xref: /aosp_15_r20/external/zstd/lib/common/fse.h (revision 01826a4963a0d8a59bc3812d29bdf0fb76416722)
1*01826a49SYabin Cui /* ******************************************************************
2*01826a49SYabin Cui  * FSE : Finite State Entropy codec
3*01826a49SYabin Cui  * Public Prototypes declaration
4*01826a49SYabin Cui  * Copyright (c) Meta Platforms, Inc. and affiliates.
5*01826a49SYabin Cui  *
6*01826a49SYabin Cui  * You can contact the author at :
7*01826a49SYabin Cui  * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
8*01826a49SYabin Cui  *
9*01826a49SYabin Cui  * This source code is licensed under both the BSD-style license (found in the
10*01826a49SYabin Cui  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11*01826a49SYabin Cui  * in the COPYING file in the root directory of this source tree).
12*01826a49SYabin Cui  * You may select, at your option, one of the above-listed licenses.
13*01826a49SYabin Cui ****************************************************************** */
14*01826a49SYabin Cui 
15*01826a49SYabin Cui #if defined (__cplusplus)
16*01826a49SYabin Cui extern "C" {
17*01826a49SYabin Cui #endif
18*01826a49SYabin Cui 
19*01826a49SYabin Cui #ifndef FSE_H
20*01826a49SYabin Cui #define FSE_H
21*01826a49SYabin Cui 
22*01826a49SYabin Cui 
23*01826a49SYabin Cui /*-*****************************************
24*01826a49SYabin Cui *  Dependencies
25*01826a49SYabin Cui ******************************************/
26*01826a49SYabin Cui #include "zstd_deps.h"    /* size_t, ptrdiff_t */
27*01826a49SYabin Cui 
28*01826a49SYabin Cui 
29*01826a49SYabin Cui /*-*****************************************
30*01826a49SYabin Cui *  FSE_PUBLIC_API : control library symbols visibility
31*01826a49SYabin Cui ******************************************/
32*01826a49SYabin Cui #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
33*01826a49SYabin Cui #  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
34*01826a49SYabin Cui #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
35*01826a49SYabin Cui #  define FSE_PUBLIC_API __declspec(dllexport)
36*01826a49SYabin Cui #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
37*01826a49SYabin Cui #  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
38*01826a49SYabin Cui #else
39*01826a49SYabin Cui #  define FSE_PUBLIC_API
40*01826a49SYabin Cui #endif
41*01826a49SYabin Cui 
42*01826a49SYabin Cui /*------   Version   ------*/
43*01826a49SYabin Cui #define FSE_VERSION_MAJOR    0
44*01826a49SYabin Cui #define FSE_VERSION_MINOR    9
45*01826a49SYabin Cui #define FSE_VERSION_RELEASE  0
46*01826a49SYabin Cui 
47*01826a49SYabin Cui #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
48*01826a49SYabin Cui #define FSE_QUOTE(str) #str
49*01826a49SYabin Cui #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
50*01826a49SYabin Cui #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
51*01826a49SYabin Cui 
52*01826a49SYabin Cui #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
53*01826a49SYabin Cui FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /**< library version number; to be used when checking dll version */
54*01826a49SYabin Cui 
55*01826a49SYabin Cui 
56*01826a49SYabin Cui /*-*****************************************
57*01826a49SYabin Cui *  Tool functions
58*01826a49SYabin Cui ******************************************/
59*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
60*01826a49SYabin Cui 
61*01826a49SYabin Cui /* Error Management */
62*01826a49SYabin Cui FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
63*01826a49SYabin Cui FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
64*01826a49SYabin Cui 
65*01826a49SYabin Cui 
66*01826a49SYabin Cui /*-*****************************************
67*01826a49SYabin Cui *  FSE detailed API
68*01826a49SYabin Cui ******************************************/
69*01826a49SYabin Cui /*!
70*01826a49SYabin Cui FSE_compress() does the following:
71*01826a49SYabin Cui 1. count symbol occurrence from source[] into table count[] (see hist.h)
72*01826a49SYabin Cui 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
73*01826a49SYabin Cui 3. save normalized counters to memory buffer using writeNCount()
74*01826a49SYabin Cui 4. build encoding table 'CTable' from normalized counters
75*01826a49SYabin Cui 5. encode the data stream using encoding table 'CTable'
76*01826a49SYabin Cui 
77*01826a49SYabin Cui FSE_decompress() does the following:
78*01826a49SYabin Cui 1. read normalized counters with readNCount()
79*01826a49SYabin Cui 2. build decoding table 'DTable' from normalized counters
80*01826a49SYabin Cui 3. decode the data stream using decoding table 'DTable'
81*01826a49SYabin Cui 
82*01826a49SYabin Cui The following API allows targeting specific sub-functions for advanced tasks.
83*01826a49SYabin Cui For example, it's possible to compress several blocks using the same 'CTable',
84*01826a49SYabin Cui or to save and provide normalized distribution using external method.
85*01826a49SYabin Cui */
86*01826a49SYabin Cui 
87*01826a49SYabin Cui /* *** COMPRESSION *** */
88*01826a49SYabin Cui 
89*01826a49SYabin Cui /*! FSE_optimalTableLog():
90*01826a49SYabin Cui     dynamically downsize 'tableLog' when conditions are met.
91*01826a49SYabin Cui     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
92*01826a49SYabin Cui     @return : recommended tableLog (necessarily <= 'maxTableLog') */
93*01826a49SYabin Cui FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
94*01826a49SYabin Cui 
95*01826a49SYabin Cui /*! FSE_normalizeCount():
96*01826a49SYabin Cui     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
97*01826a49SYabin Cui     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
98*01826a49SYabin Cui     useLowProbCount is a boolean parameter which trades off compressed size for
99*01826a49SYabin Cui     faster header decoding. When it is set to 1, the compressed data will be slightly
100*01826a49SYabin Cui     smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
101*01826a49SYabin Cui     faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
102*01826a49SYabin Cui     is a good default, since header deserialization makes a big speed difference.
103*01826a49SYabin Cui     Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
104*01826a49SYabin Cui     @return : tableLog,
105*01826a49SYabin Cui               or an errorCode, which can be tested using FSE_isError() */
106*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
107*01826a49SYabin Cui                     const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
108*01826a49SYabin Cui 
109*01826a49SYabin Cui /*! FSE_NCountWriteBound():
110*01826a49SYabin Cui     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
111*01826a49SYabin Cui     Typically useful for allocation purpose. */
112*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
113*01826a49SYabin Cui 
114*01826a49SYabin Cui /*! FSE_writeNCount():
115*01826a49SYabin Cui     Compactly save 'normalizedCounter' into 'buffer'.
116*01826a49SYabin Cui     @return : size of the compressed table,
117*01826a49SYabin Cui               or an errorCode, which can be tested using FSE_isError(). */
118*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
119*01826a49SYabin Cui                                  const short* normalizedCounter,
120*01826a49SYabin Cui                                  unsigned maxSymbolValue, unsigned tableLog);
121*01826a49SYabin Cui 
122*01826a49SYabin Cui /*! Constructor and Destructor of FSE_CTable.
123*01826a49SYabin Cui     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
124*01826a49SYabin Cui typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
125*01826a49SYabin Cui 
126*01826a49SYabin Cui /*! FSE_buildCTable():
127*01826a49SYabin Cui     Builds `ct`, which must be already allocated, using FSE_createCTable().
128*01826a49SYabin Cui     @return : 0, or an errorCode, which can be tested using FSE_isError() */
129*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
130*01826a49SYabin Cui 
131*01826a49SYabin Cui /*! FSE_compress_usingCTable():
132*01826a49SYabin Cui     Compress `src` using `ct` into `dst` which must be already allocated.
133*01826a49SYabin Cui     @return : size of compressed data (<= `dstCapacity`),
134*01826a49SYabin Cui               or 0 if compressed data could not fit into `dst`,
135*01826a49SYabin Cui               or an errorCode, which can be tested using FSE_isError() */
136*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
137*01826a49SYabin Cui 
138*01826a49SYabin Cui /*!
139*01826a49SYabin Cui Tutorial :
140*01826a49SYabin Cui ----------
141*01826a49SYabin Cui The first step is to count all symbols. FSE_count() does this job very fast.
142*01826a49SYabin Cui Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
143*01826a49SYabin Cui 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
144*01826a49SYabin Cui maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
145*01826a49SYabin Cui FSE_count() will return the number of occurrence of the most frequent symbol.
146*01826a49SYabin Cui This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
147*01826a49SYabin Cui If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
148*01826a49SYabin Cui 
149*01826a49SYabin Cui The next step is to normalize the frequencies.
150*01826a49SYabin Cui FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
151*01826a49SYabin Cui It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
152*01826a49SYabin Cui You can use 'tableLog'==0 to mean "use default tableLog value".
153*01826a49SYabin Cui If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
154*01826a49SYabin Cui which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
155*01826a49SYabin Cui 
156*01826a49SYabin Cui The result of FSE_normalizeCount() will be saved into a table,
157*01826a49SYabin Cui called 'normalizedCounter', which is a table of signed short.
158*01826a49SYabin Cui 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
159*01826a49SYabin Cui The return value is tableLog if everything proceeded as expected.
160*01826a49SYabin Cui It is 0 if there is a single symbol within distribution.
161*01826a49SYabin Cui If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
162*01826a49SYabin Cui 
163*01826a49SYabin Cui 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
164*01826a49SYabin Cui 'buffer' must be already allocated.
165*01826a49SYabin Cui For guaranteed success, buffer size must be at least FSE_headerBound().
166*01826a49SYabin Cui The result of the function is the number of bytes written into 'buffer'.
167*01826a49SYabin Cui If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
168*01826a49SYabin Cui 
169*01826a49SYabin Cui 'normalizedCounter' can then be used to create the compression table 'CTable'.
170*01826a49SYabin Cui The space required by 'CTable' must be already allocated, using FSE_createCTable().
171*01826a49SYabin Cui You can then use FSE_buildCTable() to fill 'CTable'.
172*01826a49SYabin Cui If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
173*01826a49SYabin Cui 
174*01826a49SYabin Cui 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
175*01826a49SYabin Cui Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
176*01826a49SYabin Cui The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
177*01826a49SYabin Cui If it returns '0', compressed data could not fit into 'dst'.
178*01826a49SYabin Cui If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
179*01826a49SYabin Cui */
180*01826a49SYabin Cui 
181*01826a49SYabin Cui 
182*01826a49SYabin Cui /* *** DECOMPRESSION *** */
183*01826a49SYabin Cui 
184*01826a49SYabin Cui /*! FSE_readNCount():
185*01826a49SYabin Cui     Read compactly saved 'normalizedCounter' from 'rBuffer'.
186*01826a49SYabin Cui     @return : size read from 'rBuffer',
187*01826a49SYabin Cui               or an errorCode, which can be tested using FSE_isError().
188*01826a49SYabin Cui               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
189*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
190*01826a49SYabin Cui                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
191*01826a49SYabin Cui                            const void* rBuffer, size_t rBuffSize);
192*01826a49SYabin Cui 
193*01826a49SYabin Cui /*! FSE_readNCount_bmi2():
194*01826a49SYabin Cui  * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
195*01826a49SYabin Cui  */
196*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
197*01826a49SYabin Cui                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
198*01826a49SYabin Cui                            const void* rBuffer, size_t rBuffSize, int bmi2);
199*01826a49SYabin Cui 
200*01826a49SYabin Cui typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
201*01826a49SYabin Cui 
202*01826a49SYabin Cui /*!
203*01826a49SYabin Cui Tutorial :
204*01826a49SYabin Cui ----------
205*01826a49SYabin Cui (Note : these functions only decompress FSE-compressed blocks.
206*01826a49SYabin Cui  If block is uncompressed, use memcpy() instead
207*01826a49SYabin Cui  If block is a single repeated byte, use memset() instead )
208*01826a49SYabin Cui 
209*01826a49SYabin Cui The first step is to obtain the normalized frequencies of symbols.
210*01826a49SYabin Cui This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
211*01826a49SYabin Cui 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
212*01826a49SYabin Cui In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
213*01826a49SYabin Cui or size the table to handle worst case situations (typically 256).
214*01826a49SYabin Cui FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
215*01826a49SYabin Cui The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
216*01826a49SYabin Cui Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
217*01826a49SYabin Cui If there is an error, the function will return an error code, which can be tested using FSE_isError().
218*01826a49SYabin Cui 
219*01826a49SYabin Cui The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
220*01826a49SYabin Cui This is performed by the function FSE_buildDTable().
221*01826a49SYabin Cui The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
222*01826a49SYabin Cui If there is an error, the function will return an error code, which can be tested using FSE_isError().
223*01826a49SYabin Cui 
224*01826a49SYabin Cui `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
225*01826a49SYabin Cui `cSrcSize` must be strictly correct, otherwise decompression will fail.
226*01826a49SYabin Cui FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
227*01826a49SYabin Cui If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
228*01826a49SYabin Cui */
229*01826a49SYabin Cui 
230*01826a49SYabin Cui #endif  /* FSE_H */
231*01826a49SYabin Cui 
232*01826a49SYabin Cui 
233*01826a49SYabin Cui #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
234*01826a49SYabin Cui #define FSE_H_FSE_STATIC_LINKING_ONLY
235*01826a49SYabin Cui 
236*01826a49SYabin Cui /* *** Dependency *** */
237*01826a49SYabin Cui #include "bitstream.h"
238*01826a49SYabin Cui 
239*01826a49SYabin Cui 
240*01826a49SYabin Cui /* *****************************************
241*01826a49SYabin Cui *  Static allocation
242*01826a49SYabin Cui *******************************************/
243*01826a49SYabin Cui /* FSE buffer bounds */
244*01826a49SYabin Cui #define FSE_NCOUNTBOUND 512
245*01826a49SYabin Cui #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
246*01826a49SYabin Cui #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
247*01826a49SYabin Cui 
248*01826a49SYabin Cui /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
249*01826a49SYabin Cui #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
250*01826a49SYabin Cui #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
251*01826a49SYabin Cui 
252*01826a49SYabin Cui /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
253*01826a49SYabin Cui #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
254*01826a49SYabin Cui #define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
255*01826a49SYabin Cui 
256*01826a49SYabin Cui 
257*01826a49SYabin Cui /* *****************************************
258*01826a49SYabin Cui  *  FSE advanced API
259*01826a49SYabin Cui  ***************************************** */
260*01826a49SYabin Cui 
261*01826a49SYabin Cui unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
262*01826a49SYabin Cui /**< same as FSE_optimalTableLog(), which used `minus==2` */
263*01826a49SYabin Cui 
264*01826a49SYabin Cui size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
265*01826a49SYabin Cui /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
266*01826a49SYabin Cui 
267*01826a49SYabin Cui /* FSE_buildCTable_wksp() :
268*01826a49SYabin Cui  * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
269*01826a49SYabin Cui  * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
270*01826a49SYabin Cui  * See FSE_buildCTable_wksp() for breakdown of workspace usage.
271*01826a49SYabin Cui  */
272*01826a49SYabin Cui #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
273*01826a49SYabin Cui #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
274*01826a49SYabin Cui size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
275*01826a49SYabin Cui 
276*01826a49SYabin Cui #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
277*01826a49SYabin Cui #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
278*01826a49SYabin Cui FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
279*01826a49SYabin Cui /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
280*01826a49SYabin Cui 
281*01826a49SYabin Cui #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
282*01826a49SYabin Cui #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
283*01826a49SYabin Cui size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
284*01826a49SYabin Cui /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
285*01826a49SYabin Cui  * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
286*01826a49SYabin Cui 
287*01826a49SYabin Cui typedef enum {
288*01826a49SYabin Cui    FSE_repeat_none,  /**< Cannot use the previous table */
289*01826a49SYabin Cui    FSE_repeat_check, /**< Can use the previous table but it must be checked */
290*01826a49SYabin Cui    FSE_repeat_valid  /**< Can use the previous table and it is assumed to be valid */
291*01826a49SYabin Cui  } FSE_repeat;
292*01826a49SYabin Cui 
293*01826a49SYabin Cui /* *****************************************
294*01826a49SYabin Cui *  FSE symbol compression API
295*01826a49SYabin Cui *******************************************/
296*01826a49SYabin Cui /*!
297*01826a49SYabin Cui    This API consists of small unitary functions, which highly benefit from being inlined.
298*01826a49SYabin Cui    Hence their body are included in next section.
299*01826a49SYabin Cui */
300*01826a49SYabin Cui typedef struct {
301*01826a49SYabin Cui     ptrdiff_t   value;
302*01826a49SYabin Cui     const void* stateTable;
303*01826a49SYabin Cui     const void* symbolTT;
304*01826a49SYabin Cui     unsigned    stateLog;
305*01826a49SYabin Cui } FSE_CState_t;
306*01826a49SYabin Cui 
307*01826a49SYabin Cui static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
308*01826a49SYabin Cui 
309*01826a49SYabin Cui static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
310*01826a49SYabin Cui 
311*01826a49SYabin Cui static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
312*01826a49SYabin Cui 
313*01826a49SYabin Cui /**<
314*01826a49SYabin Cui These functions are inner components of FSE_compress_usingCTable().
315*01826a49SYabin Cui They allow the creation of custom streams, mixing multiple tables and bit sources.
316*01826a49SYabin Cui 
317*01826a49SYabin Cui A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
318*01826a49SYabin Cui So the first symbol you will encode is the last you will decode, like a LIFO stack.
319*01826a49SYabin Cui 
320*01826a49SYabin Cui You will need a few variables to track your CStream. They are :
321*01826a49SYabin Cui 
322*01826a49SYabin Cui FSE_CTable    ct;         // Provided by FSE_buildCTable()
323*01826a49SYabin Cui BIT_CStream_t bitStream;  // bitStream tracking structure
324*01826a49SYabin Cui FSE_CState_t  state;      // State tracking structure (can have several)
325*01826a49SYabin Cui 
326*01826a49SYabin Cui 
327*01826a49SYabin Cui The first thing to do is to init bitStream and state.
328*01826a49SYabin Cui     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
329*01826a49SYabin Cui     FSE_initCState(&state, ct);
330*01826a49SYabin Cui 
331*01826a49SYabin Cui Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
332*01826a49SYabin Cui You can then encode your input data, byte after byte.
333*01826a49SYabin Cui FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
334*01826a49SYabin Cui Remember decoding will be done in reverse direction.
335*01826a49SYabin Cui     FSE_encodeByte(&bitStream, &state, symbol);
336*01826a49SYabin Cui 
337*01826a49SYabin Cui At any time, you can also add any bit sequence.
338*01826a49SYabin Cui Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
339*01826a49SYabin Cui     BIT_addBits(&bitStream, bitField, nbBits);
340*01826a49SYabin Cui 
341*01826a49SYabin Cui The above methods don't commit data to memory, they just store it into local register, for speed.
342*01826a49SYabin Cui Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
343*01826a49SYabin Cui Writing data to memory is a manual operation, performed by the flushBits function.
344*01826a49SYabin Cui     BIT_flushBits(&bitStream);
345*01826a49SYabin Cui 
346*01826a49SYabin Cui Your last FSE encoding operation shall be to flush your last state value(s).
347*01826a49SYabin Cui     FSE_flushState(&bitStream, &state);
348*01826a49SYabin Cui 
349*01826a49SYabin Cui Finally, you must close the bitStream.
350*01826a49SYabin Cui The function returns the size of CStream in bytes.
351*01826a49SYabin Cui If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
352*01826a49SYabin Cui If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
353*01826a49SYabin Cui     size_t size = BIT_closeCStream(&bitStream);
354*01826a49SYabin Cui */
355*01826a49SYabin Cui 
356*01826a49SYabin Cui 
357*01826a49SYabin Cui /* *****************************************
358*01826a49SYabin Cui *  FSE symbol decompression API
359*01826a49SYabin Cui *******************************************/
360*01826a49SYabin Cui typedef struct {
361*01826a49SYabin Cui     size_t      state;
362*01826a49SYabin Cui     const void* table;   /* precise table may vary, depending on U16 */
363*01826a49SYabin Cui } FSE_DState_t;
364*01826a49SYabin Cui 
365*01826a49SYabin Cui 
366*01826a49SYabin Cui static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
367*01826a49SYabin Cui 
368*01826a49SYabin Cui static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
369*01826a49SYabin Cui 
370*01826a49SYabin Cui static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
371*01826a49SYabin Cui 
372*01826a49SYabin Cui /**<
373*01826a49SYabin Cui Let's now decompose FSE_decompress_usingDTable() into its unitary components.
374*01826a49SYabin Cui You will decode FSE-encoded symbols from the bitStream,
375*01826a49SYabin Cui and also any other bitFields you put in, **in reverse order**.
376*01826a49SYabin Cui 
377*01826a49SYabin Cui You will need a few variables to track your bitStream. They are :
378*01826a49SYabin Cui 
379*01826a49SYabin Cui BIT_DStream_t DStream;    // Stream context
380*01826a49SYabin Cui FSE_DState_t  DState;     // State context. Multiple ones are possible
381*01826a49SYabin Cui FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
382*01826a49SYabin Cui 
383*01826a49SYabin Cui The first thing to do is to init the bitStream.
384*01826a49SYabin Cui     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
385*01826a49SYabin Cui 
386*01826a49SYabin Cui You should then retrieve your initial state(s)
387*01826a49SYabin Cui (in reverse flushing order if you have several ones) :
388*01826a49SYabin Cui     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
389*01826a49SYabin Cui 
390*01826a49SYabin Cui You can then decode your data, symbol after symbol.
391*01826a49SYabin Cui For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
392*01826a49SYabin Cui Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
393*01826a49SYabin Cui     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
394*01826a49SYabin Cui 
395*01826a49SYabin Cui You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
396*01826a49SYabin Cui Note : maximum allowed nbBits is 25, for 32-bits compatibility
397*01826a49SYabin Cui     size_t bitField = BIT_readBits(&DStream, nbBits);
398*01826a49SYabin Cui 
399*01826a49SYabin Cui All above operations only read from local register (which size depends on size_t).
400*01826a49SYabin Cui Refueling the register from memory is manually performed by the reload method.
401*01826a49SYabin Cui     endSignal = FSE_reloadDStream(&DStream);
402*01826a49SYabin Cui 
403*01826a49SYabin Cui BIT_reloadDStream() result tells if there is still some more data to read from DStream.
404*01826a49SYabin Cui BIT_DStream_unfinished : there is still some data left into the DStream.
405*01826a49SYabin Cui BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
406*01826a49SYabin Cui BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
407*01826a49SYabin Cui BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
408*01826a49SYabin Cui 
409*01826a49SYabin Cui When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
410*01826a49SYabin Cui to properly detect the exact end of stream.
411*01826a49SYabin Cui After each decoded symbol, check if DStream is fully consumed using this simple test :
412*01826a49SYabin Cui     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
413*01826a49SYabin Cui 
414*01826a49SYabin Cui When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
415*01826a49SYabin Cui Checking if DStream has reached its end is performed by :
416*01826a49SYabin Cui     BIT_endOfDStream(&DStream);
417*01826a49SYabin Cui Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
418*01826a49SYabin Cui     FSE_endOfDState(&DState);
419*01826a49SYabin Cui */
420*01826a49SYabin Cui 
421*01826a49SYabin Cui 
422*01826a49SYabin Cui /* *****************************************
423*01826a49SYabin Cui *  FSE unsafe API
424*01826a49SYabin Cui *******************************************/
425*01826a49SYabin Cui static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
426*01826a49SYabin Cui /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
427*01826a49SYabin Cui 
428*01826a49SYabin Cui 
429*01826a49SYabin Cui /* *****************************************
430*01826a49SYabin Cui *  Implementation of inlined functions
431*01826a49SYabin Cui *******************************************/
432*01826a49SYabin Cui typedef struct {
433*01826a49SYabin Cui     int deltaFindState;
434*01826a49SYabin Cui     U32 deltaNbBits;
435*01826a49SYabin Cui } FSE_symbolCompressionTransform; /* total 8 bytes */
436*01826a49SYabin Cui 
FSE_initCState(FSE_CState_t * statePtr,const FSE_CTable * ct)437*01826a49SYabin Cui MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
438*01826a49SYabin Cui {
439*01826a49SYabin Cui     const void* ptr = ct;
440*01826a49SYabin Cui     const U16* u16ptr = (const U16*) ptr;
441*01826a49SYabin Cui     const U32 tableLog = MEM_read16(ptr);
442*01826a49SYabin Cui     statePtr->value = (ptrdiff_t)1<<tableLog;
443*01826a49SYabin Cui     statePtr->stateTable = u16ptr+2;
444*01826a49SYabin Cui     statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
445*01826a49SYabin Cui     statePtr->stateLog = tableLog;
446*01826a49SYabin Cui }
447*01826a49SYabin Cui 
448*01826a49SYabin Cui 
449*01826a49SYabin Cui /*! FSE_initCState2() :
450*01826a49SYabin Cui *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
451*01826a49SYabin Cui *   uses the smallest state value possible, saving the cost of this symbol */
FSE_initCState2(FSE_CState_t * statePtr,const FSE_CTable * ct,U32 symbol)452*01826a49SYabin Cui MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
453*01826a49SYabin Cui {
454*01826a49SYabin Cui     FSE_initCState(statePtr, ct);
455*01826a49SYabin Cui     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
456*01826a49SYabin Cui         const U16* stateTable = (const U16*)(statePtr->stateTable);
457*01826a49SYabin Cui         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
458*01826a49SYabin Cui         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
459*01826a49SYabin Cui         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
460*01826a49SYabin Cui     }
461*01826a49SYabin Cui }
462*01826a49SYabin Cui 
FSE_encodeSymbol(BIT_CStream_t * bitC,FSE_CState_t * statePtr,unsigned symbol)463*01826a49SYabin Cui MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
464*01826a49SYabin Cui {
465*01826a49SYabin Cui     FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
466*01826a49SYabin Cui     const U16* const stateTable = (const U16*)(statePtr->stateTable);
467*01826a49SYabin Cui     U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
468*01826a49SYabin Cui     BIT_addBits(bitC,  (size_t)statePtr->value, nbBitsOut);
469*01826a49SYabin Cui     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
470*01826a49SYabin Cui }
471*01826a49SYabin Cui 
FSE_flushCState(BIT_CStream_t * bitC,const FSE_CState_t * statePtr)472*01826a49SYabin Cui MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
473*01826a49SYabin Cui {
474*01826a49SYabin Cui     BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog);
475*01826a49SYabin Cui     BIT_flushBits(bitC);
476*01826a49SYabin Cui }
477*01826a49SYabin Cui 
478*01826a49SYabin Cui 
479*01826a49SYabin Cui /* FSE_getMaxNbBits() :
480*01826a49SYabin Cui  * Approximate maximum cost of a symbol, in bits.
481*01826a49SYabin Cui  * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
482*01826a49SYabin Cui  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
483*01826a49SYabin Cui  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_getMaxNbBits(const void * symbolTTPtr,U32 symbolValue)484*01826a49SYabin Cui MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
485*01826a49SYabin Cui {
486*01826a49SYabin Cui     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
487*01826a49SYabin Cui     return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
488*01826a49SYabin Cui }
489*01826a49SYabin Cui 
490*01826a49SYabin Cui /* FSE_bitCost() :
491*01826a49SYabin Cui  * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
492*01826a49SYabin Cui  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
493*01826a49SYabin Cui  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
FSE_bitCost(const void * symbolTTPtr,U32 tableLog,U32 symbolValue,U32 accuracyLog)494*01826a49SYabin Cui MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
495*01826a49SYabin Cui {
496*01826a49SYabin Cui     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
497*01826a49SYabin Cui     U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
498*01826a49SYabin Cui     U32 const threshold = (minNbBits+1) << 16;
499*01826a49SYabin Cui     assert(tableLog < 16);
500*01826a49SYabin Cui     assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
501*01826a49SYabin Cui     {   U32 const tableSize = 1 << tableLog;
502*01826a49SYabin Cui         U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
503*01826a49SYabin Cui         U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
504*01826a49SYabin Cui         U32 const bitMultiplier = 1 << accuracyLog;
505*01826a49SYabin Cui         assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
506*01826a49SYabin Cui         assert(normalizedDeltaFromThreshold <= bitMultiplier);
507*01826a49SYabin Cui         return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
508*01826a49SYabin Cui     }
509*01826a49SYabin Cui }
510*01826a49SYabin Cui 
511*01826a49SYabin Cui 
512*01826a49SYabin Cui /* ======    Decompression    ====== */
513*01826a49SYabin Cui 
514*01826a49SYabin Cui typedef struct {
515*01826a49SYabin Cui     U16 tableLog;
516*01826a49SYabin Cui     U16 fastMode;
517*01826a49SYabin Cui } FSE_DTableHeader;   /* sizeof U32 */
518*01826a49SYabin Cui 
519*01826a49SYabin Cui typedef struct
520*01826a49SYabin Cui {
521*01826a49SYabin Cui     unsigned short newState;
522*01826a49SYabin Cui     unsigned char  symbol;
523*01826a49SYabin Cui     unsigned char  nbBits;
524*01826a49SYabin Cui } FSE_decode_t;   /* size == U32 */
525*01826a49SYabin Cui 
FSE_initDState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD,const FSE_DTable * dt)526*01826a49SYabin Cui MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
527*01826a49SYabin Cui {
528*01826a49SYabin Cui     const void* ptr = dt;
529*01826a49SYabin Cui     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
530*01826a49SYabin Cui     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
531*01826a49SYabin Cui     BIT_reloadDStream(bitD);
532*01826a49SYabin Cui     DStatePtr->table = dt + 1;
533*01826a49SYabin Cui }
534*01826a49SYabin Cui 
FSE_peekSymbol(const FSE_DState_t * DStatePtr)535*01826a49SYabin Cui MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
536*01826a49SYabin Cui {
537*01826a49SYabin Cui     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
538*01826a49SYabin Cui     return DInfo.symbol;
539*01826a49SYabin Cui }
540*01826a49SYabin Cui 
FSE_updateState(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)541*01826a49SYabin Cui MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
542*01826a49SYabin Cui {
543*01826a49SYabin Cui     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
544*01826a49SYabin Cui     U32 const nbBits = DInfo.nbBits;
545*01826a49SYabin Cui     size_t const lowBits = BIT_readBits(bitD, nbBits);
546*01826a49SYabin Cui     DStatePtr->state = DInfo.newState + lowBits;
547*01826a49SYabin Cui }
548*01826a49SYabin Cui 
FSE_decodeSymbol(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)549*01826a49SYabin Cui MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
550*01826a49SYabin Cui {
551*01826a49SYabin Cui     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
552*01826a49SYabin Cui     U32 const nbBits = DInfo.nbBits;
553*01826a49SYabin Cui     BYTE const symbol = DInfo.symbol;
554*01826a49SYabin Cui     size_t const lowBits = BIT_readBits(bitD, nbBits);
555*01826a49SYabin Cui 
556*01826a49SYabin Cui     DStatePtr->state = DInfo.newState + lowBits;
557*01826a49SYabin Cui     return symbol;
558*01826a49SYabin Cui }
559*01826a49SYabin Cui 
560*01826a49SYabin Cui /*! FSE_decodeSymbolFast() :
561*01826a49SYabin Cui     unsafe, only works if no symbol has a probability > 50% */
FSE_decodeSymbolFast(FSE_DState_t * DStatePtr,BIT_DStream_t * bitD)562*01826a49SYabin Cui MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
563*01826a49SYabin Cui {
564*01826a49SYabin Cui     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
565*01826a49SYabin Cui     U32 const nbBits = DInfo.nbBits;
566*01826a49SYabin Cui     BYTE const symbol = DInfo.symbol;
567*01826a49SYabin Cui     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
568*01826a49SYabin Cui 
569*01826a49SYabin Cui     DStatePtr->state = DInfo.newState + lowBits;
570*01826a49SYabin Cui     return symbol;
571*01826a49SYabin Cui }
572*01826a49SYabin Cui 
FSE_endOfDState(const FSE_DState_t * DStatePtr)573*01826a49SYabin Cui MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
574*01826a49SYabin Cui {
575*01826a49SYabin Cui     return DStatePtr->state == 0;
576*01826a49SYabin Cui }
577*01826a49SYabin Cui 
578*01826a49SYabin Cui 
579*01826a49SYabin Cui 
580*01826a49SYabin Cui #ifndef FSE_COMMONDEFS_ONLY
581*01826a49SYabin Cui 
582*01826a49SYabin Cui /* **************************************************************
583*01826a49SYabin Cui *  Tuning parameters
584*01826a49SYabin Cui ****************************************************************/
585*01826a49SYabin Cui /*!MEMORY_USAGE :
586*01826a49SYabin Cui *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
587*01826a49SYabin Cui *  Increasing memory usage improves compression ratio
588*01826a49SYabin Cui *  Reduced memory usage can improve speed, due to cache effect
589*01826a49SYabin Cui *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
590*01826a49SYabin Cui #ifndef FSE_MAX_MEMORY_USAGE
591*01826a49SYabin Cui #  define FSE_MAX_MEMORY_USAGE 14
592*01826a49SYabin Cui #endif
593*01826a49SYabin Cui #ifndef FSE_DEFAULT_MEMORY_USAGE
594*01826a49SYabin Cui #  define FSE_DEFAULT_MEMORY_USAGE 13
595*01826a49SYabin Cui #endif
596*01826a49SYabin Cui #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
597*01826a49SYabin Cui #  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
598*01826a49SYabin Cui #endif
599*01826a49SYabin Cui 
600*01826a49SYabin Cui /*!FSE_MAX_SYMBOL_VALUE :
601*01826a49SYabin Cui *  Maximum symbol value authorized.
602*01826a49SYabin Cui *  Required for proper stack allocation */
603*01826a49SYabin Cui #ifndef FSE_MAX_SYMBOL_VALUE
604*01826a49SYabin Cui #  define FSE_MAX_SYMBOL_VALUE 255
605*01826a49SYabin Cui #endif
606*01826a49SYabin Cui 
607*01826a49SYabin Cui /* **************************************************************
608*01826a49SYabin Cui *  template functions type & suffix
609*01826a49SYabin Cui ****************************************************************/
610*01826a49SYabin Cui #define FSE_FUNCTION_TYPE BYTE
611*01826a49SYabin Cui #define FSE_FUNCTION_EXTENSION
612*01826a49SYabin Cui #define FSE_DECODE_TYPE FSE_decode_t
613*01826a49SYabin Cui 
614*01826a49SYabin Cui 
615*01826a49SYabin Cui #endif   /* !FSE_COMMONDEFS_ONLY */
616*01826a49SYabin Cui 
617*01826a49SYabin Cui 
618*01826a49SYabin Cui /* ***************************************************************
619*01826a49SYabin Cui *  Constants
620*01826a49SYabin Cui *****************************************************************/
621*01826a49SYabin Cui #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
622*01826a49SYabin Cui #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
623*01826a49SYabin Cui #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
624*01826a49SYabin Cui #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
625*01826a49SYabin Cui #define FSE_MIN_TABLELOG 5
626*01826a49SYabin Cui 
627*01826a49SYabin Cui #define FSE_TABLELOG_ABSOLUTE_MAX 15
628*01826a49SYabin Cui #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
629*01826a49SYabin Cui #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
630*01826a49SYabin Cui #endif
631*01826a49SYabin Cui 
632*01826a49SYabin Cui #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
633*01826a49SYabin Cui 
634*01826a49SYabin Cui 
635*01826a49SYabin Cui #endif /* FSE_STATIC_LINKING_ONLY */
636*01826a49SYabin Cui 
637*01826a49SYabin Cui 
638*01826a49SYabin Cui #if defined (__cplusplus)
639*01826a49SYabin Cui }
640*01826a49SYabin Cui #endif
641