1*b7893ccfSSadaf Ebrahimi /* Copyright (c) 2019 The Khronos Group Inc. 2*b7893ccfSSadaf Ebrahimi * Copyright (c) 2019 Valve Corporation 3*b7893ccfSSadaf Ebrahimi * Copyright (c) 2019 LunarG, Inc. 4*b7893ccfSSadaf Ebrahimi * Copyright (C) 2019 Google Inc. 5*b7893ccfSSadaf Ebrahimi * 6*b7893ccfSSadaf Ebrahimi * Licensed under the Apache License, Version 2.0 (the "License"); 7*b7893ccfSSadaf Ebrahimi * you may not use this file except in compliance with the License. 8*b7893ccfSSadaf Ebrahimi * You may obtain a copy of the License at 9*b7893ccfSSadaf Ebrahimi * 10*b7893ccfSSadaf Ebrahimi * http://www.apache.org/licenses/LICENSE-2.0 11*b7893ccfSSadaf Ebrahimi * 12*b7893ccfSSadaf Ebrahimi * Unless required by applicable law or agreed to in writing, software 13*b7893ccfSSadaf Ebrahimi * distributed under the License is distributed on an "AS IS" BASIS, 14*b7893ccfSSadaf Ebrahimi * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15*b7893ccfSSadaf Ebrahimi * See the License for the specific language governing permissions and 16*b7893ccfSSadaf Ebrahimi * limitations under the License. 17*b7893ccfSSadaf Ebrahimi * 18*b7893ccfSSadaf Ebrahimi * John Zulauf <[email protected]> 19*b7893ccfSSadaf Ebrahimi * 20*b7893ccfSSadaf Ebrahimi */ 21*b7893ccfSSadaf Ebrahimi #ifndef SPARSE_CONTAINERS_H_ 22*b7893ccfSSadaf Ebrahimi #define SPARSE_CONTAINERS_H_ 23*b7893ccfSSadaf Ebrahimi #define NOMINMAX 24*b7893ccfSSadaf Ebrahimi #include <cassert> 25*b7893ccfSSadaf Ebrahimi #include <memory> 26*b7893ccfSSadaf Ebrahimi #include <unordered_map> 27*b7893ccfSSadaf Ebrahimi #include <vector> 28*b7893ccfSSadaf Ebrahimi 29*b7893ccfSSadaf Ebrahimi namespace sparse_container { 30*b7893ccfSSadaf Ebrahimi // SparseVector: 31*b7893ccfSSadaf Ebrahimi // 32*b7893ccfSSadaf Ebrahimi // Defines a sparse single-dimensional container which is targeted for three distinct use cases 33*b7893ccfSSadaf Ebrahimi // 1) Large range of indices sparsely populated ("Sparse access" below) 34*b7893ccfSSadaf Ebrahimi // 2) Large range of indices where all values are the same ("Sparse access" below) 35*b7893ccfSSadaf Ebrahimi // 3) Large range of values densely populated (more that 1/4 full) ("Dense access" below) 36*b7893ccfSSadaf Ebrahimi // 4) Small range of values where direct access is most efficient ("Dense access" below) 37*b7893ccfSSadaf Ebrahimi // 38*b7893ccfSSadaf Ebrahimi // To update semantics are supported bases on kSetReplaces: 39*b7893ccfSSadaf Ebrahimi // true -- updates to already set (valid) indices replace current value 40*b7893ccfSSadaf Ebrahimi // false -- updates to already set (valid) indicies are ignored. 41*b7893ccfSSadaf Ebrahimi // 42*b7893ccfSSadaf Ebrahimi // Theory of operation: 43*b7893ccfSSadaf Ebrahimi // 44*b7893ccfSSadaf Ebrahimi // When created, a sparse vector is created (based on size relative to 45*b7893ccfSSadaf Ebrahimi // the kSparseThreshold) in either Sparse or Dense access mode. 46*b7893ccfSSadaf Ebrahimi // 47*b7893ccfSSadaf Ebrahimi // In "Sparse access" mode individual values are stored in a map keyed 48*b7893ccfSSadaf Ebrahimi // by the index. A "full range" value (if set) defines the value of all 49*b7893ccfSSadaf Ebrahimi // entries not present in the map. Setting a full range value via 50*b7893ccfSSadaf Ebrahimi // 51*b7893ccfSSadaf Ebrahimi // SetRange(range_min, range_max, full_range_value ) 52*b7893ccfSSadaf Ebrahimi // 53*b7893ccfSSadaf Ebrahimi // either clears the map (kSetReplaces==true) or prevents further 54*b7893ccfSSadaf Ebrahimi // updates to the vector (kSetReplaces==false). If the map becomes 55*b7893ccfSSadaf Ebrahimi // more than // 1/kConversionThreshold (4) full, the SparseVector is 56*b7893ccfSSadaf Ebrahimi // converted into "Dense access" mode. Entries are copied from map, 57*b7893ccfSSadaf Ebrahimi // with non-present indices set to the default value (kDefaultValue) 58*b7893ccfSSadaf Ebrahimi // or the full range value (if present). 59*b7893ccfSSadaf Ebrahimi // 60*b7893ccfSSadaf Ebrahimi // In "Dense access" mode, values are stored in a vector the size of 61*b7893ccfSSadaf Ebrahimi // the valid range indexed by the incoming index value minus range_min_. 62*b7893ccfSSadaf Ebrahimi // The same upate semantic applies bases on kSetReplaces. 63*b7893ccfSSadaf Ebrahimi // 64*b7893ccfSSadaf Ebrahimi // Note that when kSparseThreshold 65*b7893ccfSSadaf Ebrahimi // 66*b7893ccfSSadaf Ebrahimi // Access: 67*b7893ccfSSadaf Ebrahimi // 68*b7893ccfSSadaf Ebrahimi // NOTE all "end" indices (in construction or access) are *exclusive*. 69*b7893ccfSSadaf Ebrahimi // 70*b7893ccfSSadaf Ebrahimi // Given the variable semantics and effective compression of Sparse 71*b7893ccfSSadaf Ebrahimi // access mode, all access is through Get, Set, and SetRange functions 72*b7893ccfSSadaf Ebrahimi // and a constant iterator. Get return either the value found (using 73*b7893ccfSSadaf Ebrahimi // the current access mode) or the kDefaultValue. Set and SetRange 74*b7893ccfSSadaf Ebrahimi // return whether or not state was updated, in order to support dirty 75*b7893ccfSSadaf Ebrahimi // bit updates for any dependent state. 76*b7893ccfSSadaf Ebrahimi // 77*b7893ccfSSadaf Ebrahimi // The iterator ConstIterator provides basic, "by value" access. The 78*b7893ccfSSadaf Ebrahimi // "by value" nature of the access reflect the compressed nature 79*b7893ccfSSadaf Ebrahimi // operators *, ++, ==, and != are provided, with the latter two only 80*b7893ccfSSadaf Ebrahimi // suitable for comparisons vs. cend. The iterator skips all 81*b7893ccfSSadaf Ebrahimi // kDefaultValue entries in either access mode, returning a std::pair 82*b7893ccfSSadaf Ebrahimi // containing {IndexType, ValueType}. The multiple access modes give 83*b7893ccfSSadaf Ebrahimi // the iterator a bit more complexity than is optimal, but hides the 84*b7893ccfSSadaf Ebrahimi // underlying complexity from the callers. 85*b7893ccfSSadaf Ebrahimi // 86*b7893ccfSSadaf Ebrahimi // TODO: Update iterator to use a reference (likely using 87*b7893ccfSSadaf Ebrahimi // reference_wrapper...) 88*b7893ccfSSadaf Ebrahimi 89*b7893ccfSSadaf Ebrahimi template <typename IndexType_, typename T, bool kSetReplaces, T kDefaultValue = T(), size_t kSparseThreshold = 16> 90*b7893ccfSSadaf Ebrahimi class SparseVector { 91*b7893ccfSSadaf Ebrahimi public: 92*b7893ccfSSadaf Ebrahimi typedef IndexType_ IndexType; 93*b7893ccfSSadaf Ebrahimi typedef T value_type; 94*b7893ccfSSadaf Ebrahimi typedef value_type ValueType; 95*b7893ccfSSadaf Ebrahimi typedef std::unordered_map<IndexType, ValueType> SparseType; 96*b7893ccfSSadaf Ebrahimi typedef std::vector<ValueType> DenseType; 97*b7893ccfSSadaf Ebrahimi SparseVector(IndexType start,IndexType end)98*b7893ccfSSadaf Ebrahimi SparseVector(IndexType start, IndexType end) 99*b7893ccfSSadaf Ebrahimi : range_min_(start), range_max_(end), threshold_((end - start) / kConversionThreshold) { 100*b7893ccfSSadaf Ebrahimi assert(end > start); 101*b7893ccfSSadaf Ebrahimi Reset(); 102*b7893ccfSSadaf Ebrahimi } 103*b7893ccfSSadaf Ebrahimi 104*b7893ccfSSadaf Ebrahimi // Initial access mode is set based on range size vs. kSparseThreshold. Either sparse_ or dense_ is always set, but only 105*b7893ccfSSadaf Ebrahimi // ever one at a time Reset()106*b7893ccfSSadaf Ebrahimi void Reset() { 107*b7893ccfSSadaf Ebrahimi has_full_range_value_ = false; 108*b7893ccfSSadaf Ebrahimi full_range_value_ = kDefaultValue; 109*b7893ccfSSadaf Ebrahimi size_t count = range_max_ - range_min_; 110*b7893ccfSSadaf Ebrahimi if (kSparseThreshold && (count > kSparseThreshold)) { 111*b7893ccfSSadaf Ebrahimi sparse_.reset(new SparseType()); 112*b7893ccfSSadaf Ebrahimi dense_.reset(); 113*b7893ccfSSadaf Ebrahimi } else { 114*b7893ccfSSadaf Ebrahimi sparse_.reset(); 115*b7893ccfSSadaf Ebrahimi dense_.reset(new DenseType(count, kDefaultValue)); 116*b7893ccfSSadaf Ebrahimi } 117*b7893ccfSSadaf Ebrahimi } 118*b7893ccfSSadaf Ebrahimi Get(const IndexType index)119*b7893ccfSSadaf Ebrahimi const ValueType &Get(const IndexType index) const { 120*b7893ccfSSadaf Ebrahimi // Note that here (and similarly below, the 'IsSparse' clause is 121*b7893ccfSSadaf Ebrahimi // eliminated as dead code in release builds if kSparseThreshold==0 122*b7893ccfSSadaf Ebrahimi if (IsSparse()) { 123*b7893ccfSSadaf Ebrahimi if (!sparse_->empty()) { // Don't attempt lookup in empty map 124*b7893ccfSSadaf Ebrahimi auto it = sparse_->find(index); 125*b7893ccfSSadaf Ebrahimi if (it != sparse_->cend()) { 126*b7893ccfSSadaf Ebrahimi return it->second; 127*b7893ccfSSadaf Ebrahimi } 128*b7893ccfSSadaf Ebrahimi } 129*b7893ccfSSadaf Ebrahimi // If there is a full_range_value, return it, but there isn't a full_range_value_, it's set to kDefaultValue 130*b7893ccfSSadaf Ebrahimi // so it's still the correct this to return 131*b7893ccfSSadaf Ebrahimi return full_range_value_; 132*b7893ccfSSadaf Ebrahimi } else { 133*b7893ccfSSadaf Ebrahimi // Direct access 134*b7893ccfSSadaf Ebrahimi assert(dense_.get()); 135*b7893ccfSSadaf Ebrahimi const ValueType &value = (*dense_)[index - range_min_]; 136*b7893ccfSSadaf Ebrahimi return value; 137*b7893ccfSSadaf Ebrahimi } 138*b7893ccfSSadaf Ebrahimi } 139*b7893ccfSSadaf Ebrahimi 140*b7893ccfSSadaf Ebrahimi // Set a indexes value, based on the access mode, update semantics are enforced within the access mode specific function Set(const IndexType index,const ValueType & value)141*b7893ccfSSadaf Ebrahimi bool Set(const IndexType index, const ValueType &value) { 142*b7893ccfSSadaf Ebrahimi bool updated = false; 143*b7893ccfSSadaf Ebrahimi if (IsSparse()) { 144*b7893ccfSSadaf Ebrahimi updated = SetSparse(index, value); 145*b7893ccfSSadaf Ebrahimi } else { 146*b7893ccfSSadaf Ebrahimi assert(dense_.get()); 147*b7893ccfSSadaf Ebrahimi updated = SetDense(index, value); 148*b7893ccfSSadaf Ebrahimi } 149*b7893ccfSSadaf Ebrahimi return updated; 150*b7893ccfSSadaf Ebrahimi } 151*b7893ccfSSadaf Ebrahimi 152*b7893ccfSSadaf Ebrahimi // Set a range of values based on access mode, with some update semantics applied a the range level SetRange(const IndexType start,IndexType end,ValueType value)153*b7893ccfSSadaf Ebrahimi bool SetRange(const IndexType start, IndexType end, ValueType value) { 154*b7893ccfSSadaf Ebrahimi bool updated = false; 155*b7893ccfSSadaf Ebrahimi if (IsSparse()) { 156*b7893ccfSSadaf Ebrahimi if (!kSetReplaces && HasFullRange()) return false; // We have full coverage, we can change this no more 157*b7893ccfSSadaf Ebrahimi 158*b7893ccfSSadaf Ebrahimi bool is_full_range = IsFullRange(start, end); 159*b7893ccfSSadaf Ebrahimi if (kSetReplaces && is_full_range) { 160*b7893ccfSSadaf Ebrahimi updated = value != full_range_value_; 161*b7893ccfSSadaf Ebrahimi full_range_value_ = value; 162*b7893ccfSSadaf Ebrahimi if (HasSparseSubranges()) { 163*b7893ccfSSadaf Ebrahimi updated = true; 164*b7893ccfSSadaf Ebrahimi sparse_->clear(); // full range replaces all subranges 165*b7893ccfSSadaf Ebrahimi } 166*b7893ccfSSadaf Ebrahimi // has_full_range_value_ state of the full_range_value_ to avoid ValueType comparisons 167*b7893ccfSSadaf Ebrahimi has_full_range_value_ = value != kDefaultValue; 168*b7893ccfSSadaf Ebrahimi } else if (!kSetReplaces && (value != kDefaultValue) && is_full_range && !HasFullRange()) { 169*b7893ccfSSadaf Ebrahimi // With the update only invalid semantics, the value becomes the fallback, and will prevent other updates 170*b7893ccfSSadaf Ebrahimi full_range_value_ = value; 171*b7893ccfSSadaf Ebrahimi has_full_range_value_ = true; 172*b7893ccfSSadaf Ebrahimi updated = true; 173*b7893ccfSSadaf Ebrahimi // Clean up the sparse map a bit 174*b7893ccfSSadaf Ebrahimi for (auto it = sparse_->begin(); it != sparse_->end();) { // no increment clause because of erase below 175*b7893ccfSSadaf Ebrahimi if (it->second == value) { 176*b7893ccfSSadaf Ebrahimi it = sparse_->erase(it); // remove redundant entries 177*b7893ccfSSadaf Ebrahimi } else { 178*b7893ccfSSadaf Ebrahimi ++it; 179*b7893ccfSSadaf Ebrahimi } 180*b7893ccfSSadaf Ebrahimi } 181*b7893ccfSSadaf Ebrahimi } else { 182*b7893ccfSSadaf Ebrahimi for (IndexType index = start; index < end; ++index) { 183*b7893ccfSSadaf Ebrahimi // NOTE: We can't use SetSparse here, because this may be converted to dense access mid update 184*b7893ccfSSadaf Ebrahimi updated |= Set(index, value); 185*b7893ccfSSadaf Ebrahimi } 186*b7893ccfSSadaf Ebrahimi } 187*b7893ccfSSadaf Ebrahimi } else { 188*b7893ccfSSadaf Ebrahimi // Note that "Dense Access" does away with the full_range_value_ logic, storing empty entries using kDefaultValue 189*b7893ccfSSadaf Ebrahimi assert(dense_); 190*b7893ccfSSadaf Ebrahimi for (IndexType index = start; index < end; ++index) { 191*b7893ccfSSadaf Ebrahimi updated = SetDense(index, value); 192*b7893ccfSSadaf Ebrahimi } 193*b7893ccfSSadaf Ebrahimi } 194*b7893ccfSSadaf Ebrahimi return updated; 195*b7893ccfSSadaf Ebrahimi } 196*b7893ccfSSadaf Ebrahimi 197*b7893ccfSSadaf Ebrahimi // Set only the non-default values from another sparse vector Merge(const SparseVector & from)198*b7893ccfSSadaf Ebrahimi bool Merge(const SparseVector &from) { 199*b7893ccfSSadaf Ebrahimi // Must not set from Sparse arracy with larger bounds... 200*b7893ccfSSadaf Ebrahimi assert((range_min_ <= from.range_min_) && (range_max_ >= from.range_max_)); 201*b7893ccfSSadaf Ebrahimi bool updated = false; 202*b7893ccfSSadaf Ebrahimi if (from.IsSparse()) { 203*b7893ccfSSadaf Ebrahimi if (from.HasFullRange() && !from.HasSparseSubranges()) { 204*b7893ccfSSadaf Ebrahimi // Short cut to copy a full range if that's all we have 205*b7893ccfSSadaf Ebrahimi updated |= SetRange(from.range_min_, from.range_max_, from.full_range_value_); 206*b7893ccfSSadaf Ebrahimi } else { 207*b7893ccfSSadaf Ebrahimi // Have to do it the complete (potentially) slow way 208*b7893ccfSSadaf Ebrahimi // TODO add sorted keys to iterator to reduce hash lookups 209*b7893ccfSSadaf Ebrahimi for (auto it = from.cbegin(); it != from.cend(); ++it) { 210*b7893ccfSSadaf Ebrahimi const IndexType index = (*it).first; 211*b7893ccfSSadaf Ebrahimi const ValueType &value = (*it).second; 212*b7893ccfSSadaf Ebrahimi Set(index, value); 213*b7893ccfSSadaf Ebrahimi } 214*b7893ccfSSadaf Ebrahimi } 215*b7893ccfSSadaf Ebrahimi } else { 216*b7893ccfSSadaf Ebrahimi assert(from.dense_); 217*b7893ccfSSadaf Ebrahimi DenseType &ray = *from.dense_; 218*b7893ccfSSadaf Ebrahimi for (IndexType entry = from.range_min_; entry < from.range_max_; ++entry) { 219*b7893ccfSSadaf Ebrahimi IndexType index = entry - from.range_min_; 220*b7893ccfSSadaf Ebrahimi if (ray[index] != kDefaultValue) { 221*b7893ccfSSadaf Ebrahimi updated |= Set(entry, ray[index]); 222*b7893ccfSSadaf Ebrahimi } 223*b7893ccfSSadaf Ebrahimi } 224*b7893ccfSSadaf Ebrahimi } 225*b7893ccfSSadaf Ebrahimi return updated; 226*b7893ccfSSadaf Ebrahimi } 227*b7893ccfSSadaf Ebrahimi 228*b7893ccfSSadaf Ebrahimi friend class ConstIterator; 229*b7893ccfSSadaf Ebrahimi class ConstIterator { 230*b7893ccfSSadaf Ebrahimi public: 231*b7893ccfSSadaf Ebrahimi using SparseType = typename SparseVector::SparseType; 232*b7893ccfSSadaf Ebrahimi using SparseIterator = typename SparseType::const_iterator; 233*b7893ccfSSadaf Ebrahimi using IndexType = typename SparseVector::IndexType; 234*b7893ccfSSadaf Ebrahimi using ValueType = typename SparseVector::ValueType; 235*b7893ccfSSadaf Ebrahimi using IteratorValueType = std::pair<IndexType, ValueType>; 236*b7893ccfSSadaf Ebrahimi const IteratorValueType &operator*() const { return current_value_; } 237*b7893ccfSSadaf Ebrahimi 238*b7893ccfSSadaf Ebrahimi ConstIterator &operator++() { 239*b7893ccfSSadaf Ebrahimi if (delegated_) { // implies sparse 240*b7893ccfSSadaf Ebrahimi ++it_sparse_; 241*b7893ccfSSadaf Ebrahimi if (it_sparse_ == vec_->sparse_->cend()) { 242*b7893ccfSSadaf Ebrahimi the_end_ = true; 243*b7893ccfSSadaf Ebrahimi current_value_.first = vec_->range_max_; 244*b7893ccfSSadaf Ebrahimi current_value_.second = SparseVector::DefaultValue(); 245*b7893ccfSSadaf Ebrahimi } else { 246*b7893ccfSSadaf Ebrahimi current_value_.first = it_sparse_->first; 247*b7893ccfSSadaf Ebrahimi current_value_.second = it_sparse_->second; 248*b7893ccfSSadaf Ebrahimi } 249*b7893ccfSSadaf Ebrahimi } else { 250*b7893ccfSSadaf Ebrahimi index_++; 251*b7893ccfSSadaf Ebrahimi SetCurrentValue(); 252*b7893ccfSSadaf Ebrahimi } 253*b7893ccfSSadaf Ebrahimi return *this; 254*b7893ccfSSadaf Ebrahimi } 255*b7893ccfSSadaf Ebrahimi bool operator!=(const ConstIterator &rhs) const { 256*b7893ccfSSadaf Ebrahimi return (the_end_ != rhs.the_end_); // Just good enough for cend checks 257*b7893ccfSSadaf Ebrahimi } 258*b7893ccfSSadaf Ebrahimi 259*b7893ccfSSadaf Ebrahimi bool operator==(const ConstIterator &rhs) const { 260*b7893ccfSSadaf Ebrahimi return (the_end_ == rhs.the_end_); // Just good enough for cend checks 261*b7893ccfSSadaf Ebrahimi } 262*b7893ccfSSadaf Ebrahimi 263*b7893ccfSSadaf Ebrahimi // The iterator has two modes: 264*b7893ccfSSadaf Ebrahimi // delegated: 265*b7893ccfSSadaf Ebrahimi // where we are in sparse access mode and have no full_range_value 266*b7893ccfSSadaf Ebrahimi // and thus can delegate our iteration to underlying map 267*b7893ccfSSadaf Ebrahimi // non-delegated: 268*b7893ccfSSadaf Ebrahimi // either dense mode or we have a full range value and thus 269*b7893ccfSSadaf Ebrahimi // must iterate over the whole range ConstIterator(const SparseVector & vec)270*b7893ccfSSadaf Ebrahimi ConstIterator(const SparseVector &vec) : vec_(&vec) { 271*b7893ccfSSadaf Ebrahimi if (!vec_->IsSparse() || vec_->HasFullRange()) { 272*b7893ccfSSadaf Ebrahimi // Must iterated over entire ranges skipping (in the case of dense access), invalid entries 273*b7893ccfSSadaf Ebrahimi delegated_ = false; 274*b7893ccfSSadaf Ebrahimi index_ = vec_->range_min_; 275*b7893ccfSSadaf Ebrahimi SetCurrentValue(); // Skips invalid and sets the_end_ 276*b7893ccfSSadaf Ebrahimi } else if (vec_->HasSparseSubranges()) { 277*b7893ccfSSadaf Ebrahimi // The subranges store the non-default values... and their is no full range value 278*b7893ccfSSadaf Ebrahimi delegated_ = true; 279*b7893ccfSSadaf Ebrahimi it_sparse_ = vec_->sparse_->cbegin(); 280*b7893ccfSSadaf Ebrahimi current_value_.first = it_sparse_->first; 281*b7893ccfSSadaf Ebrahimi current_value_.second = it_sparse_->second; 282*b7893ccfSSadaf Ebrahimi the_end_ = false; // the sparse map is non-empty (per HasSparseSubranges() above) 283*b7893ccfSSadaf Ebrahimi } else { 284*b7893ccfSSadaf Ebrahimi // Sparse, but with no subranges 285*b7893ccfSSadaf Ebrahimi the_end_ = true; 286*b7893ccfSSadaf Ebrahimi } 287*b7893ccfSSadaf Ebrahimi } 288*b7893ccfSSadaf Ebrahimi ConstIterator()289*b7893ccfSSadaf Ebrahimi ConstIterator() : vec_(nullptr), the_end_(true) {} 290*b7893ccfSSadaf Ebrahimi 291*b7893ccfSSadaf Ebrahimi protected: 292*b7893ccfSSadaf Ebrahimi const SparseVector *vec_; 293*b7893ccfSSadaf Ebrahimi bool the_end_; 294*b7893ccfSSadaf Ebrahimi SparseIterator it_sparse_; 295*b7893ccfSSadaf Ebrahimi bool delegated_; 296*b7893ccfSSadaf Ebrahimi IndexType index_; 297*b7893ccfSSadaf Ebrahimi ValueType value_; 298*b7893ccfSSadaf Ebrahimi 299*b7893ccfSSadaf Ebrahimi IteratorValueType current_value_; 300*b7893ccfSSadaf Ebrahimi 301*b7893ccfSSadaf Ebrahimi // in the non-delegated case we use normal accessors and skip default values. SetCurrentValue()302*b7893ccfSSadaf Ebrahimi void SetCurrentValue() { 303*b7893ccfSSadaf Ebrahimi the_end_ = true; 304*b7893ccfSSadaf Ebrahimi while (index_ < vec_->range_max_) { 305*b7893ccfSSadaf Ebrahimi value_ = vec_->Get(index_); 306*b7893ccfSSadaf Ebrahimi if (value_ != SparseVector::DefaultValue()) { 307*b7893ccfSSadaf Ebrahimi the_end_ = false; 308*b7893ccfSSadaf Ebrahimi current_value_ = IteratorValueType(index_, value_); 309*b7893ccfSSadaf Ebrahimi break; 310*b7893ccfSSadaf Ebrahimi } 311*b7893ccfSSadaf Ebrahimi index_++; 312*b7893ccfSSadaf Ebrahimi } 313*b7893ccfSSadaf Ebrahimi } 314*b7893ccfSSadaf Ebrahimi }; 315*b7893ccfSSadaf Ebrahimi typedef ConstIterator const_iterator; 316*b7893ccfSSadaf Ebrahimi cbegin()317*b7893ccfSSadaf Ebrahimi ConstIterator cbegin() const { return ConstIterator(*this); } cend()318*b7893ccfSSadaf Ebrahimi ConstIterator cend() const { return ConstIterator(); } 319*b7893ccfSSadaf Ebrahimi RangeMax()320*b7893ccfSSadaf Ebrahimi IndexType RangeMax() const { return range_max_; } RangeMin()321*b7893ccfSSadaf Ebrahimi IndexType RangeMin() const { return range_min_; } 322*b7893ccfSSadaf Ebrahimi 323*b7893ccfSSadaf Ebrahimi static const unsigned kConversionThreshold = 4; 324*b7893ccfSSadaf Ebrahimi const IndexType range_min_; // exclusive 325*b7893ccfSSadaf Ebrahimi const IndexType range_max_; // exclusive 326*b7893ccfSSadaf Ebrahimi const IndexType threshold_; // exclusive 327*b7893ccfSSadaf Ebrahimi 328*b7893ccfSSadaf Ebrahimi // Data for sparse mode 329*b7893ccfSSadaf Ebrahimi // We have a short cut for full range values when in sparse mode 330*b7893ccfSSadaf Ebrahimi bool has_full_range_value_; 331*b7893ccfSSadaf Ebrahimi ValueType full_range_value_; 332*b7893ccfSSadaf Ebrahimi std::unique_ptr<SparseType> sparse_; 333*b7893ccfSSadaf Ebrahimi 334*b7893ccfSSadaf Ebrahimi // Data for dense mode 335*b7893ccfSSadaf Ebrahimi std::unique_ptr<DenseType> dense_; 336*b7893ccfSSadaf Ebrahimi DefaultValue()337*b7893ccfSSadaf Ebrahimi static const ValueType &DefaultValue() { 338*b7893ccfSSadaf Ebrahimi static ValueType value = kDefaultValue; 339*b7893ccfSSadaf Ebrahimi return value; 340*b7893ccfSSadaf Ebrahimi } 341*b7893ccfSSadaf Ebrahimi // Note that IsSparse is compile-time reducible if kSparseThreshold is zero... IsSparse()342*b7893ccfSSadaf Ebrahimi inline bool IsSparse() const { return kSparseThreshold && sparse_.get(); } IsFullRange(IndexType start,IndexType end)343*b7893ccfSSadaf Ebrahimi bool IsFullRange(IndexType start, IndexType end) const { return (start == range_min_) && (end == range_max_); } IsFullRangeValue(const ValueType & value)344*b7893ccfSSadaf Ebrahimi bool IsFullRangeValue(const ValueType &value) const { return has_full_range_value_ && (value == full_range_value_); } HasFullRange()345*b7893ccfSSadaf Ebrahimi bool HasFullRange() const { return IsSparse() && has_full_range_value_; } HasSparseSubranges()346*b7893ccfSSadaf Ebrahimi bool HasSparseSubranges() const { return IsSparse() && !sparse_->empty(); } 347*b7893ccfSSadaf Ebrahimi 348*b7893ccfSSadaf Ebrahimi // This is called unconditionally, to encapsulate the conversion criteria and logic here SparseToDenseConversion()349*b7893ccfSSadaf Ebrahimi void SparseToDenseConversion() { 350*b7893ccfSSadaf Ebrahimi // If we're using more threshold of the sparse range, convert to dense_ 351*b7893ccfSSadaf Ebrahimi if (IsSparse() && (sparse_->size() > threshold_)) { 352*b7893ccfSSadaf Ebrahimi ValueType default_value = HasFullRange() ? full_range_value_ : kDefaultValue; 353*b7893ccfSSadaf Ebrahimi dense_.reset(new DenseType((range_max_ - range_min_), default_value)); 354*b7893ccfSSadaf Ebrahimi DenseType &ray = *dense_; 355*b7893ccfSSadaf Ebrahimi for (auto const &item : *sparse_) { 356*b7893ccfSSadaf Ebrahimi ray[item.first - range_min_] = item.second; 357*b7893ccfSSadaf Ebrahimi } 358*b7893ccfSSadaf Ebrahimi sparse_.reset(); 359*b7893ccfSSadaf Ebrahimi has_full_range_value_ = false; 360*b7893ccfSSadaf Ebrahimi } 361*b7893ccfSSadaf Ebrahimi } 362*b7893ccfSSadaf Ebrahimi 363*b7893ccfSSadaf Ebrahimi // Dense access mode setter with update semantics implemented SetDense(IndexType index,const ValueType & value)364*b7893ccfSSadaf Ebrahimi bool SetDense(IndexType index, const ValueType &value) { 365*b7893ccfSSadaf Ebrahimi bool updated = false; 366*b7893ccfSSadaf Ebrahimi ValueType ¤t_value = (*dense_)[index - range_min_]; 367*b7893ccfSSadaf Ebrahimi if ((kSetReplaces || current_value == kDefaultValue) && (value != current_value)) { 368*b7893ccfSSadaf Ebrahimi current_value = value; 369*b7893ccfSSadaf Ebrahimi updated = true; 370*b7893ccfSSadaf Ebrahimi } 371*b7893ccfSSadaf Ebrahimi return updated; 372*b7893ccfSSadaf Ebrahimi } 373*b7893ccfSSadaf Ebrahimi 374*b7893ccfSSadaf Ebrahimi // Sparse access mode setter with update full range and update semantics implemented SetSparse(IndexType index,const ValueType & value)375*b7893ccfSSadaf Ebrahimi bool SetSparse(IndexType index, const ValueType &value) { 376*b7893ccfSSadaf Ebrahimi if (!kSetReplaces && HasFullRange()) { 377*b7893ccfSSadaf Ebrahimi return false; // We have full coverage, we can change this no more 378*b7893ccfSSadaf Ebrahimi } 379*b7893ccfSSadaf Ebrahimi 380*b7893ccfSSadaf Ebrahimi if (kSetReplaces && IsFullRangeValue(value) && HasSparseSubranges()) { 381*b7893ccfSSadaf Ebrahimi auto erasure = sparse_->erase(index); // Remove duplicate record from map 382*b7893ccfSSadaf Ebrahimi return erasure > 0; 383*b7893ccfSSadaf Ebrahimi } 384*b7893ccfSSadaf Ebrahimi 385*b7893ccfSSadaf Ebrahimi // Use insert to reduce the number of hash lookups 386*b7893ccfSSadaf Ebrahimi auto map_pair = std::make_pair(index, value); 387*b7893ccfSSadaf Ebrahimi auto insert_pair = sparse_->insert(map_pair); 388*b7893ccfSSadaf Ebrahimi auto &it = insert_pair.first; // use references to avoid nested pair accesses 389*b7893ccfSSadaf Ebrahimi const bool inserted = insert_pair.second; 390*b7893ccfSSadaf Ebrahimi bool updated = false; 391*b7893ccfSSadaf Ebrahimi if (inserted) { 392*b7893ccfSSadaf Ebrahimi updated = true; 393*b7893ccfSSadaf Ebrahimi SparseToDenseConversion(); 394*b7893ccfSSadaf Ebrahimi } else if (kSetReplaces && value != it->second) { 395*b7893ccfSSadaf Ebrahimi // Only replace value if semantics allow it and it has changed. 396*b7893ccfSSadaf Ebrahimi it->second = value; 397*b7893ccfSSadaf Ebrahimi updated = true; 398*b7893ccfSSadaf Ebrahimi } 399*b7893ccfSSadaf Ebrahimi return updated; 400*b7893ccfSSadaf Ebrahimi } 401*b7893ccfSSadaf Ebrahimi }; 402*b7893ccfSSadaf Ebrahimi 403*b7893ccfSSadaf Ebrahimi } // namespace sparse_container 404*b7893ccfSSadaf Ebrahimi #endif 405