xref: /aosp_15_r20/external/tink/go/daead/subtle/aes_siv.go (revision e7b1675dde1b92d52ec075b0a92829627f2c52a5)
1*e7b1675dSTing-Kang Chang// Copyright 2020 Google LLC
2*e7b1675dSTing-Kang Chang//
3*e7b1675dSTing-Kang Chang// Licensed under the Apache License, Version 2.0 (the "License");
4*e7b1675dSTing-Kang Chang// you may not use this file except in compliance with the License.
5*e7b1675dSTing-Kang Chang// You may obtain a copy of the License at
6*e7b1675dSTing-Kang Chang//
7*e7b1675dSTing-Kang Chang//      http://www.apache.org/licenses/LICENSE-2.0
8*e7b1675dSTing-Kang Chang//
9*e7b1675dSTing-Kang Chang// Unless required by applicable law or agreed to in writing, software
10*e7b1675dSTing-Kang Chang// distributed under the License is distributed on an "AS IS" BASIS,
11*e7b1675dSTing-Kang Chang// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12*e7b1675dSTing-Kang Chang// See the License for the specific language governing permissions and
13*e7b1675dSTing-Kang Chang// limitations under the License.
14*e7b1675dSTing-Kang Chang//
15*e7b1675dSTing-Kang Chang////////////////////////////////////////////////////////////////////////////////
16*e7b1675dSTing-Kang Chang
17*e7b1675dSTing-Kang Chang// Package subtle provides subtle implementations of the DeterministicAEAD
18*e7b1675dSTing-Kang Chang// primitive.
19*e7b1675dSTing-Kang Changpackage subtle
20*e7b1675dSTing-Kang Chang
21*e7b1675dSTing-Kang Changimport (
22*e7b1675dSTing-Kang Chang	"crypto/aes"
23*e7b1675dSTing-Kang Chang	"crypto/cipher"
24*e7b1675dSTing-Kang Chang	"crypto/subtle"
25*e7b1675dSTing-Kang Chang	"errors"
26*e7b1675dSTing-Kang Chang	"fmt"
27*e7b1675dSTing-Kang Chang	"math"
28*e7b1675dSTing-Kang Chang
29*e7b1675dSTing-Kang Chang	// Placeholder for internal crypto/cipher allowlist, please ignore.
30*e7b1675dSTing-Kang Chang	// Placeholder for internal crypto/subtle allowlist, please ignore.
31*e7b1675dSTing-Kang Chang)
32*e7b1675dSTing-Kang Chang
33*e7b1675dSTing-Kang Chang// AESSIV is an implementation of AES-SIV-CMAC as defined in
34*e7b1675dSTing-Kang Chang// https://tools.ietf.org/html/rfc5297.
35*e7b1675dSTing-Kang Chang//
36*e7b1675dSTing-Kang Chang// AESSIV implements a deterministic encryption with associated data (i.e. the
37*e7b1675dSTing-Kang Chang// DeterministicAEAD interface). Hence the implementation below is restricted
38*e7b1675dSTing-Kang Chang// to one AD component.
39*e7b1675dSTing-Kang Chang//
40*e7b1675dSTing-Kang Chang// Security Note:
41*e7b1675dSTing-Kang Chang//
42*e7b1675dSTing-Kang Chang// Chatterjee, Menezes and Sarkar analyze AES-SIV in Section 5.1 of
43*e7b1675dSTing-Kang Chang// https://www.math.uwaterloo.ca/~ajmeneze/publications/tightness.pdf
44*e7b1675dSTing-Kang Chang//
45*e7b1675dSTing-Kang Chang// Their analysis shows that AES-SIV is susceptible to an attack in
46*e7b1675dSTing-Kang Chang// a multi-user setting. Concretely, if an attacker knows the encryption
47*e7b1675dSTing-Kang Chang// of a message m encrypted and authenticated with k different keys,
48*e7b1675dSTing-Kang Chang// then it is possible  to find one of the MAC keys in time 2^b / k
49*e7b1675dSTing-Kang Chang// where b is the size of the MAC key. A consequence of this attack
50*e7b1675dSTing-Kang Chang// is that 128-bit MAC keys give unsufficient security.
51*e7b1675dSTing-Kang Chang// Since 192-bit AES keys are not supported by tink for voodoo reasons
52*e7b1675dSTing-Kang Chang// and RFC 5297 only supports same size encryption and MAC keys this
53*e7b1675dSTing-Kang Chang// implies that keys must be 64 bytes (2*256 bits) long.
54*e7b1675dSTing-Kang Changtype AESSIV struct {
55*e7b1675dSTing-Kang Chang	K1     []byte
56*e7b1675dSTing-Kang Chang	K2     []byte
57*e7b1675dSTing-Kang Chang	CmacK1 []byte
58*e7b1675dSTing-Kang Chang	CmacK2 []byte
59*e7b1675dSTing-Kang Chang	Cipher cipher.Block
60*e7b1675dSTing-Kang Chang}
61*e7b1675dSTing-Kang Chang
62*e7b1675dSTing-Kang Changconst (
63*e7b1675dSTing-Kang Chang	// AESSIVKeySize is the key size in bytes.
64*e7b1675dSTing-Kang Chang	AESSIVKeySize = 64
65*e7b1675dSTing-Kang Chang
66*e7b1675dSTing-Kang Chang	intSize = 32 << (^uint(0) >> 63) // 32 or 64
67*e7b1675dSTing-Kang Chang	maxInt  = 1<<(intSize-1) - 1
68*e7b1675dSTing-Kang Chang)
69*e7b1675dSTing-Kang Chang
70*e7b1675dSTing-Kang Chang// NewAESSIV returns an AESSIV instance.
71*e7b1675dSTing-Kang Changfunc NewAESSIV(key []byte) (*AESSIV, error) {
72*e7b1675dSTing-Kang Chang	if len(key) != AESSIVKeySize {
73*e7b1675dSTing-Kang Chang		return nil, fmt.Errorf("aes_siv: invalid key size %d", len(key))
74*e7b1675dSTing-Kang Chang	}
75*e7b1675dSTing-Kang Chang
76*e7b1675dSTing-Kang Chang	k1 := key[:32]
77*e7b1675dSTing-Kang Chang	k2 := key[32:]
78*e7b1675dSTing-Kang Chang	c, err := aes.NewCipher(k1)
79*e7b1675dSTing-Kang Chang	if err != nil {
80*e7b1675dSTing-Kang Chang		return nil, fmt.Errorf("aes_siv: aes.NewCipher(%s) failed, %v", k1, err)
81*e7b1675dSTing-Kang Chang	}
82*e7b1675dSTing-Kang Chang
83*e7b1675dSTing-Kang Chang	block := make([]byte, aes.BlockSize)
84*e7b1675dSTing-Kang Chang	c.Encrypt(block, block)
85*e7b1675dSTing-Kang Chang	multiplyByX(block)
86*e7b1675dSTing-Kang Chang	cmacK1 := make([]byte, aes.BlockSize)
87*e7b1675dSTing-Kang Chang	copy(cmacK1, block)
88*e7b1675dSTing-Kang Chang	multiplyByX(block)
89*e7b1675dSTing-Kang Chang	cmacK2 := make([]byte, aes.BlockSize)
90*e7b1675dSTing-Kang Chang	copy(cmacK2, block)
91*e7b1675dSTing-Kang Chang
92*e7b1675dSTing-Kang Chang	return &AESSIV{
93*e7b1675dSTing-Kang Chang		K1:     k1,
94*e7b1675dSTing-Kang Chang		K2:     k2,
95*e7b1675dSTing-Kang Chang		CmacK1: cmacK1,
96*e7b1675dSTing-Kang Chang		CmacK2: cmacK2,
97*e7b1675dSTing-Kang Chang		Cipher: c,
98*e7b1675dSTing-Kang Chang	}, nil
99*e7b1675dSTing-Kang Chang}
100*e7b1675dSTing-Kang Chang
101*e7b1675dSTing-Kang Chang// multiplyByX multiplies an element in GF(2^128) by its generator.
102*e7b1675dSTing-Kang Chang//
103*e7b1675dSTing-Kang Chang// This function is incorrectly named "doubling" in section 2.3 of RFC 5297.
104*e7b1675dSTing-Kang Changfunc multiplyByX(block []byte) {
105*e7b1675dSTing-Kang Chang	carry := int(block[0] >> 7)
106*e7b1675dSTing-Kang Chang	for i := 0; i < aes.BlockSize-1; i++ {
107*e7b1675dSTing-Kang Chang		block[i] = (block[i] << 1) | (block[i+1] >> 7)
108*e7b1675dSTing-Kang Chang	}
109*e7b1675dSTing-Kang Chang
110*e7b1675dSTing-Kang Chang	block[aes.BlockSize-1] = (block[aes.BlockSize-1] << 1) ^ byte(subtle.ConstantTimeSelect(carry, 0x87, 0x00))
111*e7b1675dSTing-Kang Chang}
112*e7b1675dSTing-Kang Chang
113*e7b1675dSTing-Kang Chang// EncryptDeterministically deterministically encrypts plaintext with associatedData.
114*e7b1675dSTing-Kang Changfunc (asc *AESSIV) EncryptDeterministically(plaintext, associatedData []byte) ([]byte, error) {
115*e7b1675dSTing-Kang Chang	if len(plaintext) > maxInt-aes.BlockSize {
116*e7b1675dSTing-Kang Chang		return nil, fmt.Errorf("aes_siv: plaintext too long")
117*e7b1675dSTing-Kang Chang	}
118*e7b1675dSTing-Kang Chang	siv := make([]byte, aes.BlockSize)
119*e7b1675dSTing-Kang Chang	asc.s2v(plaintext, associatedData, siv)
120*e7b1675dSTing-Kang Chang
121*e7b1675dSTing-Kang Chang	ct := make([]byte, len(plaintext)+aes.BlockSize)
122*e7b1675dSTing-Kang Chang	copy(ct[:aes.BlockSize], siv)
123*e7b1675dSTing-Kang Chang	if err := asc.ctrCrypt(siv, plaintext, ct[aes.BlockSize:]); err != nil {
124*e7b1675dSTing-Kang Chang		return nil, err
125*e7b1675dSTing-Kang Chang	}
126*e7b1675dSTing-Kang Chang
127*e7b1675dSTing-Kang Chang	return ct, nil
128*e7b1675dSTing-Kang Chang}
129*e7b1675dSTing-Kang Chang
130*e7b1675dSTing-Kang Chang// DecryptDeterministically deterministically decrypts ciphertext with associatedData.
131*e7b1675dSTing-Kang Changfunc (asc *AESSIV) DecryptDeterministically(ciphertext, associatedData []byte) ([]byte, error) {
132*e7b1675dSTing-Kang Chang	if len(ciphertext) < aes.BlockSize {
133*e7b1675dSTing-Kang Chang		return nil, errors.New("aes_siv: ciphertext is too short")
134*e7b1675dSTing-Kang Chang	}
135*e7b1675dSTing-Kang Chang
136*e7b1675dSTing-Kang Chang	pt := make([]byte, len(ciphertext)-aes.BlockSize)
137*e7b1675dSTing-Kang Chang	siv := ciphertext[:aes.BlockSize]
138*e7b1675dSTing-Kang Chang	asc.ctrCrypt(siv, ciphertext[aes.BlockSize:], pt)
139*e7b1675dSTing-Kang Chang	s2v := make([]byte, aes.BlockSize)
140*e7b1675dSTing-Kang Chang	asc.s2v(pt, associatedData, s2v)
141*e7b1675dSTing-Kang Chang
142*e7b1675dSTing-Kang Chang	diff := byte(0)
143*e7b1675dSTing-Kang Chang	for i := 0; i < aes.BlockSize; i++ {
144*e7b1675dSTing-Kang Chang		diff |= siv[i] ^ s2v[i]
145*e7b1675dSTing-Kang Chang	}
146*e7b1675dSTing-Kang Chang	if diff != 0 {
147*e7b1675dSTing-Kang Chang		return nil, errors.New("aes_siv: invalid ciphertext")
148*e7b1675dSTing-Kang Chang	}
149*e7b1675dSTing-Kang Chang
150*e7b1675dSTing-Kang Chang	return pt, nil
151*e7b1675dSTing-Kang Chang}
152*e7b1675dSTing-Kang Chang
153*e7b1675dSTing-Kang Chang// ctrCrypt encrypts (or decrypts) the bytes in in using an SIV and writes the
154*e7b1675dSTing-Kang Chang// result to out.
155*e7b1675dSTing-Kang Changfunc (asc *AESSIV) ctrCrypt(siv, in, out []byte) error {
156*e7b1675dSTing-Kang Chang	// siv might be used outside of ctrCrypt(), so making a copy of it.
157*e7b1675dSTing-Kang Chang	iv := make([]byte, aes.BlockSize)
158*e7b1675dSTing-Kang Chang	copy(iv, siv)
159*e7b1675dSTing-Kang Chang	iv[8] &= 0x7f
160*e7b1675dSTing-Kang Chang	iv[12] &= 0x7f
161*e7b1675dSTing-Kang Chang
162*e7b1675dSTing-Kang Chang	c, err := aes.NewCipher(asc.K2)
163*e7b1675dSTing-Kang Chang	if err != nil {
164*e7b1675dSTing-Kang Chang		return fmt.Errorf("aes_siv: aes.NewCipher(%s) failed, %v", asc.K2, err)
165*e7b1675dSTing-Kang Chang	}
166*e7b1675dSTing-Kang Chang
167*e7b1675dSTing-Kang Chang	steam := cipher.NewCTR(c, iv)
168*e7b1675dSTing-Kang Chang	steam.XORKeyStream(out, in)
169*e7b1675dSTing-Kang Chang	return nil
170*e7b1675dSTing-Kang Chang}
171*e7b1675dSTing-Kang Chang
172*e7b1675dSTing-Kang Chang// s2v is a Pseudo-Random Function (PRF) construction:
173*e7b1675dSTing-Kang Chang// https://tools.ietf.org/html/rfc5297.
174*e7b1675dSTing-Kang Changfunc (asc *AESSIV) s2v(msg, ad, siv []byte) {
175*e7b1675dSTing-Kang Chang	block := make([]byte, aes.BlockSize)
176*e7b1675dSTing-Kang Chang	asc.cmac(block, block)
177*e7b1675dSTing-Kang Chang	multiplyByX(block)
178*e7b1675dSTing-Kang Chang
179*e7b1675dSTing-Kang Chang	adMac := make([]byte, aes.BlockSize)
180*e7b1675dSTing-Kang Chang	asc.cmac(ad, adMac)
181*e7b1675dSTing-Kang Chang	xorBlock(adMac, block)
182*e7b1675dSTing-Kang Chang
183*e7b1675dSTing-Kang Chang	if len(msg) >= aes.BlockSize {
184*e7b1675dSTing-Kang Chang		asc.cmacLong(msg, block, siv)
185*e7b1675dSTing-Kang Chang	} else {
186*e7b1675dSTing-Kang Chang		multiplyByX(block)
187*e7b1675dSTing-Kang Chang		for i := 0; i < len(msg); i++ {
188*e7b1675dSTing-Kang Chang			block[i] ^= msg[i]
189*e7b1675dSTing-Kang Chang		}
190*e7b1675dSTing-Kang Chang		block[len(msg)] ^= 0x80
191*e7b1675dSTing-Kang Chang		asc.cmac(block, siv)
192*e7b1675dSTing-Kang Chang	}
193*e7b1675dSTing-Kang Chang}
194*e7b1675dSTing-Kang Chang
195*e7b1675dSTing-Kang Chang// cmacLong computes CMAC(XorEnd(data, last)), where XorEnd xors the bytes in
196*e7b1675dSTing-Kang Chang// last to the last bytes in data.
197*e7b1675dSTing-Kang Chang//
198*e7b1675dSTing-Kang Chang// The size of the data must be at least 16 bytes.
199*e7b1675dSTing-Kang Changfunc (asc *AESSIV) cmacLong(data, last, mac []byte) {
200*e7b1675dSTing-Kang Chang	block := make([]byte, aes.BlockSize)
201*e7b1675dSTing-Kang Chang	copy(block, data[:aes.BlockSize])
202*e7b1675dSTing-Kang Chang
203*e7b1675dSTing-Kang Chang	idx := aes.BlockSize
204*e7b1675dSTing-Kang Chang	for aes.BlockSize <= len(data)-idx {
205*e7b1675dSTing-Kang Chang		asc.Cipher.Encrypt(block, block)
206*e7b1675dSTing-Kang Chang		xorBlock(data[idx:idx+aes.BlockSize], block)
207*e7b1675dSTing-Kang Chang		idx += aes.BlockSize
208*e7b1675dSTing-Kang Chang	}
209*e7b1675dSTing-Kang Chang
210*e7b1675dSTing-Kang Chang	remaining := len(data) - idx
211*e7b1675dSTing-Kang Chang	for i := 0; i < aes.BlockSize-remaining; i++ {
212*e7b1675dSTing-Kang Chang		block[remaining+i] ^= last[i]
213*e7b1675dSTing-Kang Chang	}
214*e7b1675dSTing-Kang Chang	if remaining == 0 {
215*e7b1675dSTing-Kang Chang		xorBlock(asc.CmacK1, block)
216*e7b1675dSTing-Kang Chang	} else {
217*e7b1675dSTing-Kang Chang		asc.Cipher.Encrypt(block, block)
218*e7b1675dSTing-Kang Chang		for i := 0; i < remaining; i++ {
219*e7b1675dSTing-Kang Chang			block[i] ^= last[aes.BlockSize-remaining+i]
220*e7b1675dSTing-Kang Chang			block[i] ^= data[idx+i]
221*e7b1675dSTing-Kang Chang		}
222*e7b1675dSTing-Kang Chang		block[remaining] ^= 0x80
223*e7b1675dSTing-Kang Chang		xorBlock(asc.CmacK2, block)
224*e7b1675dSTing-Kang Chang	}
225*e7b1675dSTing-Kang Chang
226*e7b1675dSTing-Kang Chang	asc.Cipher.Encrypt(mac, block)
227*e7b1675dSTing-Kang Chang}
228*e7b1675dSTing-Kang Chang
229*e7b1675dSTing-Kang Chang// cmac computes a CMAC of some data.
230*e7b1675dSTing-Kang Changfunc (asc *AESSIV) cmac(data, mac []byte) {
231*e7b1675dSTing-Kang Chang	numBs := int(math.Ceil(float64(len(data)) / aes.BlockSize))
232*e7b1675dSTing-Kang Chang	if numBs == 0 {
233*e7b1675dSTing-Kang Chang		numBs = 1
234*e7b1675dSTing-Kang Chang	}
235*e7b1675dSTing-Kang Chang	lastBSize := len(data) - (numBs-1)*aes.BlockSize
236*e7b1675dSTing-Kang Chang
237*e7b1675dSTing-Kang Chang	block := make([]byte, aes.BlockSize)
238*e7b1675dSTing-Kang Chang	idx := 0
239*e7b1675dSTing-Kang Chang	for i := 0; i < numBs-1; i++ {
240*e7b1675dSTing-Kang Chang		xorBlock(data[idx:idx+aes.BlockSize], block)
241*e7b1675dSTing-Kang Chang		asc.Cipher.Encrypt(block, block)
242*e7b1675dSTing-Kang Chang		idx += aes.BlockSize
243*e7b1675dSTing-Kang Chang	}
244*e7b1675dSTing-Kang Chang	for j := 0; j < lastBSize; j++ {
245*e7b1675dSTing-Kang Chang		block[j] ^= data[idx+j]
246*e7b1675dSTing-Kang Chang	}
247*e7b1675dSTing-Kang Chang
248*e7b1675dSTing-Kang Chang	if lastBSize == aes.BlockSize {
249*e7b1675dSTing-Kang Chang		xorBlock(asc.CmacK1, block)
250*e7b1675dSTing-Kang Chang	} else {
251*e7b1675dSTing-Kang Chang		block[lastBSize] ^= 0x80
252*e7b1675dSTing-Kang Chang		xorBlock(asc.CmacK2, block)
253*e7b1675dSTing-Kang Chang	}
254*e7b1675dSTing-Kang Chang
255*e7b1675dSTing-Kang Chang	asc.Cipher.Encrypt(mac, block)
256*e7b1675dSTing-Kang Chang}
257*e7b1675dSTing-Kang Chang
258*e7b1675dSTing-Kang Chang// xorBlock sets block[i] = x[i] ^ block[i].
259*e7b1675dSTing-Kang Changfunc xorBlock(x, block []byte) {
260*e7b1675dSTing-Kang Chang	for i := 0; i < aes.BlockSize; i++ {
261*e7b1675dSTing-Kang Chang		block[i] ^= x[i]
262*e7b1675dSTing-Kang Chang	}
263*e7b1675dSTing-Kang Chang}
264