xref: /aosp_15_r20/external/skia/bench/GrMemoryPoolBench.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "bench/Benchmark.h"
9 #include "src/base/SkRandom.h"
10 #include "src/gpu/ganesh/GrMemoryPool.h"
11 
12 #include <type_traits>
13 
14 namespace {
15 
16 // sizeof is a multiple of GrMemoryPool::kAlignment for 4, 8, or 16 byte alignment
17 struct alignas(GrMemoryPool::kAlignment) Aligned {
18     char buf[32];
19 };
20 static_assert(sizeof(Aligned) == 32);
21 static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0);
22 
23 // sizeof is not a multiple of GrMemoryPool::kAlignment (will not be a multiple of max_align_t
24 // if it's 4, 8, or 16, as desired).
25 struct alignas(2) Unaligned {
26     char buf[30];
27 };
28 static_assert(sizeof(Unaligned) == 30);
29 static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0);
30 
31 // When max_align_t == 16, 8, or 4 the padded Unaligned will also be 32
32 static_assert(SkAlignTo(sizeof(Unaligned), GrMemoryPool::kAlignment) == sizeof(Aligned));
33 
34 // All benchmarks create and delete the same number of objects. The key difference is the order
35 // of operations, the size of the objects being allocated, and the size of the pool.
36 typedef void (*RunBenchProc)(GrMemoryPool*, int);
37 
38 }  // namespace
39 
40 // N objects are created, and then destroyed in reverse order (fully unwinding the cursor within
41 // each block of the memory pool).
42 template <typename T>
run_stack(GrMemoryPool * pool,int loops)43 static void run_stack(GrMemoryPool* pool, int loops) {
44     static const int kMaxObjects = 4 * (1 << 10);
45     T* objs[kMaxObjects];
46     for (int i = 0; i < loops; ++i) {
47         // Push N objects into the pool (or heap if pool is null)
48         for (int j = 0; j < kMaxObjects; ++j) {
49             objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
50         }
51         // Pop N objects off in LIFO order
52         for (int j = kMaxObjects - 1; j >= 0; --j) {
53             if (pool) {
54                 pool->release(objs[j]);
55             } else {
56                 delete objs[j];
57             }
58         }
59 
60         // Everything has been cleaned up for the next loop
61     }
62 }
63 
64 // N objects are created, and then destroyed in creation order (is not able to unwind the cursor
65 // within each block, but can reclaim the block once everything is destroyed).
66 template <typename T>
run_queue(GrMemoryPool * pool,int loops)67 static void run_queue(GrMemoryPool* pool, int loops) {
68     static const int kMaxObjects = 4 * (1 << 10);
69     T* objs[kMaxObjects];
70     for (int i = 0; i < loops; ++i) {
71         // Push N objects into the pool (or heap if pool is null)
72         for (int j = 0; j < kMaxObjects; ++j) {
73             objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
74         }
75         // Pop N objects off in FIFO order
76         for (int j = 0; j < kMaxObjects; ++j) {
77             if (pool) {
78                 pool->release(objs[j]);
79             } else {
80                 delete objs[j];
81             }
82         }
83 
84         // Everything has been cleaned up for the next loop
85     }
86 }
87 
88 // N objects are created and immediately destroyed, so space at the start of the pool should be
89 // immediately reclaimed.
90 template <typename T>
run_pushpop(GrMemoryPool * pool,int loops)91 static void run_pushpop(GrMemoryPool* pool, int loops) {
92     static const int kMaxObjects = 4 * (1 << 10);
93     T* objs[kMaxObjects];
94     for (int i = 0; i < loops; ++i) {
95         // Push N objects into the pool (or heap if pool is null)
96         for (int j = 0; j < kMaxObjects; ++j) {
97             if (pool) {
98                 objs[j] = (T*) pool->allocate(sizeof(T));
99                 pool->release(objs[j]);
100             } else {
101                 objs[j] = new T;
102                 delete objs[j];
103             }
104         }
105 
106         // Everything has been cleaned up for the next loop
107     }
108 }
109 
110 // N object creations and destructions are invoked in random order.
111 template <typename T>
run_random(GrMemoryPool * pool,int loops)112 static void run_random(GrMemoryPool* pool, int loops) {
113     static const int kMaxObjects = 4 * (1 << 10);
114     T* objs[kMaxObjects];
115     for (int i = 0; i < kMaxObjects; ++i) {
116         objs[i] = nullptr;
117     }
118 
119     auto del = [&](int j) {
120         // Delete
121         if (pool) {
122             pool->release(objs[j]);
123         } else {
124             delete objs[j];
125         }
126         objs[j] = nullptr;
127     };
128 
129     SkRandom r;
130     for (int i = 0; i < loops; ++i) {
131         // Execute 2*kMaxObjects operations, which should average to N create and N destroy,
132         // followed by a small number of remaining deletions.
133         for (int j = 0; j < 2 * kMaxObjects; ++j) {
134             int k = r.nextRangeU(0, kMaxObjects-1);
135             if (objs[k]) {
136                 del(k);
137             } else {
138                 // Create
139                 objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
140             }
141         }
142 
143         // Ensure everything is null for the next loop
144         for (int j = 0; j < kMaxObjects; ++j) {
145             if (objs[j]) {
146                 del(j);
147             }
148         }
149     }
150 }
151 
152 ///////////////////////////////////////////////////////////////////////////////////////////////////
153 
154 class GrMemoryPoolBench : public Benchmark {
155 public:
GrMemoryPoolBench(const char * name,RunBenchProc proc,int poolSize)156     GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize)
157             : fPoolSize(poolSize)
158             , fProc(proc) {
159         fName.printf("grmemorypool_%s", name);
160     }
161 
isSuitableFor(Backend backend)162     bool isSuitableFor(Backend backend) override {
163         return backend == Backend::kNonRendering;
164     }
165 
166 protected:
onGetName()167     const char* onGetName() override {
168         return fName.c_str();
169     }
170 
onDraw(int loops,SkCanvas *)171     void onDraw(int loops, SkCanvas*) override {
172         std::unique_ptr<GrMemoryPool> pool;
173         if (fPoolSize > 0) {
174             pool = GrMemoryPool::Make(fPoolSize, fPoolSize);
175         } // else keep it null to test regular new/delete performance
176 
177         fProc(pool.get(), loops);
178     }
179 
180     SkString     fName;
181     int          fPoolSize;
182     RunBenchProc fProc;
183 
184     using INHERITED = Benchmark;
185 };
186 
187 ///////////////////////////////////////////////////////////////////////////////////////////////////
188 
189 static const int kLargePool = 10 * (1 << 10);
190 static const int kSmallPool = GrMemoryPool::kMinAllocationSize;
191 
192 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg",      run_stack<Aligned>,     kLargePool); )
193 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm",      run_stack<Aligned>,     kSmallPool); )
194 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref",     run_stack<Aligned>,     0); )
195 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg",    run_stack<Unaligned>,   kLargePool); )
196 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm",    run_stack<Unaligned>,   kSmallPool); )
197 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref",   run_stack<Unaligned>,   0); )
198 
199 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg",      run_queue<Aligned>,     kLargePool); )
200 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm",      run_queue<Aligned>,     kSmallPool); )
201 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref",     run_queue<Aligned>,     0); )
202 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg",    run_queue<Unaligned>,   kLargePool); )
203 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm",    run_queue<Unaligned>,   kSmallPool); )
204 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref",   run_queue<Unaligned>,   0); )
205 
206 DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg",    run_pushpop<Aligned>,   kLargePool); )
207 DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm",    run_pushpop<Aligned>,   kSmallPool); )
208 // DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref",   run_pushpop<Aligned>,   0); )
209 DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg",  run_pushpop<Unaligned>, kLargePool); )
210 DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm",  run_pushpop<Unaligned>, kSmallPool); )
211 // DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); )
212 // pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *.
213 
214 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg",     run_random<Aligned>,    kLargePool); )
215 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm",     run_random<Aligned>,    kSmallPool); )
216 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref",    run_random<Aligned>,    0); )
217 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg",   run_random<Unaligned>,  kLargePool); )
218 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm",   run_random<Unaligned>,  kSmallPool); )
219 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref",  run_random<Unaligned>,  0); )
220