1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "src/gpu/ganesh/ops/AAHairLinePathRenderer.h"
8
9 #include "include/core/SkMatrix.h"
10 #include "include/core/SkPaint.h"
11 #include "include/core/SkPath.h"
12 #include "include/core/SkPoint3.h"
13 #include "include/core/SkRect.h"
14 #include "include/core/SkRefCnt.h"
15 #include "include/core/SkScalar.h"
16 #include "include/core/SkString.h"
17 #include "include/core/SkStrokeRec.h"
18 #include "include/gpu/ganesh/GrRecordingContext.h"
19 #include "include/private/SkColorData.h"
20 #include "include/private/base/SkAlignedStorage.h"
21 #include "include/private/base/SkAssert.h"
22 #include "include/private/base/SkDebug.h"
23 #include "include/private/base/SkFloatingPoint.h"
24 #include "include/private/base/SkMacros.h"
25 #include "include/private/base/SkMath.h"
26 #include "include/private/base/SkOnce.h"
27 #include "include/private/base/SkPoint_impl.h"
28 #include "include/private/base/SkTArray.h"
29 #include "include/private/gpu/ganesh/GrTypesPriv.h"
30 #include "src/core/SkGeometry.h"
31 #include "src/core/SkMatrixPriv.h"
32 #include "src/core/SkPointPriv.h"
33 #include "src/gpu/ResourceKey.h"
34 #include "src/gpu/ganesh/GrAppliedClip.h"
35 #include "src/gpu/ganesh/GrAuditTrail.h"
36 #include "src/gpu/ganesh/GrBuffer.h"
37 #include "src/gpu/ganesh/GrCaps.h"
38 #include "src/gpu/ganesh/GrColor.h"
39 #include "src/gpu/ganesh/GrDefaultGeoProcFactory.h"
40 #include "src/gpu/ganesh/GrDrawOpTest.h"
41 #include "src/gpu/ganesh/GrGeometryProcessor.h"
42 #include "src/gpu/ganesh/GrMeshDrawTarget.h"
43 #include "src/gpu/ganesh/GrOpFlushState.h"
44 #include "src/gpu/ganesh/GrPaint.h"
45 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
46 #include "src/gpu/ganesh/GrProcessorSet.h"
47 #include "src/gpu/ganesh/GrProgramInfo.h"
48 #include "src/gpu/ganesh/GrRecordingContextPriv.h"
49 #include "src/gpu/ganesh/GrRenderTargetProxy.h"
50 #include "src/gpu/ganesh/GrResourceProvider.h"
51 #include "src/gpu/ganesh/GrShaderCaps.h"
52 #include "src/gpu/ganesh/GrSimpleMesh.h"
53 #include "src/gpu/ganesh/GrStyle.h"
54 #include "src/gpu/ganesh/GrSurfaceProxyView.h"
55 #include "src/gpu/ganesh/GrTestUtils.h"
56 #include "src/gpu/ganesh/GrUtil.h"
57 #include "src/gpu/ganesh/SurfaceDrawContext.h"
58 #include "src/gpu/ganesh/effects/GrBezierEffect.h"
59 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
60 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
61 #include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
62 #include "src/gpu/ganesh/ops/GrOp.h"
63 #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelper.h"
64 #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
65
66 #include <algorithm>
67 #include <array>
68 #include <cstdint>
69 #include <cstring>
70 #include <utility>
71
72 class GrDstProxyView;
73 class GrPipeline;
74 class SkArenaAlloc;
75 class SkRandom;
76 enum class GrXferBarrierFlags;
77 struct GrUserStencilSettings;
78
79 using namespace skia_private;
80
81 #define PREALLOC_PTARRAY(N) STArray<(N),SkPoint, true>
82
83 using PtArray = TArray<SkPoint, true>;
84 using IntArray = TArray<int, true>;
85 using FloatArray = TArray<float, true>;
86
87 namespace {
88
89 // quadratics are rendered as 5-sided polys in order to bound the
90 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
91 // bloat_quad. Quadratics and conics share an index buffer
92
93 // lines are rendered as:
94 // *______________*
95 // |\ -_______ /|
96 // | \ \ / |
97 // | *--------* |
98 // | / ______/ \ |
99 // */_-__________\*
100 // For: 6 vertices and 18 indices (for 6 triangles)
101
102 // Each quadratic is rendered as a five sided polygon. This poly bounds
103 // the quadratic's bounding triangle but has been expanded so that the
104 // 1-pixel wide area around the curve is inside the poly.
105 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
106 // that is rendered would look like this:
107 // b0
108 // b
109 //
110 // a0 c0
111 // a c
112 // a1 c1
113 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
114 // specified by these 9 indices:
115 static const uint16_t kQuadIdxBufPattern[] = {
116 0, 1, 2,
117 2, 4, 3,
118 1, 4, 2
119 };
120
121 static const int kIdxsPerQuad = std::size(kQuadIdxBufPattern);
122 static const int kQuadNumVertices = 5;
123 static const int kQuadsNumInIdxBuffer = 256;
124 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
125
get_quads_index_buffer(GrResourceProvider * resourceProvider)126 sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
127 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
128 return resourceProvider->findOrCreatePatternedIndexBuffer(
129 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
130 gQuadsIndexBufferKey);
131 }
132
133
134 // Each line segment is rendered as two quads and two triangles.
135 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
136 // The four external points are offset 1 pixel perpendicular to the
137 // line and half a pixel parallel to the line.
138 //
139 // p4 p5
140 // p0 p1
141 // p2 p3
142 //
143 // Each is drawn as six triangles specified by these 18 indices:
144
145 static const uint16_t kLineSegIdxBufPattern[] = {
146 0, 1, 3,
147 0, 3, 2,
148 0, 4, 5,
149 0, 5, 1,
150 0, 2, 4,
151 1, 5, 3
152 };
153
154 static const int kIdxsPerLineSeg = std::size(kLineSegIdxBufPattern);
155 static const int kLineSegNumVertices = 6;
156 static const int kLineSegsNumInIdxBuffer = 256;
157
158 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
159
get_lines_index_buffer(GrResourceProvider * resourceProvider)160 sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
161 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
162 return resourceProvider->findOrCreatePatternedIndexBuffer(
163 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
164 gLinesIndexBufferKey);
165 }
166
167 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)168 int get_float_exp(float x) {
169 static_assert(sizeof(int) == sizeof(float));
170 #ifdef SK_DEBUG
171 static bool tested;
172 if (!tested) {
173 tested = true;
174 SkASSERT(get_float_exp(0.25f) == -2);
175 SkASSERT(get_float_exp(0.3f) == -2);
176 SkASSERT(get_float_exp(0.5f) == -1);
177 SkASSERT(get_float_exp(1.f) == 0);
178 SkASSERT(get_float_exp(2.f) == 1);
179 SkASSERT(get_float_exp(2.5f) == 1);
180 SkASSERT(get_float_exp(8.f) == 3);
181 SkASSERT(get_float_exp(100.f) == 6);
182 SkASSERT(get_float_exp(1000.f) == 9);
183 SkASSERT(get_float_exp(1024.f) == 10);
184 SkASSERT(get_float_exp(3000000.f) == 21);
185 }
186 #endif
187 const int* iptr = (const int*)&x;
188 return (((*iptr) & 0x7f800000) >> 23) - 127;
189 }
190
191 // Uses the max curvature function for quads to estimate
192 // where to chop the conic. If the max curvature is not
193 // found along the curve segment it will return 1 and
194 // dst[0] is the original conic. If it returns 2 the dst[0]
195 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)196 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
197 SkScalar t = SkFindQuadMaxCurvature(src);
198 // SkFindQuadMaxCurvature() returns either a value in [0, 1) or NaN.
199 // However, passing NaN to conic.chopAt() will assert. Checking to see if
200 // t is in (0,1) will also cover the NaN case since NaN comparisons are always
201 // false, so we'll drop down into the else block in that case.
202 if (0 < t && t < 1) {
203 if (dst) {
204 SkConic conic;
205 conic.set(src, weight);
206 if (!conic.chopAt(t, dst)) {
207 dst[0].set(src, weight);
208 return 1;
209 }
210 }
211 return 2;
212 } else {
213 if (dst) {
214 dst[0].set(src, weight);
215 }
216 return 1;
217 }
218 }
219
220 // Calls split_conic on the entire conic and then once more on each subsection.
221 // Most cases will result in either 1 conic (chop point is not within t range)
222 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)223 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
224 SkConic dstTemp[2];
225 int conicCnt = split_conic(src, dstTemp, weight);
226 if (2 == conicCnt) {
227 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
228 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
229 } else {
230 dst[0] = dstTemp[0];
231 }
232 return conicCnt;
233 }
234
235 // returns 0 if quad/conic is degen or close to it
236 // in this case approx the path with lines
237 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)238 int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
239 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
240 static const SkScalar gDegenerateToLineTolSqd =
241 gDegenerateToLineTol * gDegenerateToLineTol;
242
243 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
244 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
245 return 1;
246 }
247
248 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
249 if (*dsqd < gDegenerateToLineTolSqd) {
250 return 1;
251 }
252
253 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
254 return 1;
255 }
256 return 0;
257 }
258
is_degen_quad_or_conic(const SkPoint p[3])259 int is_degen_quad_or_conic(const SkPoint p[3]) {
260 SkScalar dsqd;
261 return is_degen_quad_or_conic(p, &dsqd);
262 }
263
264 // we subdivide the quads to avoid huge overfill
265 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])266 int num_quad_subdivs(const SkPoint p[3]) {
267 SkScalar dsqd;
268 if (is_degen_quad_or_conic(p, &dsqd)) {
269 return -1;
270 }
271
272 // tolerance of triangle height in pixels
273 // tuned on windows Quadro FX 380 / Z600
274 // trade off of fill vs cpu time on verts
275 // maybe different when do this using gpu (geo or tess shaders)
276 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
277
278 if (dsqd <= gSubdivTol * gSubdivTol) {
279 return 0;
280 } else {
281 static const int kMaxSub = 4;
282 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
283 // = log4(d*d/tol*tol)/2
284 // = log2(d*d/tol*tol)
285
286 // +1 since we're ignoring the mantissa contribution.
287 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
288 log = std::min(std::max(0, log), kMaxSub);
289 return log;
290 }
291 }
292
293 /**
294 * Generates the lines and quads to be rendered. Lines are always recorded in
295 * device space. We will do a device space bloat to account for the 1pixel
296 * thickness.
297 * Quads are recorded in device space unless m contains
298 * perspective, then in they are in src space. We do this because we will
299 * subdivide large quads to reduce over-fill. This subdivision has to be
300 * performed before applying the perspective matrix.
301 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,bool convertConicsToQuads,PtArray * lines,PtArray * quads,PtArray * conics,IntArray * quadSubdivCnts,FloatArray * conicWeights)302 int gather_lines_and_quads(const SkPath& path,
303 const SkMatrix& m,
304 const SkIRect& devClipBounds,
305 SkScalar capLength,
306 bool convertConicsToQuads,
307 PtArray* lines,
308 PtArray* quads,
309 PtArray* conics,
310 IntArray* quadSubdivCnts,
311 FloatArray* conicWeights) {
312 SkPath::Iter iter(path, false);
313
314 int totalQuadCount = 0;
315 SkRect bounds;
316 SkIRect ibounds;
317
318 bool persp = m.hasPerspective();
319
320 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
321 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
322 // suffice for AA square & circle capping.
323 int verbsInContour = 0; // Does not count moves
324 bool seenZeroLengthVerb = false;
325 SkPoint zeroVerbPt;
326
327 // Adds a quad that has already been chopped to the list and checks for quads that are close to
328 // lines. Also does a bounding box check. It takes points that are in src space and device
329 // space. The src points are only required if the view matrix has perspective.
330 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
331 bool isContourStart) {
332 SkRect bounds;
333 SkIRect ibounds;
334 bounds.setBounds(devPts, 3);
335 bounds.outset(SK_Scalar1, SK_Scalar1);
336 bounds.roundOut(&ibounds);
337 // We only need the src space space pts when not in perspective.
338 SkASSERT(srcPts || !persp);
339 if (SkIRect::Intersects(devClipBounds, ibounds)) {
340 int subdiv = num_quad_subdivs(devPts);
341 SkASSERT(subdiv >= -1);
342 if (-1 == subdiv) {
343 SkPoint* pts = lines->push_back_n(4);
344 pts[0] = devPts[0];
345 pts[1] = devPts[1];
346 pts[2] = devPts[1];
347 pts[3] = devPts[2];
348 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
349 seenZeroLengthVerb = true;
350 zeroVerbPt = pts[0];
351 }
352 } else {
353 // when in perspective keep quads in src space
354 const SkPoint* qPts = persp ? srcPts : devPts;
355 SkPoint* pts = quads->push_back_n(3);
356 pts[0] = qPts[0];
357 pts[1] = qPts[1];
358 pts[2] = qPts[2];
359 quadSubdivCnts->push_back() = subdiv;
360 totalQuadCount += 1 << subdiv;
361 }
362 }
363 };
364
365 // Applies the view matrix to quad src points and calls the above helper.
366 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
367 SkPoint devPts[3];
368 m.mapPoints(devPts, srcSpaceQuadPts, 3);
369 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
370 };
371
372 SkPoint pathPts[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
373 for (;;) {
374 SkPath::Verb verb = iter.next(pathPts);
375 switch (verb) {
376 case SkPath::kConic_Verb:
377 if (convertConicsToQuads) {
378 SkScalar weight = iter.conicWeight();
379 SkAutoConicToQuads converter;
380 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
381 for (int i = 0; i < converter.countQuads(); ++i) {
382 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
383 }
384 } else {
385 SkConic dst[4];
386 // We chop the conics to create tighter clipping to hide error
387 // that appears near max curvature of very thin conics. Thin
388 // hyperbolas with high weight still show error.
389 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
390 for (int i = 0; i < conicCnt; ++i) {
391 SkPoint devPts[4];
392 SkPoint* chopPnts = dst[i].fPts;
393 m.mapPoints(devPts, chopPnts, 3);
394 bounds.setBounds(devPts, 3);
395 bounds.outset(SK_Scalar1, SK_Scalar1);
396 bounds.roundOut(&ibounds);
397 if (SkIRect::Intersects(devClipBounds, ibounds)) {
398 if (is_degen_quad_or_conic(devPts)) {
399 SkPoint* pts = lines->push_back_n(4);
400 pts[0] = devPts[0];
401 pts[1] = devPts[1];
402 pts[2] = devPts[1];
403 pts[3] = devPts[2];
404 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
405 pts[2] == pts[3]) {
406 seenZeroLengthVerb = true;
407 zeroVerbPt = pts[0];
408 }
409 } else {
410 // when in perspective keep conics in src space
411 SkPoint* cPts = persp ? chopPnts : devPts;
412 SkPoint* pts = conics->push_back_n(3);
413 pts[0] = cPts[0];
414 pts[1] = cPts[1];
415 pts[2] = cPts[2];
416 conicWeights->push_back() = dst[i].fW;
417 }
418 }
419 }
420 }
421 verbsInContour++;
422 break;
423 case SkPath::kMove_Verb:
424 // New contour (and last one was unclosed). If it was just a zero length drawing
425 // operation, and we're supposed to draw caps, then add a tiny line.
426 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
427 SkPoint* pts = lines->push_back_n(2);
428 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
429 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
430 }
431 verbsInContour = 0;
432 seenZeroLengthVerb = false;
433 break;
434 case SkPath::kLine_Verb: {
435 SkPoint devPts[2];
436 m.mapPoints(devPts, pathPts, 2);
437 bounds.setBounds(devPts, 2);
438 bounds.outset(SK_Scalar1, SK_Scalar1);
439 bounds.roundOut(&ibounds);
440 if (SkIRect::Intersects(devClipBounds, ibounds)) {
441 SkPoint* pts = lines->push_back_n(2);
442 pts[0] = devPts[0];
443 pts[1] = devPts[1];
444 if (verbsInContour == 0 && pts[0] == pts[1]) {
445 seenZeroLengthVerb = true;
446 zeroVerbPt = pts[0];
447 }
448 }
449 verbsInContour++;
450 break;
451 }
452 case SkPath::kQuad_Verb: {
453 SkPoint choppedPts[5];
454 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
455 // When it is degenerate it allows the approximation with lines to work since the
456 // chop point (if there is one) will be at the parabola's vertex. In the nearly
457 // degenerate the QuadUVMatrix computed for the points is almost singular which
458 // can cause rendering artifacts.
459 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
460 for (int i = 0; i < n; ++i) {
461 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
462 }
463 verbsInContour++;
464 break;
465 }
466 case SkPath::kCubic_Verb: {
467 SkPoint devPts[4];
468 m.mapPoints(devPts, pathPts, 4);
469 bounds.setBounds(devPts, 4);
470 bounds.outset(SK_Scalar1, SK_Scalar1);
471 bounds.roundOut(&ibounds);
472 if (SkIRect::Intersects(devClipBounds, ibounds)) {
473 PREALLOC_PTARRAY(32) q;
474 // We convert cubics to quadratics (for now).
475 // In perspective have to do conversion in src space.
476 if (persp) {
477 SkScalar tolScale =
478 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
479 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
480 } else {
481 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
482 }
483 for (int i = 0; i < q.size(); i += 3) {
484 if (persp) {
485 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
486 } else {
487 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
488 }
489 }
490 }
491 verbsInContour++;
492 break;
493 }
494 case SkPath::kClose_Verb:
495 // Contour is closed, so we don't need to grow the starting line, unless it's
496 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
497 if (capLength > 0) {
498 if (seenZeroLengthVerb && verbsInContour == 1) {
499 SkPoint* pts = lines->push_back_n(2);
500 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
501 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
502 } else if (verbsInContour == 0) {
503 // Contour was (moveTo, close). Add a line.
504 SkPoint devPts[2];
505 m.mapPoints(devPts, pathPts, 1);
506 devPts[1] = devPts[0];
507 bounds.setBounds(devPts, 2);
508 bounds.outset(SK_Scalar1, SK_Scalar1);
509 bounds.roundOut(&ibounds);
510 if (SkIRect::Intersects(devClipBounds, ibounds)) {
511 SkPoint* pts = lines->push_back_n(2);
512 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
513 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
514 }
515 }
516 }
517 break;
518 case SkPath::kDone_Verb:
519 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
520 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
521 // degenerate, we need to draw a line.
522 SkPoint* pts = lines->push_back_n(2);
523 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
524 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
525 }
526 return totalQuadCount;
527 }
528 }
529 }
530
531 struct LineVertex {
532 SkPoint fPos;
533 float fCoverage;
534 };
535
536 struct BezierVertex {
537 SkPoint fPos;
538 union {
539 struct {
540 SkScalar fKLM[3];
541 } fConic;
542 SkVector fQuadCoord;
543 struct {
544 SkScalar fBogus[4];
545 };
546 };
547 };
548
549 static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
550
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)551 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
552 const SkPoint& ptB, const SkVector& normB,
553 SkPoint* result) {
554
555 SkScalar lineAW = -normA.dot(ptA);
556 SkScalar lineBW = -normB.dot(ptB);
557
558 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
559 wInv = sk_ieee_float_divide(1.0f, wInv);
560 if (!SkIsFinite(wInv)) {
561 // lines are parallel, pick the point in between
562 *result = (ptA + ptB)*SK_ScalarHalf;
563 *result += normA;
564 } else {
565 result->fX = normA.fY * lineBW - lineAW * normB.fY;
566 result->fX *= wInv;
567
568 result->fY = lineAW * normB.fX - normA.fX * lineBW;
569 result->fY *= wInv;
570 }
571 }
572
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])573 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
574 // this should be in the src space, not dev coords, when we have perspective
575 GrPathUtils::QuadUVMatrix DevToUV(qpts);
576 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
577 }
578
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])579 bool bloat_quad(const SkPoint qpts[3],
580 const SkMatrix* toDevice,
581 const SkMatrix* toSrc,
582 BezierVertex verts[kQuadNumVertices]) {
583 SkASSERT(!toDevice == !toSrc);
584 // original quad is specified by tri a,b,c
585 SkPoint a = qpts[0];
586 SkPoint b = qpts[1];
587 SkPoint c = qpts[2];
588
589 if (toDevice) {
590 toDevice->mapPoints(&a, 1);
591 toDevice->mapPoints(&b, 1);
592 toDevice->mapPoints(&c, 1);
593 }
594 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
595 // to edges ab and bc:
596 //
597 // before | after
598 // | b0
599 // b |
600 // |
601 // | a0 c0
602 // a c | a1 c1
603 //
604 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
605 // respectively.
606 BezierVertex& a0 = verts[0];
607 BezierVertex& a1 = verts[1];
608 BezierVertex& b0 = verts[2];
609 BezierVertex& c0 = verts[3];
610 BezierVertex& c1 = verts[4];
611
612 SkVector ab = b;
613 ab -= a;
614 SkVector ac = c;
615 ac -= a;
616 SkVector cb = b;
617 cb -= c;
618
619 // After the transform (or due to floating point math) we might have a line,
620 // try to do something reasonable
621
622 bool abNormalized = ab.normalize();
623 bool cbNormalized = cb.normalize();
624
625 if (!abNormalized) {
626 if (!cbNormalized) {
627 return false; // Quad is degenerate so we won't add it.
628 }
629
630 ab = cb;
631 }
632
633 if (!cbNormalized) {
634 cb = ab;
635 }
636
637 // We should have already handled degenerates
638 SkASSERT(ab.length() > 0 && cb.length() > 0);
639
640 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
641 if (abN.dot(ac) > 0) {
642 abN.negate();
643 }
644
645 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
646 if (cbN.dot(ac) < 0) {
647 cbN.negate();
648 }
649
650 a0.fPos = a;
651 a0.fPos += abN;
652 a1.fPos = a;
653 a1.fPos -= abN;
654
655 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
656 c = b;
657 }
658 c0.fPos = c;
659 c0.fPos += cbN;
660 c1.fPos = c;
661 c1.fPos -= cbN;
662
663 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
664
665 if (toSrc) {
666 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
667 kQuadNumVertices);
668 }
669
670 return true;
671 }
672
673 // Equations based off of Loop-Blinn Quadratic GPU Rendering
674 // Input Parametric:
675 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
676 // Output Implicit:
677 // f(x, y, w) = f(P) = K^2 - LM
678 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
679 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)680 void set_conic_coeffs(const SkPoint p[3],
681 BezierVertex verts[kQuadNumVertices],
682 const SkScalar weight) {
683 SkMatrix klm;
684
685 GrPathUtils::getConicKLM(p, weight, &klm);
686
687 for (int i = 0; i < kQuadNumVertices; ++i) {
688 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
689 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
690 }
691 }
692
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)693 void add_conics(const SkPoint p[3],
694 const SkScalar weight,
695 const SkMatrix* toDevice,
696 const SkMatrix* toSrc,
697 BezierVertex** vert) {
698 if (bloat_quad(p, toDevice, toSrc, *vert)) {
699 set_conic_coeffs(p, *vert, weight);
700 *vert += kQuadNumVertices;
701 }
702 }
703
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)704 void add_quads(const SkPoint p[3],
705 int subdiv,
706 const SkMatrix* toDevice,
707 const SkMatrix* toSrc,
708 BezierVertex** vert) {
709 SkASSERT(subdiv >= 0);
710 // temporary vertex storage to avoid reading the vertex buffer
711 BezierVertex outVerts[kQuadNumVertices] = {};
712
713 // storage for the chopped quad
714 // pts 0,1,2 are the first quad, and 2,3,4 the second quad
715 SkPoint choppedQuadPts[5];
716 // start off with our original curve in the second quad slot
717 memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
718
719 int stepCount = 1 << subdiv;
720 while (stepCount > 1) {
721 // The general idea is:
722 // * chop the quad using pts 2,3,4 as the input
723 // * write out verts using pts 0,1,2
724 // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
725 SkScalar h = 1.f / stepCount;
726 SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
727
728 if (bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts)) {
729 set_uv_quad(choppedQuadPts, outVerts);
730 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
731 *vert += kQuadNumVertices;
732 }
733 --stepCount;
734 }
735
736 // finish up, write out the final quad
737 if (bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts)) {
738 set_uv_quad(&choppedQuadPts[2], outVerts);
739 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
740 *vert += kQuadNumVertices;
741 }
742 }
743
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)744 void add_line(const SkPoint p[2],
745 const SkMatrix* toSrc,
746 uint8_t coverage,
747 LineVertex** vert) {
748 const SkPoint& a = p[0];
749 const SkPoint& b = p[1];
750
751 SkVector ortho, vec = b;
752 vec -= a;
753
754 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
755
756 if (vec.setLength(SK_ScalarHalf)) {
757 // Create a vector orthogonal to 'vec' and of unit length
758 ortho.fX = 2.0f * vec.fY;
759 ortho.fY = -2.0f * vec.fX;
760
761 float floatCoverage = GrNormalizeByteToFloat(coverage);
762
763 if (lengthSqd >= 1.0f) {
764 // Relative to points a and b:
765 // The inner vertices are inset half a pixel along the line a,b
766 (*vert)[0].fPos = a + vec;
767 (*vert)[0].fCoverage = floatCoverage;
768 (*vert)[1].fPos = b - vec;
769 (*vert)[1].fCoverage = floatCoverage;
770 } else {
771 // The inner vertices are inset a distance of length(a,b) from the outer edge of
772 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
773 // The coverage is then modulated by the length. This gives us the correct
774 // coverage for rects shorter than a pixel as they get translated subpixel amounts
775 // inside of a pixel.
776 SkScalar length = SkScalarSqrt(lengthSqd);
777 (*vert)[0].fPos = b - vec;
778 (*vert)[0].fCoverage = floatCoverage * length;
779 (*vert)[1].fPos = a + vec;
780 (*vert)[1].fCoverage = floatCoverage * length;
781 }
782 // Relative to points a and b:
783 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
784 // orthogonally.
785 (*vert)[2].fPos = a - vec + ortho;
786 (*vert)[2].fCoverage = 0;
787 (*vert)[3].fPos = b + vec + ortho;
788 (*vert)[3].fCoverage = 0;
789 (*vert)[4].fPos = a - vec - ortho;
790 (*vert)[4].fCoverage = 0;
791 (*vert)[5].fPos = b + vec - ortho;
792 (*vert)[5].fCoverage = 0;
793
794 if (toSrc) {
795 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
796 kLineSegNumVertices);
797 }
798 } else {
799 // just make it degenerate and likely offscreen
800 for (int i = 0; i < kLineSegNumVertices; ++i) {
801 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
802 }
803 }
804
805 *vert += kLineSegNumVertices;
806 }
807
808 ///////////////////////////////////////////////////////////////////////////////
809
810 class AAHairlineOp final : public GrMeshDrawOp {
811 private:
812 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
813
814 public:
815 DEFINE_OP_CLASS_ID
816
Make(GrRecordingContext * context,GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)817 static GrOp::Owner Make(GrRecordingContext* context,
818 GrPaint&& paint,
819 const SkMatrix& viewMatrix,
820 const SkPath& path,
821 const GrStyle& style,
822 const SkIRect& devClipBounds,
823 const GrUserStencilSettings* stencilSettings) {
824 SkScalar hairlineCoverage;
825 uint8_t newCoverage = 0xff;
826 if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
827 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
828 }
829
830 const SkStrokeRec& stroke = style.strokeRec();
831 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
832
833 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
834 viewMatrix, path,
835 devClipBounds, capLength, stencilSettings);
836 }
837
AAHairlineOp(GrProcessorSet * processorSet,const SkPMColor4f & color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)838 AAHairlineOp(GrProcessorSet* processorSet,
839 const SkPMColor4f& color,
840 uint8_t coverage,
841 const SkMatrix& viewMatrix,
842 const SkPath& path,
843 SkIRect devClipBounds,
844 SkScalar capLength,
845 const GrUserStencilSettings* stencilSettings)
846 : INHERITED(ClassID())
847 , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
848 , fColor(color)
849 , fCoverage(coverage) {
850 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
851
852 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
853 IsHairline::kYes);
854 }
855
name() const856 const char* name() const override { return "AAHairlineOp"; }
857
visitProxies(const GrVisitProxyFunc & func) const858 void visitProxies(const GrVisitProxyFunc& func) const override {
859
860 bool visited = false;
861 for (int i = 0; i < 3; ++i) {
862 if (fProgramInfos[i]) {
863 fProgramInfos[i]->visitFPProxies(func);
864 visited = true;
865 }
866 }
867
868 if (!visited) {
869 fHelper.visitProxies(func);
870 }
871 }
872
fixedFunctionFlags() const873 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
874
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)875 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
876 GrClampType clampType) override {
877 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
878 return fHelper.finalizeProcessors(caps, clip, clampType,
879 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
880 nullptr);
881 }
882
883 enum class Program : uint8_t {
884 kNone = 0x0,
885 kLine = 0x1,
886 kQuad = 0x2,
887 kConic = 0x4,
888 };
889
890 private:
891 void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
892 const GrSurfaceProxyView& writeView,
893 bool usesMSAASurface,
894 const SkMatrix* geometryProcessorViewM,
895 const SkMatrix* geometryProcessorLocalM,
896 GrXferBarrierFlags renderPassXferBarriers,
897 GrLoadOp colorLoadOp);
898 void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
899 const GrSurfaceProxyView& writeView,
900 bool usesMSAASurface,
901 const SkMatrix* geometryProcessorViewM,
902 const SkMatrix* geometryProcessorLocalM,
903 GrXferBarrierFlags renderPassXferBarriers,
904 GrLoadOp colorLoadOp);
905 void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
906 const GrSurfaceProxyView& writeView,
907 bool usesMSAASurface,
908 const SkMatrix* geometryProcessorViewM,
909 const SkMatrix* geometryProcessorLocalM,
910 GrXferBarrierFlags renderPassXferBarriers,
911 GrLoadOp colorLoadOp);
912
programInfo()913 GrProgramInfo* programInfo() override {
914 // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
915 // should really never be called.
916 SkASSERT(0);
917 return nullptr;
918 }
919
920 Program predictPrograms(const GrCaps*) const;
921
922 void onCreateProgramInfo(const GrCaps*,
923 SkArenaAlloc*,
924 const GrSurfaceProxyView& writeView,
925 bool usesMSAASurface,
926 GrAppliedClip&&,
927 const GrDstProxyView&,
928 GrXferBarrierFlags renderPassXferBarriers,
929 GrLoadOp colorLoadOp) override;
930
931 void onPrePrepareDraws(GrRecordingContext*,
932 const GrSurfaceProxyView& writeView,
933 GrAppliedClip*,
934 const GrDstProxyView&,
935 GrXferBarrierFlags renderPassXferBarriers,
936 GrLoadOp colorLoadOp) override;
937
938 void onPrepareDraws(GrMeshDrawTarget*) override;
939 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
940
onCombineIfPossible(GrOp * t,SkArenaAlloc *,const GrCaps & caps)941 CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
942 AAHairlineOp* that = t->cast<AAHairlineOp>();
943
944 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
945 return CombineResult::kCannotCombine;
946 }
947
948 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
949 return CombineResult::kCannotCombine;
950 }
951
952 // We go to identity if we don't have perspective
953 if (this->viewMatrix().hasPerspective() &&
954 !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
955 return CombineResult::kCannotCombine;
956 }
957
958 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
959 // method but we haven't implemented this yet
960 // TODO investigate going to vertex color and coverage?
961 if (this->coverage() != that->coverage()) {
962 return CombineResult::kCannotCombine;
963 }
964
965 if (this->color() != that->color()) {
966 return CombineResult::kCannotCombine;
967 }
968
969 if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
970 that->viewMatrix())) {
971 return CombineResult::kCannotCombine;
972 }
973
974 fPaths.push_back_n(that->fPaths.size(), that->fPaths.begin());
975 return CombineResult::kMerged;
976 }
977
978 #if defined(GPU_TEST_UTILS)
onDumpInfo() const979 SkString onDumpInfo() const override {
980 return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
981 fColor.toBytes_RGBA(), fCoverage, fPaths.size(),
982 fHelper.dumpInfo().c_str());
983 }
984 #endif
985
color() const986 const SkPMColor4f& color() const { return fColor; }
coverage() const987 uint8_t coverage() const { return fCoverage; }
viewMatrix() const988 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
989
990 struct PathData {
991 SkMatrix fViewMatrix;
992 SkPath fPath;
993 SkIRect fDevClipBounds;
994 SkScalar fCapLength;
995 };
996
997 STArray<1, PathData, true> fPaths;
998 Helper fHelper;
999 SkPMColor4f fColor;
1000 uint8_t fCoverage;
1001
1002 Program fCharacterization = Program::kNone; // holds a mask of required programs
1003 GrSimpleMesh* fMeshes[3] = { nullptr };
1004 GrProgramInfo* fProgramInfos[3] = { nullptr };
1005
1006 using INHERITED = GrMeshDrawOp;
1007 };
1008
SK_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)1009 SK_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
1010
1011 void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1012 const GrPipeline* pipeline,
1013 const GrSurfaceProxyView& writeView,
1014 bool usesMSAASurface,
1015 const SkMatrix* geometryProcessorViewM,
1016 const SkMatrix* geometryProcessorLocalM,
1017 GrXferBarrierFlags renderPassXferBarriers,
1018 GrLoadOp colorLoadOp) {
1019 if (fProgramInfos[0]) {
1020 return;
1021 }
1022
1023 GrGeometryProcessor* lineGP;
1024 {
1025 using namespace GrDefaultGeoProcFactory;
1026
1027 Color color(this->color());
1028 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
1029 : LocalCoords::kUnused_Type);
1030 localCoords.fMatrix = geometryProcessorLocalM;
1031
1032 lineGP = GrDefaultGeoProcFactory::Make(arena,
1033 color,
1034 Coverage::kAttribute_Type,
1035 localCoords,
1036 *geometryProcessorViewM);
1037 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
1038 }
1039
1040 fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1041 &caps, arena, pipeline, writeView, usesMSAASurface, lineGP, GrPrimitiveType::kTriangles,
1042 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1043 }
1044
makeQuadProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1045 void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1046 const GrPipeline* pipeline,
1047 const GrSurfaceProxyView& writeView,
1048 bool usesMSAASurface,
1049 const SkMatrix* geometryProcessorViewM,
1050 const SkMatrix* geometryProcessorLocalM,
1051 GrXferBarrierFlags renderPassXferBarriers,
1052 GrLoadOp colorLoadOp) {
1053 if (fProgramInfos[1]) {
1054 return;
1055 }
1056
1057 GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
1058 this->color(),
1059 *geometryProcessorViewM,
1060 caps,
1061 *geometryProcessorLocalM,
1062 fHelper.usesLocalCoords(),
1063 this->coverage());
1064 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1065
1066 fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1067 &caps, arena, pipeline, writeView, usesMSAASurface, quadGP, GrPrimitiveType::kTriangles,
1068 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1069 }
1070
makeConicProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1071 void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1072 const GrPipeline* pipeline,
1073 const GrSurfaceProxyView& writeView,
1074 bool usesMSAASurface,
1075 const SkMatrix* geometryProcessorViewM,
1076 const SkMatrix* geometryProcessorLocalM,
1077 GrXferBarrierFlags renderPassXferBarriers,
1078 GrLoadOp colorLoadOp) {
1079 if (fProgramInfos[2]) {
1080 return;
1081 }
1082
1083 GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
1084 this->color(),
1085 *geometryProcessorViewM,
1086 caps,
1087 *geometryProcessorLocalM,
1088 fHelper.usesLocalCoords(),
1089 this->coverage());
1090 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1091
1092 fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1093 &caps, arena, pipeline, writeView, usesMSAASurface, conicGP,
1094 GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp,
1095 fHelper.stencilSettings());
1096 }
1097
predictPrograms(const GrCaps * caps) const1098 AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
1099 bool convertConicsToQuads = !caps->shaderCaps()->fFloatIs32Bits;
1100
1101 // When predicting the programs we always include the lineProgram bc it is used as a fallback
1102 // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
1103 // given path.
1104 Program neededPrograms = Program::kLine;
1105
1106 for (int i = 0; i < fPaths.size(); i++) {
1107 uint32_t mask = fPaths[i].fPath.getSegmentMasks();
1108
1109 if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
1110 neededPrograms |= Program::kQuad;
1111 }
1112 if (mask & SkPath::kConic_SegmentMask) {
1113 if (convertConicsToQuads) {
1114 neededPrograms |= Program::kQuad;
1115 } else {
1116 neededPrograms |= Program::kConic;
1117 }
1118 }
1119 }
1120
1121 return neededPrograms;
1122 }
1123
onCreateProgramInfo(const GrCaps * caps,SkArenaAlloc * arena,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip && appliedClip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1124 void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
1125 SkArenaAlloc* arena,
1126 const GrSurfaceProxyView& writeView,
1127 bool usesMSAASurface,
1128 GrAppliedClip&& appliedClip,
1129 const GrDstProxyView& dstProxyView,
1130 GrXferBarrierFlags renderPassXferBarriers,
1131 GrLoadOp colorLoadOp) {
1132 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1133 SkMatrix invert;
1134 if (!this->viewMatrix().invert(&invert)) {
1135 return;
1136 }
1137
1138 // we will transform to identity space if the viewmatrix does not have perspective
1139 bool hasPerspective = this->viewMatrix().hasPerspective();
1140 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
1141 const SkMatrix* geometryProcessorLocalM = &invert;
1142 if (hasPerspective) {
1143 geometryProcessorViewM = &this->viewMatrix();
1144 geometryProcessorLocalM = &SkMatrix::I();
1145 }
1146
1147 auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
1148 std::move(appliedClip), dstProxyView);
1149
1150 if (fCharacterization & Program::kLine) {
1151 this->makeLineProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1152 geometryProcessorViewM, geometryProcessorLocalM,
1153 renderPassXferBarriers, colorLoadOp);
1154 }
1155 if (fCharacterization & Program::kQuad) {
1156 this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1157 geometryProcessorViewM, geometryProcessorLocalM,
1158 renderPassXferBarriers, colorLoadOp);
1159 }
1160 if (fCharacterization & Program::kConic) {
1161 this->makeConicProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1162 geometryProcessorViewM, geometryProcessorLocalM,
1163 renderPassXferBarriers, colorLoadOp);
1164
1165 }
1166 }
1167
onPrePrepareDraws(GrRecordingContext * context,const GrSurfaceProxyView & writeView,GrAppliedClip * clip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1168 void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
1169 const GrSurfaceProxyView& writeView,
1170 GrAppliedClip* clip,
1171 const GrDstProxyView& dstProxyView,
1172 GrXferBarrierFlags renderPassXferBarriers,
1173 GrLoadOp colorLoadOp) {
1174 SkArenaAlloc* arena = context->priv().recordTimeAllocator();
1175 const GrCaps* caps = context->priv().caps();
1176
1177 // http://skbug.com/12201 -- DDL does not yet support DMSAA.
1178 bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
1179
1180 // This is equivalent to a GrOpFlushState::detachAppliedClip
1181 GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
1182
1183 // Conservatively predict which programs will be required
1184 fCharacterization = this->predictPrograms(caps);
1185
1186 this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
1187 dstProxyView, renderPassXferBarriers, colorLoadOp);
1188
1189 context->priv().recordProgramInfo(fProgramInfos[0]);
1190 context->priv().recordProgramInfo(fProgramInfos[1]);
1191 context->priv().recordProgramInfo(fProgramInfos[2]);
1192 }
1193
onPrepareDraws(GrMeshDrawTarget * target)1194 void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
1195 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1196 SkMatrix invert;
1197 if (!this->viewMatrix().invert(&invert)) {
1198 return;
1199 }
1200
1201 // we will transform to identity space if the viewmatrix does not have perspective
1202 const SkMatrix* toDevice = nullptr;
1203 const SkMatrix* toSrc = nullptr;
1204 if (this->viewMatrix().hasPerspective()) {
1205 toDevice = &this->viewMatrix();
1206 toSrc = &invert;
1207 }
1208
1209 SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
1210 Program actualPrograms = Program::kNone;
1211
1212 // This is hand inlined for maximum performance.
1213 PREALLOC_PTARRAY(128) lines;
1214 PREALLOC_PTARRAY(128) quads;
1215 PREALLOC_PTARRAY(128) conics;
1216 IntArray qSubdivs;
1217 FloatArray cWeights;
1218 int quadCount = 0;
1219
1220 int instanceCount = fPaths.size();
1221 bool convertConicsToQuads = !target->caps().shaderCaps()->fFloatIs32Bits;
1222 for (int i = 0; i < instanceCount; i++) {
1223 const PathData& args = fPaths[i];
1224 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
1225 args.fCapLength, convertConicsToQuads, &lines, &quads,
1226 &conics, &qSubdivs, &cWeights);
1227 }
1228
1229 int lineCount = lines.size() / 2;
1230 int conicCount = conics.size() / 3;
1231 int quadAndConicCount = conicCount + quadCount;
1232
1233 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
1234 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
1235 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
1236 return;
1237 }
1238
1239 // do lines first
1240 if (lineCount) {
1241 SkASSERT(predictedPrograms & Program::kLine);
1242 actualPrograms |= Program::kLine;
1243
1244 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
1245
1246 GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
1247 std::move(linesIndexBuffer), kLineSegNumVertices,
1248 kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
1249
1250 LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
1251 if (!verts) {
1252 SkDebugf("Could not allocate vertices\n");
1253 return;
1254 }
1255
1256 for (int i = 0; i < lineCount; ++i) {
1257 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
1258 }
1259
1260 fMeshes[0] = helper.mesh();
1261 }
1262
1263 if (quadCount || conicCount) {
1264 sk_sp<const GrBuffer> vertexBuffer;
1265 int firstVertex;
1266
1267 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1268
1269 int vertexCount = kQuadNumVertices * quadAndConicCount;
1270 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1271 &firstVertex);
1272
1273 if (!vertices || !quadsIndexBuffer) {
1274 SkDebugf("Could not allocate vertices\n");
1275 return;
1276 }
1277
1278 // Setup vertices
1279 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1280
1281 int unsubdivQuadCnt = quads.size() / 3;
1282 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1283 SkASSERT(qSubdivs[i] >= 0);
1284 if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
1285 return;
1286 }
1287 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1288 }
1289
1290 // Start Conics
1291 for (int i = 0; i < conicCount; ++i) {
1292 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1293 }
1294
1295 if (quadCount > 0) {
1296 SkASSERT(predictedPrograms & Program::kQuad);
1297 actualPrograms |= Program::kQuad;
1298
1299 fMeshes[1] = target->allocMesh();
1300 fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
1301 kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
1302 firstVertex);
1303 firstVertex += quadCount * kQuadNumVertices;
1304 }
1305
1306 if (conicCount > 0) {
1307 SkASSERT(predictedPrograms & Program::kConic);
1308 actualPrograms |= Program::kConic;
1309
1310 fMeshes[2] = target->allocMesh();
1311 fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
1312 kQuadsNumInIdxBuffer, std::move(vertexBuffer),
1313 kQuadNumVertices, firstVertex);
1314 }
1315 }
1316
1317 // In DDL mode this will replace the predicted program requirements with the actual ones.
1318 // However, we will already have surfaced the predicted programs to the DDL.
1319 fCharacterization = actualPrograms;
1320 }
1321
onExecute(GrOpFlushState * flushState,const SkRect & chainBounds)1322 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1323 this->createProgramInfo(flushState);
1324
1325 for (int i = 0; i < 3; ++i) {
1326 if (fProgramInfos[i] && fMeshes[i]) {
1327 flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
1328 flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
1329 fProgramInfos[i]->pipeline());
1330 flushState->drawMesh(*fMeshes[i]);
1331 }
1332 }
1333 }
1334
1335 } // anonymous namespace
1336
1337 ///////////////////////////////////////////////////////////////////////////////////////////////////
1338
1339 #if defined(GPU_TEST_UTILS)
1340
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1341 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1342 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1343 const SkPath& path = GrTest::TestPath(random);
1344 SkIRect devClipBounds;
1345 devClipBounds.setEmpty();
1346 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1347 GrStyle::SimpleHairline(), devClipBounds,
1348 GrGetRandomStencil(random, context));
1349 }
1350
1351 #endif
1352
1353 ///////////////////////////////////////////////////////////////////////////////////////////////////
1354
1355 namespace skgpu::ganesh {
1356
onCanDrawPath(const CanDrawPathArgs & args) const1357 PathRenderer::CanDrawPath AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
1358 if (GrAAType::kCoverage != args.fAAType) {
1359 return CanDrawPath::kNo;
1360 }
1361
1362 if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
1363 return CanDrawPath::kNo;
1364 }
1365
1366 // We don't currently handle dashing in this class though perhaps we should.
1367 if (args.fShape->style().pathEffect()) {
1368 return CanDrawPath::kNo;
1369 }
1370
1371 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
1372 args.fCaps->shaderCaps()->fShaderDerivativeSupport) {
1373 return CanDrawPath::kYes;
1374 }
1375
1376 return CanDrawPath::kNo;
1377 }
1378
1379
onDrawPath(const DrawPathArgs & args)1380 bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1381 GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
1382 "AAHairlinePathRenderer::onDrawPath");
1383 SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
1384
1385 SkPath path;
1386 args.fShape->asPath(&path);
1387 GrOp::Owner op =
1388 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1389 args.fShape->style(), *args.fClipConservativeBounds,
1390 args.fUserStencilSettings);
1391 args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
1392 return true;
1393 }
1394
1395 } // namespace skgpu::ganesh
1396