (pitch_present) {
393         float u[n_12k8], v[n_12k8];
394 
395         data->pitch_index = refine_pitch(x_12k8, n_12k8, tc, &pitch);
396 
397         interpolate(x_12k8, n_12k8, 0, u);
398         interpolate(x_12k8 - (pitch >> 2), n_12k8, pitch & 3, v);
399 
400         nc = dot(u, v, n_12k8) / sqrtf(dot(u, u, n_12k8) * dot(v, v, n_12k8));
401     }
402 
403     /* --- Activation --- */
404 
405      if (ltpf->active) {
406         int pitch_diff =
407             LC3_MAX(pitch, ltpf->pitch) - LC3_MIN(pitch, ltpf->pitch);
408         float nc_diff = nc - ltpf->nc[0];
409 
410         data->active = pitch_present &&
411             ((nc > 0.9) || (nc > 0.84 && pitch_diff < 8 && nc_diff > -0.1));
412 
413      } else {
414          data->active = pitch_present &&
415             ( (dt == LC3_DT_10M || ltpf->nc[1] > 0.94) &&
416               (ltpf->nc[0] > 0.94 && nc > 0.94) );
417      }
418 
419      ltpf->active = data->active;
420      ltpf->pitch = pitch;
421      ltpf->nc[1] = ltpf->nc[0];
422      ltpf->nc[0] = nc;
423 
424      return pitch_present;
425 }
426 
427 
428 /* ----------------------------------------------------------------------------
429  *  Synthesis
430  * -------------------------------------------------------------------------- */
431 
432 /**
433  * Synthesis filter template
434  * ym              [-w/2..0] Previous, [0..w-1] Current pitch samples
435  * xm              w-1 previous input samples
436  * x, n            Current samples as input, filtered as output
437  * c, w            Coefficients by pair (num, den), and count of pairs
438  * fade            Fading mode of filter  -1: Out  1: In  0: None
439  */
440 static inline void synthesize_template(const float *ym, const float *xm,
441     float *x, int n, const float (*c)[2], const int w, int fade)
442 {
443     float g = (float)(fade <= 0);
444     float g_incr = (float)((fade > 0) - (fade < 0)) / n;
445     float u[w];
446     int i;
447 
448     ym -= (w >> 1);
449 
450     /* --- Load previous samples --- */
451 
452     for (i = 1-w; i < 0; i++) {
453         float xi = *(xm++), yi = *(ym++);
454 
455         u[i + w-1] = 0;
456         for (int k = w-1; k+i >= 0; k--)
457             u[i+k] += xi * c[k][0] - yi * c[k][1];
458     }
459 
460     u[w-1] = 0;
461 
462     /* --- Process --- */
463 
464     for (; i < n; i += w) {
465 
466         for (int j = 0; j < w; j++, g += g_incr) {
467             float xi = *x, yi = *(ym++);
468 
469             for (int k = w-1; k >= 0; k--)
470                 u[(j+k)%w] += xi * c[k][0] - yi * c[k][1];
471 
472             *(x++) = xi - g * u[j];
473             u[j] = 0;
474         }
475     }
476 }
477 
478 /**
479  * Synthesis filter for each samplerates (width of filter)
480  */
481 
482 static void synthesize_4(const float *ym, const float *xm,
483     float *x, int n, const float (*c)[2], int fade)
484 {
485     synthesize_template(ym, xm, x, n, c, 4, fade);
486 }
487 
488 static void synthesize_6(const float *ym, const float *xm,
489     float *x, int n, const float (*c)[2], int fade)
490 {
491     synthesize_template(ym, xm, x, n, c, 6, fade);
492 }
493 
494 static void synthesize_8(const float *ym, const float *xm,
495     float *x, int n, const float (*c)[2], int fade)
496 {
497     synthesize_template(ym, xm, x, n, c, 8, fade);
498 }
499 
500 static void synthesize_12(const float *ym, const float *xm,
501     float *x, int n, const float (*c)[2], int fade)
502 {
503     synthesize_template(ym, xm, x, n, c, 12, fade);
504 }
505 
506 static void (* const synthesize[])(
507     const float *, const float *, float *, int, const float (*)[2], int) =
508 {
509     [LC3_SRATE_8K ] = synthesize_4,
510     [LC3_SRATE_16K] = synthesize_4,
511     [LC3_SRATE_24K] = synthesize_6,
512     [LC3_SRATE_32K] = synthesize_8,
513     [LC3_SRATE_48K] = synthesize_12,
514 };
515 
516 /**
517  * LTPF Synthesis
518  */
519 void lc3_ltpf_synthesize(enum lc3_dt dt, enum lc3_srate sr,
520     int nbytes, struct lc3_ltpf_synthesis *ltpf,
521     const struct lc3_ltpf_data *data, float *x)
522 {
523     int dt_us = LC3_DT_US(dt);
524 
525     /* --- Filter parameters --- */
526 
527     int p_idx = data ? data->pitch_index : 0;
528     int pitch =
529         p_idx >= 440 ? (((p_idx     ) - 283) << 2)  :
530         p_idx >= 380 ? (((p_idx >> 1) -  63) << 2) + (((p_idx  & 1)) << 1) :
531                        (((p_idx >> 2) +  32) << 2) + (((p_idx  & 3)) << 0)  ;
532 
533     pitch = (pitch * LC3_SRATE_KHZ(sr) * 10 + 64) / 128;
534 
535     int nbits = (nbytes*8 * 10000 + (dt_us/2)) / dt_us;
536     int g_idx = LC3_MAX(nbits / 80, 3 + (int)sr) - (3 + sr);
537     bool active = data && data->active && g_idx < 4;
538 
539     int w = LC3_MAX(4, LC3_SRATE_KHZ(sr) / 4);
540     float c[w][2];
541 
542     for (int i = 0; i < w; i++) {
543         float g = active ? 0.4f - 0.05f * g_idx : 0;
544 
545         c[i][0] = active ? 0.85f * g * lc3_ltpf_cnum[sr][g_idx][i] : 0;
546         c[i][1] = active ? g * lc3_ltpf_cden[sr][pitch & 3][i] : 0;
547     }
548 
549     /* --- Transition handling --- */
550 
551     int ns = LC3_NS(dt, sr);
552     int nt = ns / (4 - (dt == LC3_DT_7M5));
553     float xm[12];
554 
555     if (active)
556         memcpy(xm, x + nt-(w-1), (w-1) * sizeof(float));
557 
558     if (!ltpf->active && active)
559         synthesize[sr](x - pitch/4, ltpf->x, x, nt, c, 1);
560     else if (ltpf->active && !active)
561         synthesize[sr](x - ltpf->pitch/4, ltpf->x, x, nt, ltpf->c, -1);
562     else if (ltpf->active && active && ltpf->pitch == pitch)
563         synthesize[sr](x - pitch/4, ltpf->x, x, nt, c, 0);
564     else if (ltpf->active && active) {
565         synthesize[sr](x - ltpf->pitch/4, ltpf->x, x, nt, ltpf->c, -1);
566         synthesize[sr](x - pitch/4, x - (w-1), x, nt, c, 1);
567     }
568 
569     /* --- Remainder --- */
570 
571     memcpy(ltpf->x, x + ns-(w-1), (w-1) * sizeof(float));
572 
573     if (active)
574         synthesize[sr](x - pitch/4 + nt, xm, x + nt, ns-nt, c, 0);
575 
576     /* --- Update state --- */
577 
578     ltpf->active = active;
579     ltpf->pitch = pitch;
580     memcpy(ltpf->c, c, w * sizeof(ltpf->c[0]));
581 }
582 
583 
584 /* ----------------------------------------------------------------------------
585  *  Bitstream data
586  * -------------------------------------------------------------------------- */
587 
588 /**
589  * LTPF disable
590  */
591 void lc3_ltpf_disable(struct lc3_ltpf_data *data)
592 {
593     data->active = false;
594 }
595 
596 /**
597  * Return number of bits coding the bitstream data
598  */
599 int lc3_ltpf_get_nbits(bool pitch)
600 {
601     return 1 + 10 * pitch;
602 }
603 
604 /**
605  * Put bitstream data
606  */
607 void lc3_ltpf_put_data(lc3_bits_t *bits,
608     const struct lc3_ltpf_data *data)
609 {
610     lc3_put_bit(bits, data->active);
611     lc3_put_bits(bits, data->pitch_index, 9);
612 }
613 
614 /**
615  * Get bitstream data
616  */
617 void lc3_ltpf_get_data(lc3_bits_t *bits, struct lc3_ltpf_data *data)
618 {
619     data->active = lc3_get_bit(bits);
620     data->pitch_index = lc3_get_bits(bits, 9);
621 }
622