xref: /aosp_15_r20/external/rnnoise/training/dump_rnn.py (revision 1295d6828459cc82c3c29cc5d7d297215250a74b)
1#!/usr/bin/python
2
3from __future__ import print_function
4
5from keras.models import Sequential
6from keras.layers import Dense
7from keras.layers import LSTM
8from keras.layers import GRU
9from keras.models import load_model
10from keras import backend as K
11import sys
12import re
13import numpy as np
14
15def printVector(f, ft, vector, name):
16    v = np.reshape(vector, (-1));
17    #print('static const float ', name, '[', len(v), '] = \n', file=f)
18    f.write('static const rnn_weight {}[{}] = {{\n   '.format(name, len(v)))
19    for i in range(0, len(v)):
20        f.write('{}'.format(min(127, int(round(256*v[i])))))
21        ft.write('{}'.format(min(127, int(round(256*v[i])))))
22        if (i!=len(v)-1):
23            f.write(',')
24        else:
25            break;
26        ft.write(" ")
27        if (i%8==7):
28            f.write("\n   ")
29        else:
30            f.write(" ")
31    #print(v, file=f)
32    f.write('\n};\n\n')
33    ft.write("\n")
34    return;
35
36def printLayer(f, ft, layer):
37    weights = layer.get_weights()
38    activation = re.search('function (.*) at', str(layer.activation)).group(1).upper()
39    if len(weights) > 2:
40        ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1]/3))
41    else:
42        ft.write('{} {} '.format(weights[0].shape[0], weights[0].shape[1]))
43    if activation == 'SIGMOID':
44        ft.write('1\n')
45    elif activation == 'RELU':
46        ft.write('2\n')
47    else:
48        ft.write('0\n')
49    printVector(f, ft, weights[0], layer.name + '_weights')
50    if len(weights) > 2:
51        printVector(f, ft, weights[1], layer.name + '_recurrent_weights')
52    printVector(f, ft, weights[-1], layer.name + '_bias')
53    name = layer.name
54    if len(weights) > 2:
55        f.write('static const GRULayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}_recurrent_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
56                .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]/3, activation))
57    else:
58        f.write('static const DenseLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
59                .format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
60
61def structLayer(f, layer):
62    weights = layer.get_weights()
63    name = layer.name
64    if len(weights) > 2:
65        f.write('    {},\n'.format(weights[0].shape[1]/3))
66    else:
67        f.write('    {},\n'.format(weights[0].shape[1]))
68    f.write('    &{},\n'.format(name))
69
70
71def foo(c, name):
72    return None
73
74def mean_squared_sqrt_error(y_true, y_pred):
75    return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
76
77
78model = load_model(sys.argv[1], custom_objects={'msse': mean_squared_sqrt_error, 'mean_squared_sqrt_error': mean_squared_sqrt_error, 'my_crossentropy': mean_squared_sqrt_error, 'mycost': mean_squared_sqrt_error, 'WeightClip': foo})
79
80weights = model.get_weights()
81
82f = open(sys.argv[2], 'w')
83ft = open(sys.argv[3], 'w')
84
85f.write('/*This file is automatically generated from a Keras model*/\n\n')
86f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "rnn.h"\n#include "rnn_data.h"\n\n')
87ft.write('rnnoise-nu model file version 1\n')
88
89layer_list = []
90for i, layer in enumerate(model.layers):
91    if len(layer.get_weights()) > 0:
92        printLayer(f, ft, layer)
93    if len(layer.get_weights()) > 2:
94        layer_list.append(layer.name)
95
96f.write('const struct RNNModel rnnoise_model_{} = {{\n'.format(sys.argv[4]))
97for i, layer in enumerate(model.layers):
98    if len(layer.get_weights()) > 0:
99        structLayer(f, layer)
100f.write('};\n')
101
102#hf.write('struct RNNState {\n')
103#for i, name in enumerate(layer_list):
104#    hf.write('  float {}_state[{}_SIZE];\n'.format(name, name.upper()))
105#hf.write('};\n')
106
107f.close()
108