1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <cmath>
18 #include <cstdint>
19
20 #include "RenderScriptToolkit.h"
21 #include "TaskProcessor.h"
22 #include "Utils.h"
23
24 namespace renderscript {
25
26 #define LOG_TAG "renderscript.toolkit.Blur"
27
28 /**
29 * Blurs an image or a section of an image.
30 *
31 * Our algorithm does two passes: a vertical blur followed by an horizontal blur.
32 */
33 class BlurTask : public Task {
34 // The image we're blurring.
35 const uchar* mIn;
36 // Where we store the blurred image.
37 uchar* outArray;
38 // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java.
39 // So, the max kernel size is 51 (= 2 * 25 + 1).
40 // Considering SSSE3 case, which requires the size is multiple of 4,
41 // at least 52 words are necessary. Values outside of the kernel should be 0.
42 float mFp[104];
43 uint16_t mIp[104];
44
45 // Working area to store the result of the vertical blur, to be used by the horizontal pass.
46 // There's one area per thread. Since the needed working area may be too large to put on the
47 // stack, we are allocating it from the heap. To avoid paying the allocation cost for each
48 // tile, we cache the scratch area here.
49 std::vector<void*> mScratch; // Pointers to the scratch areas, one per thread.
50 std::vector<size_t> mScratchSize; // The size in bytes of the scratch areas, one per thread.
51
52 // The radius of the blur, in floating point and integer format.
53 float mRadius;
54 int mIradius;
55
56 void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
57 uint32_t threadIndex);
58 void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY);
59 void ComputeGaussianWeights();
60
61 // Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
62 void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
63 size_t endY) override;
64
65 public:
BlurTask(const uint8_t * in,uint8_t * out,size_t sizeX,size_t sizeY,size_t vectorSize,uint32_t threadCount,float radius,const Restriction * restriction)66 BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize,
67 uint32_t threadCount, float radius, const Restriction* restriction)
68 : Task{sizeX, sizeY, vectorSize, false, restriction},
69 mIn{in},
70 outArray{out},
71 mScratch{threadCount},
72 mScratchSize{threadCount},
73 mRadius{std::min(25.0f, radius)} {
74 ComputeGaussianWeights();
75 }
76
~BlurTask()77 ~BlurTask() {
78 for (size_t i = 0; i < mScratch.size(); i++) {
79 if (mScratch[i]) {
80 free(mScratch[i]);
81 }
82 }
83 }
84 };
85
ComputeGaussianWeights()86 void BlurTask::ComputeGaussianWeights() {
87 memset(mFp, 0, sizeof(mFp));
88 memset(mIp, 0, sizeof(mIp));
89
90 // Compute gaussian weights for the blur
91 // e is the euler's number
92 float e = 2.718281828459045f;
93 float pi = 3.1415926535897932f;
94 // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2))
95 // x is of the form [-radius .. 0 .. radius]
96 // and sigma varies with the radius.
97 // Based on some experimental radius values and sigmas,
98 // we approximately fit sigma = f(radius) as
99 // sigma = radius * 0.4 + 0.6
100 // The larger the radius gets, the more our gaussian blur
101 // will resemble a box blur since with large sigma
102 // the gaussian curve begins to lose its shape
103 float sigma = 0.4f * mRadius + 0.6f;
104
105 // Now compute the coefficients. We will store some redundant values to save
106 // some math during the blur calculations precompute some values
107 float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma);
108 float coeff2 = - 1.0f / (2.0f * sigma * sigma);
109
110 float normalizeFactor = 0.0f;
111 float floatR = 0.0f;
112 int r;
113 mIradius = (float)ceil(mRadius) + 0.5f;
114 for (r = -mIradius; r <= mIradius; r ++) {
115 floatR = (float)r;
116 mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2);
117 normalizeFactor += mFp[r + mIradius];
118 }
119
120 // Now we need to normalize the weights because all our coefficients need to add up to one
121 normalizeFactor = 1.0f / normalizeFactor;
122 for (r = -mIradius; r <= mIradius; r ++) {
123 mFp[r + mIradius] *= normalizeFactor;
124 mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f);
125 }
126 }
127
128 /**
129 * Vertical blur of a uchar4 line.
130 *
131 * @param sizeY Number of cells of the input array in the vertical direction.
132 * @param out Where to place the computed value.
133 * @param x Coordinate of the point we're blurring.
134 * @param y Coordinate of the point we're blurring.
135 * @param ptrIn Start of the input array.
136 * @param iStride The size in byte of a row of the input array.
137 * @param gPtr The gaussian coefficients.
138 * @param iradius The radius of the blur.
139 */
OneVU4(uint32_t sizeY,float4 * out,int32_t x,int32_t y,const uchar * ptrIn,int iStride,const float * gPtr,int iradius)140 static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn,
141 int iStride, const float* gPtr, int iradius) {
142 const uchar *pi = ptrIn + x*4;
143
144 float4 blurredPixel = 0;
145 for (int r = -iradius; r <= iradius; r ++) {
146 int validY = std::max((y + r), 0);
147 validY = std::min(validY, (int)(sizeY - 1));
148 const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride];
149 float4 pf = convert<float4>(pvy[0]);
150 blurredPixel += pf * gPtr[0];
151 gPtr++;
152 }
153
154 out[0] = blurredPixel;
155 }
156
157 /**
158 * Vertical blur of a uchar1 line.
159 *
160 * @param sizeY Number of cells of the input array in the vertical direction.
161 * @param out Where to place the computed value.
162 * @param x Coordinate of the point we're blurring.
163 * @param y Coordinate of the point we're blurring.
164 * @param ptrIn Start of the input array.
165 * @param iStride The size in byte of a row of the input array.
166 * @param gPtr The gaussian coefficients.
167 * @param iradius The radius of the blur.
168 */
OneVU1(uint32_t sizeY,float * out,int32_t x,int32_t y,const uchar * ptrIn,int iStride,const float * gPtr,int iradius)169 static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y,
170 const uchar *ptrIn, int iStride, const float* gPtr, int iradius) {
171
172 const uchar *pi = ptrIn + x;
173
174 float blurredPixel = 0;
175 for (int r = -iradius; r <= iradius; r ++) {
176 int validY = std::max((y + r), 0);
177 validY = std::min(validY, (int)(sizeY - 1));
178 float pf = (float)pi[validY * iStride];
179 blurredPixel += pf * gPtr[0];
180 gPtr++;
181 }
182
183 out[0] = blurredPixel;
184 }
185
186
187 extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h,
188 size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
189 extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h,
190 size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
191
192 #if defined(ARCH_X86_HAVE_SSSE3)
193 extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr,
194 int rct, int x1, int ct);
195 extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
196 int ct);
197 extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
198 int ct);
199 #endif
200
201 /**
202 * Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid
203 * dealing with boundary conditions.
204 *
205 * @param out Where to store the results. This is the input to the horizontal blur.
206 * @param ptrIn The input data for this line.
207 * @param iStride The width of the input.
208 * @param gPtr The gaussian coefficients.
209 * @param ct The diameter of the blur.
210 * @param len How many cells to blur.
211 * @param usesSimd Whether this processor supports SIMD.
212 */
OneVFU4(float4 * out,const uchar * ptrIn,int iStride,const float * gPtr,int ct,int x2,bool usesSimd)213 static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct,
214 int x2, bool usesSimd) {
215 int x1 = 0;
216 #if defined(ARCH_X86_HAVE_SSSE3)
217 if (usesSimd) {
218 int t = (x2 - x1);
219 t &= ~1;
220 if (t) {
221 rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t);
222 }
223 x1 += t;
224 out += t;
225 ptrIn += t << 2;
226 }
227 #else
228 (void) usesSimd; // Avoid unused parameter warning.
229 #endif
230 while(x2 > x1) {
231 const uchar *pi = ptrIn;
232 float4 blurredPixel = 0;
233 const float* gp = gPtr;
234
235 for (int r = 0; r < ct; r++) {
236 float4 pf = convert<float4>(((const uchar4 *)pi)[0]);
237 blurredPixel += pf * gp[0];
238 pi += iStride;
239 gp++;
240 }
241 out->xyzw = blurredPixel;
242 x1++;
243 out++;
244 ptrIn+=4;
245 }
246 }
247
248 /**
249 * Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid
250 * dealing with boundary conditions.
251 *
252 * @param out Where to store the results. This is the input to the horizontal blur.
253 * @param ptrIn The input data for this line.
254 * @param iStride The width of the input.
255 * @param gPtr The gaussian coefficients.
256 * @param ct The diameter of the blur.
257 * @param len How many cells to blur.
258 * @param usesSimd Whether this processor supports SIMD.
259 */
OneVFU1(float * out,const uchar * ptrIn,int iStride,const float * gPtr,int ct,int len,bool usesSimd)260 static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len,
261 bool usesSimd) {
262 int x1 = 0;
263
264 while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) {
265 const uchar *pi = ptrIn;
266 float blurredPixel = 0;
267 const float* gp = gPtr;
268
269 for (int r = 0; r < ct; r++) {
270 float pf = (float)pi[0];
271 blurredPixel += pf * gp[0];
272 pi += iStride;
273 gp++;
274 }
275 out[0] = blurredPixel;
276 x1++;
277 out++;
278 ptrIn++;
279 len--;
280 }
281 #if defined(ARCH_X86_HAVE_SSSE3)
282 if (usesSimd && (len > x1)) {
283 int t = (len - x1) >> 2;
284 t &= ~1;
285 if (t) {
286 rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t );
287 len -= t << 2;
288 ptrIn += t << 2;
289 out += t << 2;
290 }
291 }
292 #else
293 (void) usesSimd; // Avoid unused parameter warning.
294 #endif
295 while(len > 0) {
296 const uchar *pi = ptrIn;
297 float blurredPixel = 0;
298 const float* gp = gPtr;
299
300 for (int r = 0; r < ct; r++) {
301 float pf = (float)pi[0];
302 blurredPixel += pf * gp[0];
303 pi += iStride;
304 gp++;
305 }
306 out[0] = blurredPixel;
307 len--;
308 out++;
309 ptrIn++;
310 }
311 }
312
313 /**
314 * Horizontal blur of a uchar4 line.
315 *
316 * @param sizeX Number of cells of the input array in the horizontal direction.
317 * @param out Where to place the computed value.
318 * @param x Coordinate of the point we're blurring.
319 * @param ptrIn The start of the input row from which we're indexing x.
320 * @param gPtr The gaussian coefficients.
321 * @param iradius The radius of the blur.
322 */
OneHU4(uint32_t sizeX,uchar4 * out,int32_t x,const float4 * ptrIn,const float * gPtr,int iradius)323 static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr,
324 int iradius) {
325 float4 blurredPixel = 0;
326 for (int r = -iradius; r <= iradius; r ++) {
327 int validX = std::max((x + r), 0);
328 validX = std::min(validX, (int)(sizeX - 1));
329 float4 pf = ptrIn[validX];
330 blurredPixel += pf * gPtr[0];
331 gPtr++;
332 }
333
334 out->xyzw = convert<uchar4>(blurredPixel);
335 }
336
337 /**
338 * Horizontal blur of a uchar line.
339 *
340 * @param sizeX Number of cells of the input array in the horizontal direction.
341 * @param out Where to place the computed value.
342 * @param x Coordinate of the point we're blurring.
343 * @param ptrIn The start of the input row from which we're indexing x.
344 * @param gPtr The gaussian coefficients.
345 * @param iradius The radius of the blur.
346 */
OneHU1(uint32_t sizeX,uchar * out,int32_t x,const float * ptrIn,const float * gPtr,int iradius)347 static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr,
348 int iradius) {
349 float blurredPixel = 0;
350 for (int r = -iradius; r <= iradius; r ++) {
351 int validX = std::max((x + r), 0);
352 validX = std::min(validX, (int)(sizeX - 1));
353 float pf = ptrIn[validX];
354 blurredPixel += pf * gPtr[0];
355 gPtr++;
356 }
357
358 out[0] = (uchar)blurredPixel;
359 }
360
361 /**
362 * Full blur of a line of RGBA data.
363 *
364 * @param outPtr Where to store the results
365 * @param xstart The index of the section we're starting to blur.
366 * @param xend The end index of the section.
367 * @param currentY The index of the line we're blurring.
368 * @param usesSimd Whether this processor supports SIMD.
369 */
kernelU4(void * outPtr,uint32_t xstart,uint32_t xend,uint32_t currentY,uint32_t threadIndex)370 void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
371 uint32_t threadIndex) {
372 float4 stackbuf[2048];
373 float4 *buf = &stackbuf[0];
374 const uint32_t stride = mSizeX * mVectorSize;
375
376 uchar4 *out = (uchar4 *)outPtr;
377 uint32_t x1 = xstart;
378 uint32_t x2 = xend;
379
380 #if defined(ARCH_ARM_USE_INTRINSICS)
381 if (mUsesSimd && mSizeX >= 4) {
382 rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY),
383 mSizeX, mSizeY,
384 stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
385 return;
386 }
387 #endif
388
389 if (mSizeX > 2048) {
390 if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) {
391 // Pad the side of the allocation by one unit to allow alignment later
392 mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16);
393 mScratchSize[threadIndex] = mSizeX;
394 }
395 // realloc only aligns to 8 bytes so we manually align to 16.
396 buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf);
397 }
398 float4 *fout = (float4 *)buf;
399 int y = currentY;
400 if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) {
401 const uchar *pi = mIn + (y - mIradius) * stride;
402 OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
403 } else {
404 x1 = 0;
405 while(mSizeX > x1) {
406 OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
407 fout++;
408 x1++;
409 }
410 }
411
412 x1 = xstart;
413 while ((x1 < (uint32_t)mIradius) && (x1 < x2)) {
414 OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
415 out++;
416 x1++;
417 }
418 #if defined(ARCH_X86_HAVE_SSSE3)
419 if (mUsesSimd) {
420 if ((x1 + mIradius) < x2) {
421 rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp,
422 mIradius * 2 + 1, x1, x2 - mIradius);
423 out += (x2 - mIradius) - x1;
424 x1 = x2 - mIradius;
425 }
426 }
427 #endif
428 while(x2 > x1) {
429 OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
430 out++;
431 x1++;
432 }
433 }
434
435 /**
436 * Full blur of a line of U_8 data.
437 *
438 * @param outPtr Where to store the results
439 * @param xstart The index of the section we're starting to blur.
440 * @param xend The end index of the section.
441 * @param currentY The index of the line we're blurring.
442 */
kernelU1(void * outPtr,uint32_t xstart,uint32_t xend,uint32_t currentY)443 void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) {
444 float buf[4 * 2048];
445 const uint32_t stride = mSizeX * mVectorSize;
446
447 uchar *out = (uchar *)outPtr;
448 uint32_t x1 = xstart;
449 uint32_t x2 = xend;
450
451 #if defined(ARCH_ARM_USE_INTRINSICS)
452 if (mUsesSimd && mSizeX >= 16) {
453 // The specialisation for r<=8 has an awkward prefill case, which is
454 // fiddly to resolve, where starting close to the right edge can cause
455 // a read beyond the end of input. So avoid that case here.
456 if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) {
457 rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY,
458 stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
459 return;
460 }
461 }
462 #endif
463
464 float *fout = (float *)buf;
465 int y = currentY;
466 if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) {
467 const uchar *pi = mIn + (y - mIradius) * stride;
468 OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
469 } else {
470 x1 = 0;
471 while(mSizeX > x1) {
472 OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
473 fout++;
474 x1++;
475 }
476 }
477
478 x1 = xstart;
479 while ((x1 < x2) &&
480 ((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) {
481 OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
482 out++;
483 x1++;
484 }
485 #if defined(ARCH_X86_HAVE_SSSE3)
486 if (mUsesSimd) {
487 if ((x1 + mIradius) < x2) {
488 uint32_t len = x2 - (x1 + mIradius);
489 len &= ~3;
490
491 // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it
492 // nees to ensure four more values can be accessed in order to avoid accessing
493 // uninitialized buffer.
494 if (len > 4) {
495 len -= 4;
496 rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp,
497 mIradius * 2 + 1, x1, x1 + len);
498 out += len;
499 x1 += len;
500 }
501 }
502 }
503 #endif
504 while(x2 > x1) {
505 OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
506 out++;
507 x1++;
508 }
509 }
510
processData(int threadIndex,size_t startX,size_t startY,size_t endX,size_t endY)511 void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX,
512 size_t endY) {
513 for (size_t y = startY; y < endY; y++) {
514 void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize;
515 if (mVectorSize == 4) {
516 kernelU4(outPtr, startX, endX, y, threadIndex);
517 } else {
518 kernelU1(outPtr, startX, endX, y);
519 }
520 }
521 }
522
blur(const uint8_t * in,uint8_t * out,size_t sizeX,size_t sizeY,size_t vectorSize,int radius,const Restriction * restriction)523 void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY,
524 size_t vectorSize, int radius, const Restriction* restriction) {
525 #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
526 if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
527 return;
528 }
529 if (radius <= 0 || radius > 25) {
530 ALOGE("The radius should be between 1 and 25. %d provided.", radius);
531 }
532 if (vectorSize != 1 && vectorSize != 4) {
533 ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize);
534 }
535 #endif
536
537 BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius,
538 restriction);
539 processor->doTask(&task);
540 }
541
542 } // namespace renderscript
543