xref: /aosp_15_r20/external/vixl/test/aarch64/test-utils-aarch64.cc (revision f5c631da2f1efdd72b5fd1e20510e4042af13d77)
1*f5c631daSSadaf Ebrahimi // Copyright 2014, VIXL authors
2*f5c631daSSadaf Ebrahimi // All rights reserved.
3*f5c631daSSadaf Ebrahimi //
4*f5c631daSSadaf Ebrahimi // Redistribution and use in source and binary forms, with or without
5*f5c631daSSadaf Ebrahimi // modification, are permitted provided that the following conditions are met:
6*f5c631daSSadaf Ebrahimi //
7*f5c631daSSadaf Ebrahimi //   * Redistributions of source code must retain the above copyright notice,
8*f5c631daSSadaf Ebrahimi //     this list of conditions and the following disclaimer.
9*f5c631daSSadaf Ebrahimi //   * Redistributions in binary form must reproduce the above copyright notice,
10*f5c631daSSadaf Ebrahimi //     this list of conditions and the following disclaimer in the documentation
11*f5c631daSSadaf Ebrahimi //     and/or other materials provided with the distribution.
12*f5c631daSSadaf Ebrahimi //   * Neither the name of ARM Limited nor the names of its contributors may be
13*f5c631daSSadaf Ebrahimi //     used to endorse or promote products derived from this software without
14*f5c631daSSadaf Ebrahimi //     specific prior written permission.
15*f5c631daSSadaf Ebrahimi //
16*f5c631daSSadaf Ebrahimi // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17*f5c631daSSadaf Ebrahimi // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18*f5c631daSSadaf Ebrahimi // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19*f5c631daSSadaf Ebrahimi // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20*f5c631daSSadaf Ebrahimi // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21*f5c631daSSadaf Ebrahimi // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22*f5c631daSSadaf Ebrahimi // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23*f5c631daSSadaf Ebrahimi // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24*f5c631daSSadaf Ebrahimi // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25*f5c631daSSadaf Ebrahimi // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26*f5c631daSSadaf Ebrahimi 
27*f5c631daSSadaf Ebrahimi #include <cmath>
28*f5c631daSSadaf Ebrahimi #include <queue>
29*f5c631daSSadaf Ebrahimi 
30*f5c631daSSadaf Ebrahimi #include "test-runner.h"
31*f5c631daSSadaf Ebrahimi #include "test-utils-aarch64.h"
32*f5c631daSSadaf Ebrahimi 
33*f5c631daSSadaf Ebrahimi #include "../test/aarch64/test-simulator-inputs-aarch64.h"
34*f5c631daSSadaf Ebrahimi #include "aarch64/cpu-aarch64.h"
35*f5c631daSSadaf Ebrahimi #include "aarch64/disasm-aarch64.h"
36*f5c631daSSadaf Ebrahimi #include "aarch64/macro-assembler-aarch64.h"
37*f5c631daSSadaf Ebrahimi #include "aarch64/simulator-aarch64.h"
38*f5c631daSSadaf Ebrahimi 
39*f5c631daSSadaf Ebrahimi #define __ masm->
40*f5c631daSSadaf Ebrahimi 
41*f5c631daSSadaf Ebrahimi namespace vixl {
42*f5c631daSSadaf Ebrahimi namespace aarch64 {
43*f5c631daSSadaf Ebrahimi 
44*f5c631daSSadaf Ebrahimi 
45*f5c631daSSadaf Ebrahimi // This value is a signalling NaN as FP64, and also as FP32 or FP16 (taking the
46*f5c631daSSadaf Ebrahimi // least-significant bits).
47*f5c631daSSadaf Ebrahimi const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f807c01));
48*f5c631daSSadaf Ebrahimi const float kFP32SignallingNaN = RawbitsToFloat(0x7f807c01);
49*f5c631daSSadaf Ebrahimi const Float16 kFP16SignallingNaN = RawbitsToFloat16(0x7c01);
50*f5c631daSSadaf Ebrahimi 
51*f5c631daSSadaf Ebrahimi // A similar value, but as a quiet NaN.
52*f5c631daSSadaf Ebrahimi const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc07e01));
53*f5c631daSSadaf Ebrahimi const float kFP32QuietNaN = RawbitsToFloat(0x7fc07e01);
54*f5c631daSSadaf Ebrahimi const Float16 kFP16QuietNaN = RawbitsToFloat16(0x7e01);
55*f5c631daSSadaf Ebrahimi 
56*f5c631daSSadaf Ebrahimi 
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)57*f5c631daSSadaf Ebrahimi bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
58*f5c631daSSadaf Ebrahimi   if (result != expected) {
59*f5c631daSSadaf Ebrahimi     printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
60*f5c631daSSadaf Ebrahimi            expected,
61*f5c631daSSadaf Ebrahimi            result);
62*f5c631daSSadaf Ebrahimi   }
63*f5c631daSSadaf Ebrahimi 
64*f5c631daSSadaf Ebrahimi   return expected == result;
65*f5c631daSSadaf Ebrahimi }
66*f5c631daSSadaf Ebrahimi 
67*f5c631daSSadaf Ebrahimi 
Equal64(uint64_t reference,const RegisterDump *,uint64_t result,ExpectedResult option)68*f5c631daSSadaf Ebrahimi bool Equal64(uint64_t reference,
69*f5c631daSSadaf Ebrahimi              const RegisterDump*,
70*f5c631daSSadaf Ebrahimi              uint64_t result,
71*f5c631daSSadaf Ebrahimi              ExpectedResult option) {
72*f5c631daSSadaf Ebrahimi   switch (option) {
73*f5c631daSSadaf Ebrahimi     case kExpectEqual:
74*f5c631daSSadaf Ebrahimi       if (result != reference) {
75*f5c631daSSadaf Ebrahimi         printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
76*f5c631daSSadaf Ebrahimi                reference,
77*f5c631daSSadaf Ebrahimi                result);
78*f5c631daSSadaf Ebrahimi       }
79*f5c631daSSadaf Ebrahimi       break;
80*f5c631daSSadaf Ebrahimi     case kExpectNotEqual:
81*f5c631daSSadaf Ebrahimi       if (result == reference) {
82*f5c631daSSadaf Ebrahimi         printf("Expected a result not equal to 0x%016" PRIx64 "\n", reference);
83*f5c631daSSadaf Ebrahimi       }
84*f5c631daSSadaf Ebrahimi       break;
85*f5c631daSSadaf Ebrahimi   }
86*f5c631daSSadaf Ebrahimi 
87*f5c631daSSadaf Ebrahimi   return reference == result;
88*f5c631daSSadaf Ebrahimi }
89*f5c631daSSadaf Ebrahimi 
90*f5c631daSSadaf Ebrahimi 
Equal128(QRegisterValue expected,const RegisterDump *,QRegisterValue result)91*f5c631daSSadaf Ebrahimi bool Equal128(QRegisterValue expected,
92*f5c631daSSadaf Ebrahimi               const RegisterDump*,
93*f5c631daSSadaf Ebrahimi               QRegisterValue result) {
94*f5c631daSSadaf Ebrahimi   if (!expected.Equals(result)) {
95*f5c631daSSadaf Ebrahimi     printf("Expected 0x%016" PRIx64 "%016" PRIx64
96*f5c631daSSadaf Ebrahimi            "\t "
97*f5c631daSSadaf Ebrahimi            "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
98*f5c631daSSadaf Ebrahimi            expected.GetLane<uint64_t>(1),
99*f5c631daSSadaf Ebrahimi            expected.GetLane<uint64_t>(0),
100*f5c631daSSadaf Ebrahimi            result.GetLane<uint64_t>(1),
101*f5c631daSSadaf Ebrahimi            result.GetLane<uint64_t>(0));
102*f5c631daSSadaf Ebrahimi   }
103*f5c631daSSadaf Ebrahimi 
104*f5c631daSSadaf Ebrahimi   return expected.Equals(result);
105*f5c631daSSadaf Ebrahimi }
106*f5c631daSSadaf Ebrahimi 
107*f5c631daSSadaf Ebrahimi 
EqualFP16(Float16 expected,const RegisterDump *,Float16 result)108*f5c631daSSadaf Ebrahimi bool EqualFP16(Float16 expected, const RegisterDump*, Float16 result) {
109*f5c631daSSadaf Ebrahimi   uint16_t e_rawbits = Float16ToRawbits(expected);
110*f5c631daSSadaf Ebrahimi   uint16_t r_rawbits = Float16ToRawbits(result);
111*f5c631daSSadaf Ebrahimi   if (e_rawbits == r_rawbits) {
112*f5c631daSSadaf Ebrahimi     return true;
113*f5c631daSSadaf Ebrahimi   } else {
114*f5c631daSSadaf Ebrahimi     if (IsNaN(expected) || IsZero(expected)) {
115*f5c631daSSadaf Ebrahimi       printf("Expected 0x%04" PRIx16 "\t Found 0x%04" PRIx16 "\n",
116*f5c631daSSadaf Ebrahimi              e_rawbits,
117*f5c631daSSadaf Ebrahimi              r_rawbits);
118*f5c631daSSadaf Ebrahimi     } else {
119*f5c631daSSadaf Ebrahimi       printf("Expected %.6f (16 bit): (0x%04" PRIx16
120*f5c631daSSadaf Ebrahimi              ")\t "
121*f5c631daSSadaf Ebrahimi              "Found %.6f (0x%04" PRIx16 ")\n",
122*f5c631daSSadaf Ebrahimi              FPToFloat(expected, kIgnoreDefaultNaN),
123*f5c631daSSadaf Ebrahimi              e_rawbits,
124*f5c631daSSadaf Ebrahimi              FPToFloat(result, kIgnoreDefaultNaN),
125*f5c631daSSadaf Ebrahimi              r_rawbits);
126*f5c631daSSadaf Ebrahimi     }
127*f5c631daSSadaf Ebrahimi     return false;
128*f5c631daSSadaf Ebrahimi   }
129*f5c631daSSadaf Ebrahimi }
130*f5c631daSSadaf Ebrahimi 
131*f5c631daSSadaf Ebrahimi 
EqualFP32(float expected,const RegisterDump *,float result)132*f5c631daSSadaf Ebrahimi bool EqualFP32(float expected, const RegisterDump*, float result) {
133*f5c631daSSadaf Ebrahimi   if (FloatToRawbits(expected) == FloatToRawbits(result)) {
134*f5c631daSSadaf Ebrahimi     return true;
135*f5c631daSSadaf Ebrahimi   } else {
136*f5c631daSSadaf Ebrahimi     if (IsNaN(expected) || (expected == 0.0)) {
137*f5c631daSSadaf Ebrahimi       printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
138*f5c631daSSadaf Ebrahimi              FloatToRawbits(expected),
139*f5c631daSSadaf Ebrahimi              FloatToRawbits(result));
140*f5c631daSSadaf Ebrahimi     } else {
141*f5c631daSSadaf Ebrahimi       printf("Expected %.9f (0x%08" PRIx32
142*f5c631daSSadaf Ebrahimi              ")\t "
143*f5c631daSSadaf Ebrahimi              "Found %.9f (0x%08" PRIx32 ")\n",
144*f5c631daSSadaf Ebrahimi              expected,
145*f5c631daSSadaf Ebrahimi              FloatToRawbits(expected),
146*f5c631daSSadaf Ebrahimi              result,
147*f5c631daSSadaf Ebrahimi              FloatToRawbits(result));
148*f5c631daSSadaf Ebrahimi     }
149*f5c631daSSadaf Ebrahimi     return false;
150*f5c631daSSadaf Ebrahimi   }
151*f5c631daSSadaf Ebrahimi }
152*f5c631daSSadaf Ebrahimi 
153*f5c631daSSadaf Ebrahimi 
EqualFP64(double expected,const RegisterDump *,double result)154*f5c631daSSadaf Ebrahimi bool EqualFP64(double expected, const RegisterDump*, double result) {
155*f5c631daSSadaf Ebrahimi   if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
156*f5c631daSSadaf Ebrahimi     return true;
157*f5c631daSSadaf Ebrahimi   }
158*f5c631daSSadaf Ebrahimi 
159*f5c631daSSadaf Ebrahimi   if (IsNaN(expected) || (expected == 0.0)) {
160*f5c631daSSadaf Ebrahimi     printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
161*f5c631daSSadaf Ebrahimi            DoubleToRawbits(expected),
162*f5c631daSSadaf Ebrahimi            DoubleToRawbits(result));
163*f5c631daSSadaf Ebrahimi   } else {
164*f5c631daSSadaf Ebrahimi     printf("Expected %.17f (0x%016" PRIx64
165*f5c631daSSadaf Ebrahimi            ")\t "
166*f5c631daSSadaf Ebrahimi            "Found %.17f (0x%016" PRIx64 ")\n",
167*f5c631daSSadaf Ebrahimi            expected,
168*f5c631daSSadaf Ebrahimi            DoubleToRawbits(expected),
169*f5c631daSSadaf Ebrahimi            result,
170*f5c631daSSadaf Ebrahimi            DoubleToRawbits(result));
171*f5c631daSSadaf Ebrahimi   }
172*f5c631daSSadaf Ebrahimi   return false;
173*f5c631daSSadaf Ebrahimi }
174*f5c631daSSadaf Ebrahimi 
175*f5c631daSSadaf Ebrahimi 
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)176*f5c631daSSadaf Ebrahimi bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
177*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg.Is32Bits());
178*f5c631daSSadaf Ebrahimi   // Retrieve the corresponding X register so we can check that the upper part
179*f5c631daSSadaf Ebrahimi   // was properly cleared.
180*f5c631daSSadaf Ebrahimi   int64_t result_x = core->xreg(reg.GetCode());
181*f5c631daSSadaf Ebrahimi   if ((result_x & 0xffffffff00000000) != 0) {
182*f5c631daSSadaf Ebrahimi     printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
183*f5c631daSSadaf Ebrahimi            expected,
184*f5c631daSSadaf Ebrahimi            result_x);
185*f5c631daSSadaf Ebrahimi     return false;
186*f5c631daSSadaf Ebrahimi   }
187*f5c631daSSadaf Ebrahimi   uint32_t result_w = core->wreg(reg.GetCode());
188*f5c631daSSadaf Ebrahimi   return Equal32(expected, core, result_w);
189*f5c631daSSadaf Ebrahimi }
190*f5c631daSSadaf Ebrahimi 
191*f5c631daSSadaf Ebrahimi 
Equal64(uint64_t reference,const RegisterDump * core,const Register & reg,ExpectedResult option)192*f5c631daSSadaf Ebrahimi bool Equal64(uint64_t reference,
193*f5c631daSSadaf Ebrahimi              const RegisterDump* core,
194*f5c631daSSadaf Ebrahimi              const Register& reg,
195*f5c631daSSadaf Ebrahimi              ExpectedResult option) {
196*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg.Is64Bits());
197*f5c631daSSadaf Ebrahimi   uint64_t result = core->xreg(reg.GetCode());
198*f5c631daSSadaf Ebrahimi   return Equal64(reference, core, result, option);
199*f5c631daSSadaf Ebrahimi }
200*f5c631daSSadaf Ebrahimi 
201*f5c631daSSadaf Ebrahimi 
NotEqual64(uint64_t reference,const RegisterDump * core,const Register & reg)202*f5c631daSSadaf Ebrahimi bool NotEqual64(uint64_t reference,
203*f5c631daSSadaf Ebrahimi                 const RegisterDump* core,
204*f5c631daSSadaf Ebrahimi                 const Register& reg) {
205*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg.Is64Bits());
206*f5c631daSSadaf Ebrahimi   uint64_t result = core->xreg(reg.GetCode());
207*f5c631daSSadaf Ebrahimi   return NotEqual64(reference, core, result);
208*f5c631daSSadaf Ebrahimi }
209*f5c631daSSadaf Ebrahimi 
210*f5c631daSSadaf Ebrahimi 
Equal128(uint64_t expected_h,uint64_t expected_l,const RegisterDump * core,const VRegister & vreg)211*f5c631daSSadaf Ebrahimi bool Equal128(uint64_t expected_h,
212*f5c631daSSadaf Ebrahimi               uint64_t expected_l,
213*f5c631daSSadaf Ebrahimi               const RegisterDump* core,
214*f5c631daSSadaf Ebrahimi               const VRegister& vreg) {
215*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(vreg.Is128Bits());
216*f5c631daSSadaf Ebrahimi   QRegisterValue expected;
217*f5c631daSSadaf Ebrahimi   expected.SetLane(0, expected_l);
218*f5c631daSSadaf Ebrahimi   expected.SetLane(1, expected_h);
219*f5c631daSSadaf Ebrahimi   QRegisterValue result = core->qreg(vreg.GetCode());
220*f5c631daSSadaf Ebrahimi   return Equal128(expected, core, result);
221*f5c631daSSadaf Ebrahimi }
222*f5c631daSSadaf Ebrahimi 
223*f5c631daSSadaf Ebrahimi 
EqualFP16(Float16 expected,const RegisterDump * core,const VRegister & fpreg)224*f5c631daSSadaf Ebrahimi bool EqualFP16(Float16 expected,
225*f5c631daSSadaf Ebrahimi                const RegisterDump* core,
226*f5c631daSSadaf Ebrahimi                const VRegister& fpreg) {
227*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(fpreg.Is16Bits());
228*f5c631daSSadaf Ebrahimi   // Retrieve the corresponding D register so we can check that the upper part
229*f5c631daSSadaf Ebrahimi   // was properly cleared.
230*f5c631daSSadaf Ebrahimi   uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
231*f5c631daSSadaf Ebrahimi   if ((result_64 & 0xfffffffffff0000) != 0) {
232*f5c631daSSadaf Ebrahimi     printf("Expected 0x%04" PRIx16 " (%f)\t Found 0x%016" PRIx64 "\n",
233*f5c631daSSadaf Ebrahimi            Float16ToRawbits(expected),
234*f5c631daSSadaf Ebrahimi            FPToFloat(expected, kIgnoreDefaultNaN),
235*f5c631daSSadaf Ebrahimi            result_64);
236*f5c631daSSadaf Ebrahimi     return false;
237*f5c631daSSadaf Ebrahimi   }
238*f5c631daSSadaf Ebrahimi   return EqualFP16(expected, core, core->hreg(fpreg.GetCode()));
239*f5c631daSSadaf Ebrahimi }
240*f5c631daSSadaf Ebrahimi 
241*f5c631daSSadaf Ebrahimi 
EqualFP32(float expected,const RegisterDump * core,const VRegister & fpreg)242*f5c631daSSadaf Ebrahimi bool EqualFP32(float expected,
243*f5c631daSSadaf Ebrahimi                const RegisterDump* core,
244*f5c631daSSadaf Ebrahimi                const VRegister& fpreg) {
245*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(fpreg.Is32Bits());
246*f5c631daSSadaf Ebrahimi   // Retrieve the corresponding D register so we can check that the upper part
247*f5c631daSSadaf Ebrahimi   // was properly cleared.
248*f5c631daSSadaf Ebrahimi   uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
249*f5c631daSSadaf Ebrahimi   if ((result_64 & 0xffffffff00000000) != 0) {
250*f5c631daSSadaf Ebrahimi     printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
251*f5c631daSSadaf Ebrahimi            FloatToRawbits(expected),
252*f5c631daSSadaf Ebrahimi            expected,
253*f5c631daSSadaf Ebrahimi            result_64);
254*f5c631daSSadaf Ebrahimi     return false;
255*f5c631daSSadaf Ebrahimi   }
256*f5c631daSSadaf Ebrahimi 
257*f5c631daSSadaf Ebrahimi   return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
258*f5c631daSSadaf Ebrahimi }
259*f5c631daSSadaf Ebrahimi 
260*f5c631daSSadaf Ebrahimi 
EqualFP64(double expected,const RegisterDump * core,const VRegister & fpreg)261*f5c631daSSadaf Ebrahimi bool EqualFP64(double expected,
262*f5c631daSSadaf Ebrahimi                const RegisterDump* core,
263*f5c631daSSadaf Ebrahimi                const VRegister& fpreg) {
264*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(fpreg.Is64Bits());
265*f5c631daSSadaf Ebrahimi   return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
266*f5c631daSSadaf Ebrahimi }
267*f5c631daSSadaf Ebrahimi 
268*f5c631daSSadaf Ebrahimi 
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1,ExpectedResult option)269*f5c631daSSadaf Ebrahimi bool Equal64(const Register& reg0,
270*f5c631daSSadaf Ebrahimi              const RegisterDump* core,
271*f5c631daSSadaf Ebrahimi              const Register& reg1,
272*f5c631daSSadaf Ebrahimi              ExpectedResult option) {
273*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
274*f5c631daSSadaf Ebrahimi   int64_t reference = core->xreg(reg0.GetCode());
275*f5c631daSSadaf Ebrahimi   int64_t result = core->xreg(reg1.GetCode());
276*f5c631daSSadaf Ebrahimi   return Equal64(reference, core, result, option);
277*f5c631daSSadaf Ebrahimi }
278*f5c631daSSadaf Ebrahimi 
279*f5c631daSSadaf Ebrahimi 
NotEqual64(const Register & reg0,const RegisterDump * core,const Register & reg1)280*f5c631daSSadaf Ebrahimi bool NotEqual64(const Register& reg0,
281*f5c631daSSadaf Ebrahimi                 const RegisterDump* core,
282*f5c631daSSadaf Ebrahimi                 const Register& reg1) {
283*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
284*f5c631daSSadaf Ebrahimi   int64_t expected = core->xreg(reg0.GetCode());
285*f5c631daSSadaf Ebrahimi   int64_t result = core->xreg(reg1.GetCode());
286*f5c631daSSadaf Ebrahimi   return NotEqual64(expected, core, result);
287*f5c631daSSadaf Ebrahimi }
288*f5c631daSSadaf Ebrahimi 
289*f5c631daSSadaf Ebrahimi 
Equal64(uint64_t expected,const RegisterDump * core,const VRegister & vreg)290*f5c631daSSadaf Ebrahimi bool Equal64(uint64_t expected,
291*f5c631daSSadaf Ebrahimi              const RegisterDump* core,
292*f5c631daSSadaf Ebrahimi              const VRegister& vreg) {
293*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(vreg.Is64Bits());
294*f5c631daSSadaf Ebrahimi   uint64_t result = core->dreg_bits(vreg.GetCode());
295*f5c631daSSadaf Ebrahimi   return Equal64(expected, core, result);
296*f5c631daSSadaf Ebrahimi }
297*f5c631daSSadaf Ebrahimi 
298*f5c631daSSadaf Ebrahimi 
FlagN(uint32_t flags)299*f5c631daSSadaf Ebrahimi static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
300*f5c631daSSadaf Ebrahimi 
301*f5c631daSSadaf Ebrahimi 
FlagZ(uint32_t flags)302*f5c631daSSadaf Ebrahimi static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
303*f5c631daSSadaf Ebrahimi 
304*f5c631daSSadaf Ebrahimi 
FlagC(uint32_t flags)305*f5c631daSSadaf Ebrahimi static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
306*f5c631daSSadaf Ebrahimi 
307*f5c631daSSadaf Ebrahimi 
FlagV(uint32_t flags)308*f5c631daSSadaf Ebrahimi static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
309*f5c631daSSadaf Ebrahimi 
310*f5c631daSSadaf Ebrahimi 
EqualNzcv(uint32_t expected,uint32_t result)311*f5c631daSSadaf Ebrahimi bool EqualNzcv(uint32_t expected, uint32_t result) {
312*f5c631daSSadaf Ebrahimi   VIXL_ASSERT((expected & ~NZCVFlag) == 0);
313*f5c631daSSadaf Ebrahimi   VIXL_ASSERT((result & ~NZCVFlag) == 0);
314*f5c631daSSadaf Ebrahimi   if (result != expected) {
315*f5c631daSSadaf Ebrahimi     printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
316*f5c631daSSadaf Ebrahimi            FlagN(expected),
317*f5c631daSSadaf Ebrahimi            FlagZ(expected),
318*f5c631daSSadaf Ebrahimi            FlagC(expected),
319*f5c631daSSadaf Ebrahimi            FlagV(expected),
320*f5c631daSSadaf Ebrahimi            FlagN(result),
321*f5c631daSSadaf Ebrahimi            FlagZ(result),
322*f5c631daSSadaf Ebrahimi            FlagC(result),
323*f5c631daSSadaf Ebrahimi            FlagV(result));
324*f5c631daSSadaf Ebrahimi     return false;
325*f5c631daSSadaf Ebrahimi   }
326*f5c631daSSadaf Ebrahimi 
327*f5c631daSSadaf Ebrahimi   return true;
328*f5c631daSSadaf Ebrahimi }
329*f5c631daSSadaf Ebrahimi 
330*f5c631daSSadaf Ebrahimi 
EqualRegisters(const RegisterDump * a,const RegisterDump * b)331*f5c631daSSadaf Ebrahimi bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
332*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
333*f5c631daSSadaf Ebrahimi     if (a->xreg(i) != b->xreg(i)) {
334*f5c631daSSadaf Ebrahimi       printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
335*f5c631daSSadaf Ebrahimi              i,
336*f5c631daSSadaf Ebrahimi              a->xreg(i),
337*f5c631daSSadaf Ebrahimi              b->xreg(i));
338*f5c631daSSadaf Ebrahimi       return false;
339*f5c631daSSadaf Ebrahimi     }
340*f5c631daSSadaf Ebrahimi   }
341*f5c631daSSadaf Ebrahimi 
342*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
343*f5c631daSSadaf Ebrahimi     uint64_t a_bits = a->dreg_bits(i);
344*f5c631daSSadaf Ebrahimi     uint64_t b_bits = b->dreg_bits(i);
345*f5c631daSSadaf Ebrahimi     if (a_bits != b_bits) {
346*f5c631daSSadaf Ebrahimi       printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
347*f5c631daSSadaf Ebrahimi              i,
348*f5c631daSSadaf Ebrahimi              a_bits,
349*f5c631daSSadaf Ebrahimi              b_bits);
350*f5c631daSSadaf Ebrahimi       return false;
351*f5c631daSSadaf Ebrahimi     }
352*f5c631daSSadaf Ebrahimi   }
353*f5c631daSSadaf Ebrahimi 
354*f5c631daSSadaf Ebrahimi   return true;
355*f5c631daSSadaf Ebrahimi }
356*f5c631daSSadaf Ebrahimi 
EqualSVELane(uint64_t expected,const RegisterDump * core,const ZRegister & reg,int lane)357*f5c631daSSadaf Ebrahimi bool EqualSVELane(uint64_t expected,
358*f5c631daSSadaf Ebrahimi                   const RegisterDump* core,
359*f5c631daSSadaf Ebrahimi                   const ZRegister& reg,
360*f5c631daSSadaf Ebrahimi                   int lane) {
361*f5c631daSSadaf Ebrahimi   unsigned lane_size = reg.GetLaneSizeInBits();
362*f5c631daSSadaf Ebrahimi   // For convenience in the tests, we allow negative values to be passed into
363*f5c631daSSadaf Ebrahimi   // `expected`, but truncate them to an appropriately-sized unsigned value for
364*f5c631daSSadaf Ebrahimi   // the check. For example, in `EqualSVELane(-1, core, z0.VnB())`, the expected
365*f5c631daSSadaf Ebrahimi   // value is truncated from 0xffffffffffffffff to 0xff before the comparison.
366*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(IsUintN(lane_size, expected) ||
367*f5c631daSSadaf Ebrahimi               IsIntN(lane_size, RawbitsToInt64(expected)));
368*f5c631daSSadaf Ebrahimi   expected &= GetUintMask(lane_size);
369*f5c631daSSadaf Ebrahimi 
370*f5c631daSSadaf Ebrahimi   uint64_t result = core->zreg_lane(reg.GetCode(), lane_size, lane);
371*f5c631daSSadaf Ebrahimi   if (expected != result) {
372*f5c631daSSadaf Ebrahimi     unsigned lane_size_in_hex_chars = lane_size / 4;
373*f5c631daSSadaf Ebrahimi     std::string reg_name = reg.GetArchitecturalName();
374*f5c631daSSadaf Ebrahimi     printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
375*f5c631daSSadaf Ebrahimi            reg_name.c_str(),
376*f5c631daSSadaf Ebrahimi            lane,
377*f5c631daSSadaf Ebrahimi            lane_size_in_hex_chars,
378*f5c631daSSadaf Ebrahimi            expected,
379*f5c631daSSadaf Ebrahimi            lane_size_in_hex_chars,
380*f5c631daSSadaf Ebrahimi            result);
381*f5c631daSSadaf Ebrahimi     return false;
382*f5c631daSSadaf Ebrahimi   }
383*f5c631daSSadaf Ebrahimi   return true;
384*f5c631daSSadaf Ebrahimi }
385*f5c631daSSadaf Ebrahimi 
EqualSVELane(uint64_t expected,const RegisterDump * core,const PRegister & reg,int lane)386*f5c631daSSadaf Ebrahimi bool EqualSVELane(uint64_t expected,
387*f5c631daSSadaf Ebrahimi                   const RegisterDump* core,
388*f5c631daSSadaf Ebrahimi                   const PRegister& reg,
389*f5c631daSSadaf Ebrahimi                   int lane) {
390*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(reg.HasLaneSize());
391*f5c631daSSadaf Ebrahimi   VIXL_ASSERT((reg.GetLaneSizeInBits() % kZRegBitsPerPRegBit) == 0);
392*f5c631daSSadaf Ebrahimi   unsigned p_bits_per_lane = reg.GetLaneSizeInBits() / kZRegBitsPerPRegBit;
393*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(IsUintN(p_bits_per_lane, expected));
394*f5c631daSSadaf Ebrahimi   expected &= GetUintMask(p_bits_per_lane);
395*f5c631daSSadaf Ebrahimi 
396*f5c631daSSadaf Ebrahimi   uint64_t result = core->preg_lane(reg.GetCode(), p_bits_per_lane, lane);
397*f5c631daSSadaf Ebrahimi   if (expected != result) {
398*f5c631daSSadaf Ebrahimi     unsigned lane_size_in_hex_chars = (p_bits_per_lane + 3) / 4;
399*f5c631daSSadaf Ebrahimi     std::string reg_name = reg.GetArchitecturalName();
400*f5c631daSSadaf Ebrahimi     printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
401*f5c631daSSadaf Ebrahimi            reg_name.c_str(),
402*f5c631daSSadaf Ebrahimi            lane,
403*f5c631daSSadaf Ebrahimi            lane_size_in_hex_chars,
404*f5c631daSSadaf Ebrahimi            expected,
405*f5c631daSSadaf Ebrahimi            lane_size_in_hex_chars,
406*f5c631daSSadaf Ebrahimi            result);
407*f5c631daSSadaf Ebrahimi     return false;
408*f5c631daSSadaf Ebrahimi   }
409*f5c631daSSadaf Ebrahimi   return true;
410*f5c631daSSadaf Ebrahimi }
411*f5c631daSSadaf Ebrahimi 
412*f5c631daSSadaf Ebrahimi struct EqualMemoryChunk {
413*f5c631daSSadaf Ebrahimi   typedef uint64_t RawChunk;
414*f5c631daSSadaf Ebrahimi 
415*f5c631daSSadaf Ebrahimi   uintptr_t address;
416*f5c631daSSadaf Ebrahimi   RawChunk expected;
417*f5c631daSSadaf Ebrahimi   RawChunk result;
418*f5c631daSSadaf Ebrahimi 
IsEqualvixl::aarch64::EqualMemoryChunk419*f5c631daSSadaf Ebrahimi   bool IsEqual() const { return expected == result; }
420*f5c631daSSadaf Ebrahimi };
421*f5c631daSSadaf Ebrahimi 
EqualMemory(const void * expected,const void * result,size_t size_in_bytes,size_t zero_offset)422*f5c631daSSadaf Ebrahimi bool EqualMemory(const void* expected,
423*f5c631daSSadaf Ebrahimi                  const void* result,
424*f5c631daSSadaf Ebrahimi                  size_t size_in_bytes,
425*f5c631daSSadaf Ebrahimi                  size_t zero_offset) {
426*f5c631daSSadaf Ebrahimi   if (memcmp(expected, result, size_in_bytes) == 0) return true;
427*f5c631daSSadaf Ebrahimi 
428*f5c631daSSadaf Ebrahimi   // Read 64-bit chunks, and print them side-by-side if they don't match.
429*f5c631daSSadaf Ebrahimi 
430*f5c631daSSadaf Ebrahimi   // Remember the last few chunks, even if they matched, so we can print some
431*f5c631daSSadaf Ebrahimi   // context. We don't want to print the whole buffer, because it could be huge.
432*f5c631daSSadaf Ebrahimi   static const size_t kContextLines = 1;
433*f5c631daSSadaf Ebrahimi   std::queue<EqualMemoryChunk> context;
434*f5c631daSSadaf Ebrahimi   static const size_t kChunkSize = sizeof(EqualMemoryChunk::RawChunk);
435*f5c631daSSadaf Ebrahimi 
436*f5c631daSSadaf Ebrahimi   // This assumption keeps the logic simple, and is acceptable for our tests.
437*f5c631daSSadaf Ebrahimi   VIXL_ASSERT((size_in_bytes % kChunkSize) == 0);
438*f5c631daSSadaf Ebrahimi 
439*f5c631daSSadaf Ebrahimi   const char* expected_it = reinterpret_cast<const char*>(expected);
440*f5c631daSSadaf Ebrahimi   const char* result_it = reinterpret_cast<const char*>(result);
441*f5c631daSSadaf Ebrahimi 
442*f5c631daSSadaf Ebrahimi   // This is the first error, so print a header row.
443*f5c631daSSadaf Ebrahimi   printf("  Address (of result)                  Expected           Result\n");
444*f5c631daSSadaf Ebrahimi 
445*f5c631daSSadaf Ebrahimi   // Always print some context at the start of the buffer.
446*f5c631daSSadaf Ebrahimi   uintptr_t print_context_to =
447*f5c631daSSadaf Ebrahimi       reinterpret_cast<uintptr_t>(result) + (kContextLines + 1) * kChunkSize;
448*f5c631daSSadaf Ebrahimi   for (size_t i = 0; i < size_in_bytes; i += kChunkSize) {
449*f5c631daSSadaf Ebrahimi     EqualMemoryChunk chunk;
450*f5c631daSSadaf Ebrahimi     chunk.address = reinterpret_cast<uintptr_t>(result_it);
451*f5c631daSSadaf Ebrahimi     memcpy(&chunk.expected, expected_it, kChunkSize);
452*f5c631daSSadaf Ebrahimi     memcpy(&chunk.result, result_it, kChunkSize);
453*f5c631daSSadaf Ebrahimi 
454*f5c631daSSadaf Ebrahimi     while (context.size() > kContextLines) context.pop();
455*f5c631daSSadaf Ebrahimi     context.push(chunk);
456*f5c631daSSadaf Ebrahimi 
457*f5c631daSSadaf Ebrahimi     // Print context after an error, and at the end of the buffer.
458*f5c631daSSadaf Ebrahimi     if (!chunk.IsEqual() || ((i + kChunkSize) >= size_in_bytes)) {
459*f5c631daSSadaf Ebrahimi       if (chunk.address > print_context_to) {
460*f5c631daSSadaf Ebrahimi         // We aren't currently printing context, so separate this context from
461*f5c631daSSadaf Ebrahimi         // the previous block.
462*f5c631daSSadaf Ebrahimi         printf("...\n");
463*f5c631daSSadaf Ebrahimi       }
464*f5c631daSSadaf Ebrahimi       print_context_to = chunk.address + (kContextLines + 1) * kChunkSize;
465*f5c631daSSadaf Ebrahimi     }
466*f5c631daSSadaf Ebrahimi 
467*f5c631daSSadaf Ebrahimi     // Print context (including the current line).
468*f5c631daSSadaf Ebrahimi     while (!context.empty() && (context.front().address < print_context_to)) {
469*f5c631daSSadaf Ebrahimi       uintptr_t address = context.front().address;
470*f5c631daSSadaf Ebrahimi       uint64_t offset = address - reinterpret_cast<uintptr_t>(result);
471*f5c631daSSadaf Ebrahimi       bool is_negative = (offset < zero_offset);
472*f5c631daSSadaf Ebrahimi       printf("0x%016" PRIxPTR " (result %c %5" PRIu64 "): 0x%016" PRIx64
473*f5c631daSSadaf Ebrahimi              " 0x%016" PRIx64 "\n",
474*f5c631daSSadaf Ebrahimi              address,
475*f5c631daSSadaf Ebrahimi              (is_negative ? '-' : '+'),
476*f5c631daSSadaf Ebrahimi              (is_negative ? (zero_offset - offset) : (offset - zero_offset)),
477*f5c631daSSadaf Ebrahimi              context.front().expected,
478*f5c631daSSadaf Ebrahimi              context.front().result);
479*f5c631daSSadaf Ebrahimi       context.pop();
480*f5c631daSSadaf Ebrahimi     }
481*f5c631daSSadaf Ebrahimi 
482*f5c631daSSadaf Ebrahimi     expected_it += kChunkSize;
483*f5c631daSSadaf Ebrahimi     result_it += kChunkSize;
484*f5c631daSSadaf Ebrahimi   }
485*f5c631daSSadaf Ebrahimi 
486*f5c631daSSadaf Ebrahimi   return false;
487*f5c631daSSadaf Ebrahimi }
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)488*f5c631daSSadaf Ebrahimi RegList PopulateRegisterArray(Register* w,
489*f5c631daSSadaf Ebrahimi                               Register* x,
490*f5c631daSSadaf Ebrahimi                               Register* r,
491*f5c631daSSadaf Ebrahimi                               int reg_size,
492*f5c631daSSadaf Ebrahimi                               int reg_count,
493*f5c631daSSadaf Ebrahimi                               RegList allowed) {
494*f5c631daSSadaf Ebrahimi   RegList list = 0;
495*f5c631daSSadaf Ebrahimi   int i = 0;
496*f5c631daSSadaf Ebrahimi   for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
497*f5c631daSSadaf Ebrahimi     if (((UINT64_C(1) << n) & allowed) != 0) {
498*f5c631daSSadaf Ebrahimi       // Only assign allowed registers.
499*f5c631daSSadaf Ebrahimi       if (r) {
500*f5c631daSSadaf Ebrahimi         r[i] = Register(n, reg_size);
501*f5c631daSSadaf Ebrahimi       }
502*f5c631daSSadaf Ebrahimi       if (x) {
503*f5c631daSSadaf Ebrahimi         x[i] = Register(n, kXRegSize);
504*f5c631daSSadaf Ebrahimi       }
505*f5c631daSSadaf Ebrahimi       if (w) {
506*f5c631daSSadaf Ebrahimi         w[i] = Register(n, kWRegSize);
507*f5c631daSSadaf Ebrahimi       }
508*f5c631daSSadaf Ebrahimi       list |= (UINT64_C(1) << n);
509*f5c631daSSadaf Ebrahimi       i++;
510*f5c631daSSadaf Ebrahimi     }
511*f5c631daSSadaf Ebrahimi   }
512*f5c631daSSadaf Ebrahimi   // Check that we got enough registers.
513*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
514*f5c631daSSadaf Ebrahimi 
515*f5c631daSSadaf Ebrahimi   return list;
516*f5c631daSSadaf Ebrahimi }
517*f5c631daSSadaf Ebrahimi 
518*f5c631daSSadaf Ebrahimi 
PopulateVRegisterArray(VRegister * s,VRegister * d,VRegister * v,int reg_size,int reg_count,RegList allowed)519*f5c631daSSadaf Ebrahimi RegList PopulateVRegisterArray(VRegister* s,
520*f5c631daSSadaf Ebrahimi                                VRegister* d,
521*f5c631daSSadaf Ebrahimi                                VRegister* v,
522*f5c631daSSadaf Ebrahimi                                int reg_size,
523*f5c631daSSadaf Ebrahimi                                int reg_count,
524*f5c631daSSadaf Ebrahimi                                RegList allowed) {
525*f5c631daSSadaf Ebrahimi   RegList list = 0;
526*f5c631daSSadaf Ebrahimi   int i = 0;
527*f5c631daSSadaf Ebrahimi   for (unsigned n = 0; (n < kNumberOfVRegisters) && (i < reg_count); n++) {
528*f5c631daSSadaf Ebrahimi     if (((UINT64_C(1) << n) & allowed) != 0) {
529*f5c631daSSadaf Ebrahimi       // Only assigned allowed registers.
530*f5c631daSSadaf Ebrahimi       if (v) {
531*f5c631daSSadaf Ebrahimi         v[i] = VRegister(n, reg_size);
532*f5c631daSSadaf Ebrahimi       }
533*f5c631daSSadaf Ebrahimi       if (d) {
534*f5c631daSSadaf Ebrahimi         d[i] = VRegister(n, kDRegSize);
535*f5c631daSSadaf Ebrahimi       }
536*f5c631daSSadaf Ebrahimi       if (s) {
537*f5c631daSSadaf Ebrahimi         s[i] = VRegister(n, kSRegSize);
538*f5c631daSSadaf Ebrahimi       }
539*f5c631daSSadaf Ebrahimi       list |= (UINT64_C(1) << n);
540*f5c631daSSadaf Ebrahimi       i++;
541*f5c631daSSadaf Ebrahimi     }
542*f5c631daSSadaf Ebrahimi   }
543*f5c631daSSadaf Ebrahimi   // Check that we got enough registers.
544*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(CountSetBits(list, kNumberOfVRegisters) == reg_count);
545*f5c631daSSadaf Ebrahimi 
546*f5c631daSSadaf Ebrahimi   return list;
547*f5c631daSSadaf Ebrahimi }
548*f5c631daSSadaf Ebrahimi 
549*f5c631daSSadaf Ebrahimi 
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)550*f5c631daSSadaf Ebrahimi void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
551*f5c631daSSadaf Ebrahimi   Register first = NoReg;
552*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
553*f5c631daSSadaf Ebrahimi     if (reg_list & (UINT64_C(1) << i)) {
554*f5c631daSSadaf Ebrahimi       Register xn(i, kXRegSize);
555*f5c631daSSadaf Ebrahimi       // We should never write into sp here.
556*f5c631daSSadaf Ebrahimi       VIXL_ASSERT(!xn.Is(sp));
557*f5c631daSSadaf Ebrahimi       if (!xn.IsZero()) {
558*f5c631daSSadaf Ebrahimi         if (!first.IsValid()) {
559*f5c631daSSadaf Ebrahimi           // This is the first register we've hit, so construct the literal.
560*f5c631daSSadaf Ebrahimi           __ Mov(xn, value);
561*f5c631daSSadaf Ebrahimi           first = xn;
562*f5c631daSSadaf Ebrahimi         } else {
563*f5c631daSSadaf Ebrahimi           // We've already loaded the literal, so re-use the value already
564*f5c631daSSadaf Ebrahimi           // loaded into the first register we hit.
565*f5c631daSSadaf Ebrahimi           __ Mov(xn, first);
566*f5c631daSSadaf Ebrahimi         }
567*f5c631daSSadaf Ebrahimi       }
568*f5c631daSSadaf Ebrahimi     }
569*f5c631daSSadaf Ebrahimi   }
570*f5c631daSSadaf Ebrahimi }
571*f5c631daSSadaf Ebrahimi 
572*f5c631daSSadaf Ebrahimi 
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)573*f5c631daSSadaf Ebrahimi void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
574*f5c631daSSadaf Ebrahimi   VRegister first = NoVReg;
575*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
576*f5c631daSSadaf Ebrahimi     if (reg_list & (UINT64_C(1) << i)) {
577*f5c631daSSadaf Ebrahimi       VRegister dn(i, kDRegSize);
578*f5c631daSSadaf Ebrahimi       if (!first.IsValid()) {
579*f5c631daSSadaf Ebrahimi         // This is the first register we've hit, so construct the literal.
580*f5c631daSSadaf Ebrahimi         __ Fmov(dn, value);
581*f5c631daSSadaf Ebrahimi         first = dn;
582*f5c631daSSadaf Ebrahimi       } else {
583*f5c631daSSadaf Ebrahimi         // We've already loaded the literal, so re-use the value already loaded
584*f5c631daSSadaf Ebrahimi         // into the first register we hit.
585*f5c631daSSadaf Ebrahimi         __ Fmov(dn, first);
586*f5c631daSSadaf Ebrahimi       }
587*f5c631daSSadaf Ebrahimi     }
588*f5c631daSSadaf Ebrahimi   }
589*f5c631daSSadaf Ebrahimi }
590*f5c631daSSadaf Ebrahimi 
591*f5c631daSSadaf Ebrahimi 
Clobber(MacroAssembler * masm,CPURegList reg_list)592*f5c631daSSadaf Ebrahimi void Clobber(MacroAssembler* masm, CPURegList reg_list) {
593*f5c631daSSadaf Ebrahimi   if (reg_list.GetType() == CPURegister::kRegister) {
594*f5c631daSSadaf Ebrahimi     // This will always clobber X registers.
595*f5c631daSSadaf Ebrahimi     Clobber(masm, reg_list.GetList());
596*f5c631daSSadaf Ebrahimi   } else if (reg_list.GetType() == CPURegister::kVRegister) {
597*f5c631daSSadaf Ebrahimi     // This will always clobber D registers.
598*f5c631daSSadaf Ebrahimi     ClobberFP(masm, reg_list.GetList());
599*f5c631daSSadaf Ebrahimi   } else {
600*f5c631daSSadaf Ebrahimi     VIXL_UNIMPLEMENTED();
601*f5c631daSSadaf Ebrahimi   }
602*f5c631daSSadaf Ebrahimi }
603*f5c631daSSadaf Ebrahimi 
604*f5c631daSSadaf Ebrahimi // TODO: Once registers have sufficiently compatible interfaces, merge the two
605*f5c631daSSadaf Ebrahimi // DumpRegisters templates.
606*f5c631daSSadaf Ebrahimi template <typename T>
DumpRegisters(MacroAssembler * masm,Register dump_base,int offset)607*f5c631daSSadaf Ebrahimi static void DumpRegisters(MacroAssembler* masm,
608*f5c631daSSadaf Ebrahimi                           Register dump_base,
609*f5c631daSSadaf Ebrahimi                           int offset) {
610*f5c631daSSadaf Ebrahimi   UseScratchRegisterScope temps(masm);
611*f5c631daSSadaf Ebrahimi   Register dump = temps.AcquireX();
612*f5c631daSSadaf Ebrahimi   __ Add(dump, dump_base, offset);
613*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
614*f5c631daSSadaf Ebrahimi     T reg(i);
615*f5c631daSSadaf Ebrahimi     __ Str(reg, SVEMemOperand(dump));
616*f5c631daSSadaf Ebrahimi     __ Add(dump, dump, reg.GetMaxSizeInBytes());
617*f5c631daSSadaf Ebrahimi   }
618*f5c631daSSadaf Ebrahimi }
619*f5c631daSSadaf Ebrahimi 
620*f5c631daSSadaf Ebrahimi template <typename T>
DumpRegisters(MacroAssembler * masm,Register dump_base,int offset,int reg_size_in_bytes)621*f5c631daSSadaf Ebrahimi static void DumpRegisters(MacroAssembler* masm,
622*f5c631daSSadaf Ebrahimi                           Register dump_base,
623*f5c631daSSadaf Ebrahimi                           int offset,
624*f5c631daSSadaf Ebrahimi                           int reg_size_in_bytes) {
625*f5c631daSSadaf Ebrahimi   UseScratchRegisterScope temps(masm);
626*f5c631daSSadaf Ebrahimi   Register dump = temps.AcquireX();
627*f5c631daSSadaf Ebrahimi   __ Add(dump, dump_base, offset);
628*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
629*f5c631daSSadaf Ebrahimi     T reg(i, reg_size_in_bytes * kBitsPerByte);
630*f5c631daSSadaf Ebrahimi     __ Str(reg, MemOperand(dump));
631*f5c631daSSadaf Ebrahimi     __ Add(dump, dump, reg_size_in_bytes);
632*f5c631daSSadaf Ebrahimi   }
633*f5c631daSSadaf Ebrahimi }
634*f5c631daSSadaf Ebrahimi 
Dump(MacroAssembler * masm)635*f5c631daSSadaf Ebrahimi void RegisterDump::Dump(MacroAssembler* masm) {
636*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(__ StackPointer().Is(sp));
637*f5c631daSSadaf Ebrahimi 
638*f5c631daSSadaf Ebrahimi   dump_cpu_features_ = *masm->GetCPUFeatures();
639*f5c631daSSadaf Ebrahimi 
640*f5c631daSSadaf Ebrahimi   // We need some scratch registers, but we also need to dump them, so we have
641*f5c631daSSadaf Ebrahimi   // to control exactly which registers are used, and dump them separately.
642*f5c631daSSadaf Ebrahimi   CPURegList scratch_registers(x0, x1, x2, x3);
643*f5c631daSSadaf Ebrahimi 
644*f5c631daSSadaf Ebrahimi   UseScratchRegisterScope temps(masm);
645*f5c631daSSadaf Ebrahimi   temps.ExcludeAll();
646*f5c631daSSadaf Ebrahimi   __ PushCPURegList(scratch_registers);
647*f5c631daSSadaf Ebrahimi   temps.Include(scratch_registers);
648*f5c631daSSadaf Ebrahimi 
649*f5c631daSSadaf Ebrahimi   Register dump_base = temps.AcquireX();
650*f5c631daSSadaf Ebrahimi   Register tmp = temps.AcquireX();
651*f5c631daSSadaf Ebrahimi 
652*f5c631daSSadaf Ebrahimi   // Offsets into the dump_ structure.
653*f5c631daSSadaf Ebrahimi   const int x_offset = offsetof(dump_t, x_);
654*f5c631daSSadaf Ebrahimi   const int w_offset = offsetof(dump_t, w_);
655*f5c631daSSadaf Ebrahimi   const int d_offset = offsetof(dump_t, d_);
656*f5c631daSSadaf Ebrahimi   const int s_offset = offsetof(dump_t, s_);
657*f5c631daSSadaf Ebrahimi   const int h_offset = offsetof(dump_t, h_);
658*f5c631daSSadaf Ebrahimi   const int q_offset = offsetof(dump_t, q_);
659*f5c631daSSadaf Ebrahimi   const int z_offset = offsetof(dump_t, z_);
660*f5c631daSSadaf Ebrahimi   const int p_offset = offsetof(dump_t, p_);
661*f5c631daSSadaf Ebrahimi   const int sp_offset = offsetof(dump_t, sp_);
662*f5c631daSSadaf Ebrahimi   const int wsp_offset = offsetof(dump_t, wsp_);
663*f5c631daSSadaf Ebrahimi   const int flags_offset = offsetof(dump_t, flags_);
664*f5c631daSSadaf Ebrahimi   const int vl_offset = offsetof(dump_t, vl_);
665*f5c631daSSadaf Ebrahimi 
666*f5c631daSSadaf Ebrahimi   // Load the address where we will dump the state.
667*f5c631daSSadaf Ebrahimi   __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
668*f5c631daSSadaf Ebrahimi 
669*f5c631daSSadaf Ebrahimi   // Dump the stack pointer (sp and wsp).
670*f5c631daSSadaf Ebrahimi   // The stack pointer cannot be stored directly; it needs to be moved into
671*f5c631daSSadaf Ebrahimi   // another register first. Also, we pushed four X registers, so we need to
672*f5c631daSSadaf Ebrahimi   // compensate here.
673*f5c631daSSadaf Ebrahimi   __ Add(tmp, sp, 4 * kXRegSizeInBytes);
674*f5c631daSSadaf Ebrahimi   __ Str(tmp, MemOperand(dump_base, sp_offset));
675*f5c631daSSadaf Ebrahimi   __ Add(tmp.W(), wsp, 4 * kXRegSizeInBytes);
676*f5c631daSSadaf Ebrahimi   __ Str(tmp.W(), MemOperand(dump_base, wsp_offset));
677*f5c631daSSadaf Ebrahimi 
678*f5c631daSSadaf Ebrahimi   // Dump core registers.
679*f5c631daSSadaf Ebrahimi   DumpRegisters<Register>(masm, dump_base, x_offset, kXRegSizeInBytes);
680*f5c631daSSadaf Ebrahimi   DumpRegisters<Register>(masm, dump_base, w_offset, kWRegSizeInBytes);
681*f5c631daSSadaf Ebrahimi 
682*f5c631daSSadaf Ebrahimi   // Dump NEON and FP registers.
683*f5c631daSSadaf Ebrahimi   DumpRegisters<VRegister>(masm, dump_base, q_offset, kQRegSizeInBytes);
684*f5c631daSSadaf Ebrahimi   DumpRegisters<VRegister>(masm, dump_base, d_offset, kDRegSizeInBytes);
685*f5c631daSSadaf Ebrahimi   DumpRegisters<VRegister>(masm, dump_base, s_offset, kSRegSizeInBytes);
686*f5c631daSSadaf Ebrahimi   DumpRegisters<VRegister>(masm, dump_base, h_offset, kHRegSizeInBytes);
687*f5c631daSSadaf Ebrahimi 
688*f5c631daSSadaf Ebrahimi   // Dump SVE registers.
689*f5c631daSSadaf Ebrahimi   if (CPUHas(CPUFeatures::kSVE)) {
690*f5c631daSSadaf Ebrahimi     DumpRegisters<ZRegister>(masm, dump_base, z_offset);
691*f5c631daSSadaf Ebrahimi     DumpRegisters<PRegister>(masm, dump_base, p_offset);
692*f5c631daSSadaf Ebrahimi 
693*f5c631daSSadaf Ebrahimi     // Record the vector length.
694*f5c631daSSadaf Ebrahimi     __ Rdvl(tmp, kBitsPerByte);
695*f5c631daSSadaf Ebrahimi     __ Str(tmp, MemOperand(dump_base, vl_offset));
696*f5c631daSSadaf Ebrahimi   }
697*f5c631daSSadaf Ebrahimi 
698*f5c631daSSadaf Ebrahimi   // Dump the flags.
699*f5c631daSSadaf Ebrahimi   __ Mrs(tmp, NZCV);
700*f5c631daSSadaf Ebrahimi   __ Str(tmp, MemOperand(dump_base, flags_offset));
701*f5c631daSSadaf Ebrahimi 
702*f5c631daSSadaf Ebrahimi   // To dump the values we used as scratch registers, we need a new scratch
703*f5c631daSSadaf Ebrahimi   // register. We can use any of the already dumped registers since we can
704*f5c631daSSadaf Ebrahimi   // easily restore them.
705*f5c631daSSadaf Ebrahimi   Register dump2_base = x10;
706*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(!scratch_registers.IncludesAliasOf(dump2_base));
707*f5c631daSSadaf Ebrahimi 
708*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(scratch_registers.IncludesAliasOf(dump_base));
709*f5c631daSSadaf Ebrahimi 
710*f5c631daSSadaf Ebrahimi   // Ensure that we don't try to use the scratch registers again.
711*f5c631daSSadaf Ebrahimi   temps.ExcludeAll();
712*f5c631daSSadaf Ebrahimi 
713*f5c631daSSadaf Ebrahimi   // Don't lose the dump_ address.
714*f5c631daSSadaf Ebrahimi   __ Mov(dump2_base, dump_base);
715*f5c631daSSadaf Ebrahimi 
716*f5c631daSSadaf Ebrahimi   __ PopCPURegList(scratch_registers);
717*f5c631daSSadaf Ebrahimi 
718*f5c631daSSadaf Ebrahimi   while (!scratch_registers.IsEmpty()) {
719*f5c631daSSadaf Ebrahimi     CPURegister reg = scratch_registers.PopLowestIndex();
720*f5c631daSSadaf Ebrahimi     Register x = reg.X();
721*f5c631daSSadaf Ebrahimi     Register w = reg.W();
722*f5c631daSSadaf Ebrahimi     unsigned code = reg.GetCode();
723*f5c631daSSadaf Ebrahimi     __ Str(x, MemOperand(dump2_base, x_offset + (code * kXRegSizeInBytes)));
724*f5c631daSSadaf Ebrahimi     __ Str(w, MemOperand(dump2_base, w_offset + (code * kWRegSizeInBytes)));
725*f5c631daSSadaf Ebrahimi   }
726*f5c631daSSadaf Ebrahimi 
727*f5c631daSSadaf Ebrahimi   // Finally, restore dump2_base.
728*f5c631daSSadaf Ebrahimi   __ Ldr(dump2_base,
729*f5c631daSSadaf Ebrahimi          MemOperand(dump2_base,
730*f5c631daSSadaf Ebrahimi                     x_offset + (dump2_base.GetCode() * kXRegSizeInBytes)));
731*f5c631daSSadaf Ebrahimi 
732*f5c631daSSadaf Ebrahimi   completed_ = true;
733*f5c631daSSadaf Ebrahimi }
734*f5c631daSSadaf Ebrahimi 
GetSignallingNan(int size_in_bits)735*f5c631daSSadaf Ebrahimi uint64_t GetSignallingNan(int size_in_bits) {
736*f5c631daSSadaf Ebrahimi   switch (size_in_bits) {
737*f5c631daSSadaf Ebrahimi     case kHRegSize:
738*f5c631daSSadaf Ebrahimi       return Float16ToRawbits(kFP16SignallingNaN);
739*f5c631daSSadaf Ebrahimi     case kSRegSize:
740*f5c631daSSadaf Ebrahimi       return FloatToRawbits(kFP32SignallingNaN);
741*f5c631daSSadaf Ebrahimi     case kDRegSize:
742*f5c631daSSadaf Ebrahimi       return DoubleToRawbits(kFP64SignallingNaN);
743*f5c631daSSadaf Ebrahimi     default:
744*f5c631daSSadaf Ebrahimi       VIXL_UNIMPLEMENTED();
745*f5c631daSSadaf Ebrahimi       return 0;
746*f5c631daSSadaf Ebrahimi   }
747*f5c631daSSadaf Ebrahimi }
748*f5c631daSSadaf Ebrahimi 
CanRun(const CPUFeatures & required,bool * queried_can_run)749*f5c631daSSadaf Ebrahimi bool CanRun(const CPUFeatures& required, bool* queried_can_run) {
750*f5c631daSSadaf Ebrahimi   bool log_if_missing = true;
751*f5c631daSSadaf Ebrahimi   if (queried_can_run != NULL) {
752*f5c631daSSadaf Ebrahimi     log_if_missing = !*queried_can_run;
753*f5c631daSSadaf Ebrahimi     *queried_can_run = true;
754*f5c631daSSadaf Ebrahimi   }
755*f5c631daSSadaf Ebrahimi 
756*f5c631daSSadaf Ebrahimi #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
757*f5c631daSSadaf Ebrahimi   // The Simulator can run any test that VIXL can assemble.
758*f5c631daSSadaf Ebrahimi   USE(required);
759*f5c631daSSadaf Ebrahimi   USE(log_if_missing);
760*f5c631daSSadaf Ebrahimi   return true;
761*f5c631daSSadaf Ebrahimi #else
762*f5c631daSSadaf Ebrahimi   CPUFeatures cpu = CPUFeatures::InferFromOS();
763*f5c631daSSadaf Ebrahimi   // If InferFromOS fails, assume that basic features are present.
764*f5c631daSSadaf Ebrahimi   if (cpu.HasNoFeatures()) cpu = CPUFeatures::AArch64LegacyBaseline();
765*f5c631daSSadaf Ebrahimi   VIXL_ASSERT(cpu.Has(kInfrastructureCPUFeatures));
766*f5c631daSSadaf Ebrahimi 
767*f5c631daSSadaf Ebrahimi   if (cpu.Has(required)) return true;
768*f5c631daSSadaf Ebrahimi 
769*f5c631daSSadaf Ebrahimi   if (log_if_missing) {
770*f5c631daSSadaf Ebrahimi     CPUFeatures missing = required.Without(cpu);
771*f5c631daSSadaf Ebrahimi     // Note: This message needs to match REGEXP_MISSING_FEATURES from
772*f5c631daSSadaf Ebrahimi     // tools/threaded_test.py.
773*f5c631daSSadaf Ebrahimi     std::cout << "SKIPPED: Missing features: { " << missing << " }\n";
774*f5c631daSSadaf Ebrahimi     std::cout << "This test requires the following features to run its "
775*f5c631daSSadaf Ebrahimi                  "generated code on this CPU: "
776*f5c631daSSadaf Ebrahimi               << required << "\n";
777*f5c631daSSadaf Ebrahimi   }
778*f5c631daSSadaf Ebrahimi   return false;
779*f5c631daSSadaf Ebrahimi #endif
780*f5c631daSSadaf Ebrahimi }
781*f5c631daSSadaf Ebrahimi 
782*f5c631daSSadaf Ebrahimi // Note that the function assumes p0, p1, p2 and p3 are set to all true in b-,
783*f5c631daSSadaf Ebrahimi // h-, s- and d-lane sizes respectively, and p4, p5 are clobberred as a temp
784*f5c631daSSadaf Ebrahimi // predicate.
785*f5c631daSSadaf Ebrahimi template <typename T, size_t N>
SetFpData(MacroAssembler * masm,int esize,const T (& values)[N],uint64_t lcg_mult)786*f5c631daSSadaf Ebrahimi void SetFpData(MacroAssembler* masm,
787*f5c631daSSadaf Ebrahimi                int esize,
788*f5c631daSSadaf Ebrahimi                const T (&values)[N],
789*f5c631daSSadaf Ebrahimi                uint64_t lcg_mult) {
790*f5c631daSSadaf Ebrahimi   uint64_t a = 0;
791*f5c631daSSadaf Ebrahimi   uint64_t b = lcg_mult;
792*f5c631daSSadaf Ebrahimi   // Be used to populate the assigned element slots of register based on the
793*f5c631daSSadaf Ebrahimi   // type of floating point.
794*f5c631daSSadaf Ebrahimi   __ Pfalse(p5.VnB());
795*f5c631daSSadaf Ebrahimi   switch (esize) {
796*f5c631daSSadaf Ebrahimi     case kHRegSize:
797*f5c631daSSadaf Ebrahimi       a = Float16ToRawbits(Float16(1.5));
798*f5c631daSSadaf Ebrahimi       // Pick a convenient number within largest normal half-precision floating
799*f5c631daSSadaf Ebrahimi       // point.
800*f5c631daSSadaf Ebrahimi       b = Float16ToRawbits(Float16(lcg_mult % 1024));
801*f5c631daSSadaf Ebrahimi       // Step 1: Set fp16 numbers to the undefined registers.
802*f5c631daSSadaf Ebrahimi       //      p4< 15:0>: 0b0101010101010101
803*f5c631daSSadaf Ebrahimi       // z{code}<127:0>: 0xHHHHHHHHHHHHHHHH
804*f5c631daSSadaf Ebrahimi       __ Zip1(p4.VnB(), p0.VnB(), p5.VnB());
805*f5c631daSSadaf Ebrahimi       break;
806*f5c631daSSadaf Ebrahimi     case kSRegSize:
807*f5c631daSSadaf Ebrahimi       a = FloatToRawbits(1.5);
808*f5c631daSSadaf Ebrahimi       b = FloatToRawbits(lcg_mult);
809*f5c631daSSadaf Ebrahimi       // Step 2: Set fp32 numbers to register on top of fp16 initialized.
810*f5c631daSSadaf Ebrahimi       //      p4< 15:0>: 0b0000000100000001
811*f5c631daSSadaf Ebrahimi       // z{code}<127:0>: 0xHHHHSSSSHHHHSSSS
812*f5c631daSSadaf Ebrahimi       __ Zip1(p4.VnS(), p2.VnS(), p5.VnS());
813*f5c631daSSadaf Ebrahimi       break;
814*f5c631daSSadaf Ebrahimi     case kDRegSize:
815*f5c631daSSadaf Ebrahimi       a = DoubleToRawbits(1.5);
816*f5c631daSSadaf Ebrahimi       b = DoubleToRawbits(lcg_mult);
817*f5c631daSSadaf Ebrahimi       // Step 3: Set fp64 numbers to register on top of both fp16 and fp 32
818*f5c631daSSadaf Ebrahimi       // initialized.
819*f5c631daSSadaf Ebrahimi       //      p4< 15:0>: 0b0000000000000001
820*f5c631daSSadaf Ebrahimi       // z{code}<127:0>: 0xHHHHSSSSDDDDDDDD
821*f5c631daSSadaf Ebrahimi       __ Zip1(p4.VnD(), p3.VnD(), p5.VnD());
822*f5c631daSSadaf Ebrahimi       break;
823*f5c631daSSadaf Ebrahimi     default:
824*f5c631daSSadaf Ebrahimi       VIXL_UNIMPLEMENTED();
825*f5c631daSSadaf Ebrahimi       break;
826*f5c631daSSadaf Ebrahimi   }
827*f5c631daSSadaf Ebrahimi 
828*f5c631daSSadaf Ebrahimi   __ Dup(z30.WithLaneSize(esize), a);
829*f5c631daSSadaf Ebrahimi   __ Dup(z31.WithLaneSize(esize), b);
830*f5c631daSSadaf Ebrahimi 
831*f5c631daSSadaf Ebrahimi   for (unsigned j = 0; j <= (kZRegMaxSize / (N * esize)); j++) {
832*f5c631daSSadaf Ebrahimi     // As floating point operations on random values have a tendency to
833*f5c631daSSadaf Ebrahimi     // converge on special-case numbers like NaNs, adopt normal floating point
834*f5c631daSSadaf Ebrahimi     // values be the seed instead.
835*f5c631daSSadaf Ebrahimi     InsrHelper(masm, z0.WithLaneSize(esize), values);
836*f5c631daSSadaf Ebrahimi   }
837*f5c631daSSadaf Ebrahimi 
838*f5c631daSSadaf Ebrahimi   __ Fmla(z0.WithLaneSize(esize),
839*f5c631daSSadaf Ebrahimi           p4.Merging(),
840*f5c631daSSadaf Ebrahimi           z30.WithLaneSize(esize),
841*f5c631daSSadaf Ebrahimi           z0.WithLaneSize(esize),
842*f5c631daSSadaf Ebrahimi           z31.WithLaneSize(esize),
843*f5c631daSSadaf Ebrahimi           FastNaNPropagation);
844*f5c631daSSadaf Ebrahimi 
845*f5c631daSSadaf Ebrahimi   for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
846*f5c631daSSadaf Ebrahimi     __ Fmla(ZRegister(i).WithLaneSize(esize),
847*f5c631daSSadaf Ebrahimi             p4.Merging(),
848*f5c631daSSadaf Ebrahimi             z30.WithLaneSize(esize),
849*f5c631daSSadaf Ebrahimi             ZRegister(i - 1).WithLaneSize(esize),
850*f5c631daSSadaf Ebrahimi             z31.WithLaneSize(esize),
851*f5c631daSSadaf Ebrahimi             FastNaNPropagation);
852*f5c631daSSadaf Ebrahimi   }
853*f5c631daSSadaf Ebrahimi 
854*f5c631daSSadaf Ebrahimi   __ Fmul(z31.WithLaneSize(esize),
855*f5c631daSSadaf Ebrahimi           p4.Merging(),
856*f5c631daSSadaf Ebrahimi           z31.WithLaneSize(esize),
857*f5c631daSSadaf Ebrahimi           z30.WithLaneSize(esize),
858*f5c631daSSadaf Ebrahimi           FastNaNPropagation);
859*f5c631daSSadaf Ebrahimi   __ Fadd(z31.WithLaneSize(esize), p4.Merging(), z31.WithLaneSize(esize), 1);
860*f5c631daSSadaf Ebrahimi }
861*f5c631daSSadaf Ebrahimi 
862*f5c631daSSadaf Ebrahimi // Set z0 - z31 to some normal floating point data.
InitialiseRegisterFp(MacroAssembler * masm,uint64_t lcg_mult)863*f5c631daSSadaf Ebrahimi void InitialiseRegisterFp(MacroAssembler* masm, uint64_t lcg_mult) {
864*f5c631daSSadaf Ebrahimi   // Initialise each Z registers to a mixture of fp16/32/64 values as following
865*f5c631daSSadaf Ebrahimi   // pattern:
866*f5c631daSSadaf Ebrahimi   // z0.h[0-1] = fp16, z0.s[1] = fp32, z0.d[1] = fp64 repeatedly throughout the
867*f5c631daSSadaf Ebrahimi   // register.
868*f5c631daSSadaf Ebrahimi   //
869*f5c631daSSadaf Ebrahimi   // For example:
870*f5c631daSSadaf Ebrahimi   // z{code}<2047:1920>: 0x{<      fp64      ><  fp32  ><fp16><fp16>}
871*f5c631daSSadaf Ebrahimi   // ...
872*f5c631daSSadaf Ebrahimi   // z{code}< 127:   0>: 0x{<      fp64      ><  fp32  ><fp16><fp16>}
873*f5c631daSSadaf Ebrahimi   //
874*f5c631daSSadaf Ebrahimi   // In current manner, in order to make a desired mixture, each part of
875*f5c631daSSadaf Ebrahimi   // initialization have to be called in the following order.
876*f5c631daSSadaf Ebrahimi   SetFpData(masm, kHRegSize, kInputFloat16Basic, lcg_mult);
877*f5c631daSSadaf Ebrahimi   SetFpData(masm, kSRegSize, kInputFloatBasic, lcg_mult);
878*f5c631daSSadaf Ebrahimi   SetFpData(masm, kDRegSize, kInputDoubleBasic, lcg_mult);
879*f5c631daSSadaf Ebrahimi }
880*f5c631daSSadaf Ebrahimi 
SetInitialMachineState(MacroAssembler * masm,InputSet input_set)881*f5c631daSSadaf Ebrahimi void SetInitialMachineState(MacroAssembler* masm, InputSet input_set) {
882*f5c631daSSadaf Ebrahimi   USE(input_set);
883*f5c631daSSadaf Ebrahimi   uint64_t lcg_mult = 6364136223846793005;
884*f5c631daSSadaf Ebrahimi 
885*f5c631daSSadaf Ebrahimi   // Set x0 - x30 to pseudo-random data.
886*f5c631daSSadaf Ebrahimi   __ Mov(x29, 1);  // LCG increment.
887*f5c631daSSadaf Ebrahimi   __ Mov(x30, lcg_mult);
888*f5c631daSSadaf Ebrahimi   __ Mov(x0, 42);  // LCG seed.
889*f5c631daSSadaf Ebrahimi 
890*f5c631daSSadaf Ebrahimi   __ Cmn(x0, 0);  // Clear NZCV flags for later.
891*f5c631daSSadaf Ebrahimi 
892*f5c631daSSadaf Ebrahimi   __ Madd(x0, x0, x30, x29);  // First pseudo-random number.
893*f5c631daSSadaf Ebrahimi 
894*f5c631daSSadaf Ebrahimi   // Registers 1 - 29.
895*f5c631daSSadaf Ebrahimi   for (unsigned i = 1; i < 30; i++) {
896*f5c631daSSadaf Ebrahimi     __ Madd(XRegister(i), XRegister(i - 1), x30, x29);
897*f5c631daSSadaf Ebrahimi   }
898*f5c631daSSadaf Ebrahimi   __ Mul(x30, x29, x30);
899*f5c631daSSadaf Ebrahimi   __ Add(x30, x30, 1);
900*f5c631daSSadaf Ebrahimi 
901*f5c631daSSadaf Ebrahimi 
902*f5c631daSSadaf Ebrahimi   // Set first four predicate registers to true for increasing lane sizes.
903*f5c631daSSadaf Ebrahimi   __ Ptrue(p0.VnB());
904*f5c631daSSadaf Ebrahimi   __ Ptrue(p1.VnH());
905*f5c631daSSadaf Ebrahimi   __ Ptrue(p2.VnS());
906*f5c631daSSadaf Ebrahimi   __ Ptrue(p3.VnD());
907*f5c631daSSadaf Ebrahimi 
908*f5c631daSSadaf Ebrahimi   // Set z0 - z31 to pseudo-random data.
909*f5c631daSSadaf Ebrahimi   if (input_set == kIntInputSet) {
910*f5c631daSSadaf Ebrahimi     __ Dup(z30.VnD(), 1);
911*f5c631daSSadaf Ebrahimi     __ Dup(z31.VnD(), lcg_mult);
912*f5c631daSSadaf Ebrahimi     __ Index(z0.VnB(), -16, 13);  // LCG seeds.
913*f5c631daSSadaf Ebrahimi 
914*f5c631daSSadaf Ebrahimi     __ Mla(z0.VnD(), p0.Merging(), z30.VnD(), z0.VnD(), z31.VnD());
915*f5c631daSSadaf Ebrahimi     for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
916*f5c631daSSadaf Ebrahimi       __ Mla(ZRegister(i).VnD(),
917*f5c631daSSadaf Ebrahimi              p0.Merging(),
918*f5c631daSSadaf Ebrahimi              z30.VnD(),
919*f5c631daSSadaf Ebrahimi              ZRegister(i - 1).VnD(),
920*f5c631daSSadaf Ebrahimi              z31.VnD());
921*f5c631daSSadaf Ebrahimi     }
922*f5c631daSSadaf Ebrahimi     __ Mul(z31.VnD(), p0.Merging(), z31.VnD(), z30.VnD());
923*f5c631daSSadaf Ebrahimi     __ Add(z31.VnD(), z31.VnD(), 1);
924*f5c631daSSadaf Ebrahimi 
925*f5c631daSSadaf Ebrahimi   } else {
926*f5c631daSSadaf Ebrahimi     VIXL_ASSERT(input_set == kFpInputSet);
927*f5c631daSSadaf Ebrahimi     InitialiseRegisterFp(masm, lcg_mult);
928*f5c631daSSadaf Ebrahimi   }
929*f5c631daSSadaf Ebrahimi 
930*f5c631daSSadaf Ebrahimi   // Set remaining predicate registers based on earlier pseudo-random data.
931*f5c631daSSadaf Ebrahimi   for (unsigned i = 4; i < kNumberOfPRegisters; i++) {
932*f5c631daSSadaf Ebrahimi     __ Cmpge(PRegister(i).VnB(), p0.Zeroing(), ZRegister(i).VnB(), 0);
933*f5c631daSSadaf Ebrahimi   }
934*f5c631daSSadaf Ebrahimi   for (unsigned i = 4; i < kNumberOfPRegisters; i += 2) {
935*f5c631daSSadaf Ebrahimi     __ Zip1(p0.VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
936*f5c631daSSadaf Ebrahimi     __ Zip2(PRegister(i + 1).VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
937*f5c631daSSadaf Ebrahimi     __ Mov(PRegister(i), p0);
938*f5c631daSSadaf Ebrahimi   }
939*f5c631daSSadaf Ebrahimi   __ Ptrue(p0.VnB());
940*f5c631daSSadaf Ebrahimi 
941*f5c631daSSadaf Ebrahimi   // At this point, only sp and a few status registers are undefined. These
942*f5c631daSSadaf Ebrahimi   // must be ignored when computing the state hash.
943*f5c631daSSadaf Ebrahimi }
944*f5c631daSSadaf Ebrahimi 
ComputeMachineStateHash(MacroAssembler * masm,uint32_t * dst)945*f5c631daSSadaf Ebrahimi void ComputeMachineStateHash(MacroAssembler* masm, uint32_t* dst) {
946*f5c631daSSadaf Ebrahimi   // Use explicit registers, to avoid hash order varying if
947*f5c631daSSadaf Ebrahimi   // UseScratchRegisterScope changes.
948*f5c631daSSadaf Ebrahimi   UseScratchRegisterScope temps(masm);
949*f5c631daSSadaf Ebrahimi   temps.ExcludeAll();
950*f5c631daSSadaf Ebrahimi   Register t0 = w0;
951*f5c631daSSadaf Ebrahimi   Register t1 = x1;
952*f5c631daSSadaf Ebrahimi 
953*f5c631daSSadaf Ebrahimi   // Compute hash of x0 - x30.
954*f5c631daSSadaf Ebrahimi   __ Push(t0.X(), t1);
955*f5c631daSSadaf Ebrahimi   __ Crc32x(t0, wzr, t0.X());
956*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
957*f5c631daSSadaf Ebrahimi     if (i == xzr.GetCode()) continue;   // Skip sp.
958*f5c631daSSadaf Ebrahimi     if (t0.Is(WRegister(i))) continue;  // Skip t0, as it's already hashed.
959*f5c631daSSadaf Ebrahimi     __ Crc32x(t0, t0, XRegister(i));
960*f5c631daSSadaf Ebrahimi   }
961*f5c631daSSadaf Ebrahimi 
962*f5c631daSSadaf Ebrahimi   // Hash the status flags.
963*f5c631daSSadaf Ebrahimi   __ Mrs(t1, NZCV);
964*f5c631daSSadaf Ebrahimi   __ Crc32x(t0, t0, t1);
965*f5c631daSSadaf Ebrahimi 
966*f5c631daSSadaf Ebrahimi   // Acquire another temp, as integer registers have been hashed already.
967*f5c631daSSadaf Ebrahimi   __ Push(x30, xzr);
968*f5c631daSSadaf Ebrahimi   Register t2 = x30;
969*f5c631daSSadaf Ebrahimi 
970*f5c631daSSadaf Ebrahimi   // Compute hash of all bits in z0 - z31. This implies different hashes are
971*f5c631daSSadaf Ebrahimi   // produced for machines of different vector length.
972*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfZRegisters; i++) {
973*f5c631daSSadaf Ebrahimi     __ Rdvl(t2, 1);
974*f5c631daSSadaf Ebrahimi     __ Lsr(t2, t2, 4);
975*f5c631daSSadaf Ebrahimi     Label vl_loop;
976*f5c631daSSadaf Ebrahimi     __ Bind(&vl_loop);
977*f5c631daSSadaf Ebrahimi     __ Umov(t1, VRegister(i).V2D(), 0);
978*f5c631daSSadaf Ebrahimi     __ Crc32x(t0, t0, t1);
979*f5c631daSSadaf Ebrahimi     __ Umov(t1, VRegister(i).V2D(), 1);
980*f5c631daSSadaf Ebrahimi     __ Crc32x(t0, t0, t1);
981*f5c631daSSadaf Ebrahimi     __ Ext(ZRegister(i).VnB(), ZRegister(i).VnB(), ZRegister(i).VnB(), 16);
982*f5c631daSSadaf Ebrahimi     __ Sub(t2, t2, 1);
983*f5c631daSSadaf Ebrahimi     __ Cbnz(t2, &vl_loop);
984*f5c631daSSadaf Ebrahimi   }
985*f5c631daSSadaf Ebrahimi 
986*f5c631daSSadaf Ebrahimi   // Hash predicate registers. For simplicity, this writes the predicate
987*f5c631daSSadaf Ebrahimi   // registers to a zero-initialised area of stack of the maximum size required
988*f5c631daSSadaf Ebrahimi   // for P registers. It then computes a hash of that entire stack area.
989*f5c631daSSadaf Ebrahimi   unsigned p_stack_space = kNumberOfPRegisters * kPRegMaxSizeInBytes;
990*f5c631daSSadaf Ebrahimi 
991*f5c631daSSadaf Ebrahimi   // Zero claimed stack area.
992*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
993*f5c631daSSadaf Ebrahimi     __ Push(xzr, xzr);
994*f5c631daSSadaf Ebrahimi   }
995*f5c631daSSadaf Ebrahimi 
996*f5c631daSSadaf Ebrahimi   // Store all P registers to the stack.
997*f5c631daSSadaf Ebrahimi   __ Mov(t1, sp);
998*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < kNumberOfPRegisters; i++) {
999*f5c631daSSadaf Ebrahimi     __ Str(PRegister(i), SVEMemOperand(t1));
1000*f5c631daSSadaf Ebrahimi     __ Add(t1, t1, kPRegMaxSizeInBytes);
1001*f5c631daSSadaf Ebrahimi   }
1002*f5c631daSSadaf Ebrahimi 
1003*f5c631daSSadaf Ebrahimi   // Hash the entire stack area.
1004*f5c631daSSadaf Ebrahimi   for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
1005*f5c631daSSadaf Ebrahimi     __ Pop(t1, t2);
1006*f5c631daSSadaf Ebrahimi     __ Crc32x(t0, t0, t1);
1007*f5c631daSSadaf Ebrahimi     __ Crc32x(t0, t0, t2);
1008*f5c631daSSadaf Ebrahimi   }
1009*f5c631daSSadaf Ebrahimi 
1010*f5c631daSSadaf Ebrahimi   __ Mov(t1, reinterpret_cast<uint64_t>(dst));
1011*f5c631daSSadaf Ebrahimi   __ Str(t0, MemOperand(t1));
1012*f5c631daSSadaf Ebrahimi 
1013*f5c631daSSadaf Ebrahimi   __ Pop(xzr, x30);
1014*f5c631daSSadaf Ebrahimi   __ Pop(t1, t0.X());
1015*f5c631daSSadaf Ebrahimi }
1016*f5c631daSSadaf Ebrahimi 
1017*f5c631daSSadaf Ebrahimi }  // namespace aarch64
1018*f5c631daSSadaf Ebrahimi }  // namespace vixl
1019