xref: /aosp_15_r20/external/regex-re2/re2/dfa.cc (revision ccdc9c3e24c519bfa4832a66aa2e83a52c19f295)
1*ccdc9c3eSSadaf Ebrahimi // Copyright 2008 The RE2 Authors.  All Rights Reserved.
2*ccdc9c3eSSadaf Ebrahimi // Use of this source code is governed by a BSD-style
3*ccdc9c3eSSadaf Ebrahimi // license that can be found in the LICENSE file.
4*ccdc9c3eSSadaf Ebrahimi 
5*ccdc9c3eSSadaf Ebrahimi // A DFA (deterministic finite automaton)-based regular expression search.
6*ccdc9c3eSSadaf Ebrahimi //
7*ccdc9c3eSSadaf Ebrahimi // The DFA search has two main parts: the construction of the automaton,
8*ccdc9c3eSSadaf Ebrahimi // which is represented by a graph of State structures, and the execution
9*ccdc9c3eSSadaf Ebrahimi // of the automaton over a given input string.
10*ccdc9c3eSSadaf Ebrahimi //
11*ccdc9c3eSSadaf Ebrahimi // The basic idea is that the State graph is constructed so that the
12*ccdc9c3eSSadaf Ebrahimi // execution can simply start with a state s, and then for each byte c in
13*ccdc9c3eSSadaf Ebrahimi // the input string, execute "s = s->next[c]", checking at each point whether
14*ccdc9c3eSSadaf Ebrahimi // the current s represents a matching state.
15*ccdc9c3eSSadaf Ebrahimi //
16*ccdc9c3eSSadaf Ebrahimi // The simple explanation just given does convey the essence of this code,
17*ccdc9c3eSSadaf Ebrahimi // but it omits the details of how the State graph gets constructed as well
18*ccdc9c3eSSadaf Ebrahimi // as some performance-driven optimizations to the execution of the automaton.
19*ccdc9c3eSSadaf Ebrahimi // All these details are explained in the comments for the code following
20*ccdc9c3eSSadaf Ebrahimi // the definition of class DFA.
21*ccdc9c3eSSadaf Ebrahimi //
22*ccdc9c3eSSadaf Ebrahimi // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23*ccdc9c3eSSadaf Ebrahimi 
24*ccdc9c3eSSadaf Ebrahimi #include <stddef.h>
25*ccdc9c3eSSadaf Ebrahimi #include <stdint.h>
26*ccdc9c3eSSadaf Ebrahimi #include <stdio.h>
27*ccdc9c3eSSadaf Ebrahimi #include <string.h>
28*ccdc9c3eSSadaf Ebrahimi #include <algorithm>
29*ccdc9c3eSSadaf Ebrahimi #include <atomic>
30*ccdc9c3eSSadaf Ebrahimi #include <deque>
31*ccdc9c3eSSadaf Ebrahimi #include <mutex>
32*ccdc9c3eSSadaf Ebrahimi #include <new>
33*ccdc9c3eSSadaf Ebrahimi #include <string>
34*ccdc9c3eSSadaf Ebrahimi #include <unordered_map>
35*ccdc9c3eSSadaf Ebrahimi #include <unordered_set>
36*ccdc9c3eSSadaf Ebrahimi #include <utility>
37*ccdc9c3eSSadaf Ebrahimi #include <vector>
38*ccdc9c3eSSadaf Ebrahimi 
39*ccdc9c3eSSadaf Ebrahimi #include "util/logging.h"
40*ccdc9c3eSSadaf Ebrahimi #include "util/mix.h"
41*ccdc9c3eSSadaf Ebrahimi #include "util/mutex.h"
42*ccdc9c3eSSadaf Ebrahimi #include "util/pod_array.h"
43*ccdc9c3eSSadaf Ebrahimi #include "util/sparse_set.h"
44*ccdc9c3eSSadaf Ebrahimi #include "util/strutil.h"
45*ccdc9c3eSSadaf Ebrahimi #include "re2/prog.h"
46*ccdc9c3eSSadaf Ebrahimi #include "re2/stringpiece.h"
47*ccdc9c3eSSadaf Ebrahimi 
48*ccdc9c3eSSadaf Ebrahimi // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
49*ccdc9c3eSSadaf Ebrahimi #ifdef _MSC_VER
50*ccdc9c3eSSadaf Ebrahimi #pragma warning(disable: 4200)
51*ccdc9c3eSSadaf Ebrahimi #endif
52*ccdc9c3eSSadaf Ebrahimi 
53*ccdc9c3eSSadaf Ebrahimi namespace re2 {
54*ccdc9c3eSSadaf Ebrahimi 
55*ccdc9c3eSSadaf Ebrahimi #if !defined(__linux__)  /* only Linux seems to have memrchr */
memrchr(const void * s,int c,size_t n)56*ccdc9c3eSSadaf Ebrahimi static void* memrchr(const void* s, int c, size_t n) {
57*ccdc9c3eSSadaf Ebrahimi   const unsigned char* p = (const unsigned char*)s;
58*ccdc9c3eSSadaf Ebrahimi   for (p += n; n > 0; n--)
59*ccdc9c3eSSadaf Ebrahimi     if (*--p == c)
60*ccdc9c3eSSadaf Ebrahimi       return (void*)p;
61*ccdc9c3eSSadaf Ebrahimi 
62*ccdc9c3eSSadaf Ebrahimi   return NULL;
63*ccdc9c3eSSadaf Ebrahimi }
64*ccdc9c3eSSadaf Ebrahimi #endif
65*ccdc9c3eSSadaf Ebrahimi 
66*ccdc9c3eSSadaf Ebrahimi // Controls whether the DFA should bail out early if the NFA would be faster.
67*ccdc9c3eSSadaf Ebrahimi static bool dfa_should_bail_when_slow = true;
68*ccdc9c3eSSadaf Ebrahimi 
69*ccdc9c3eSSadaf Ebrahimi // Changing this to true compiles in prints that trace execution of the DFA.
70*ccdc9c3eSSadaf Ebrahimi // Generates a lot of output -- only useful for debugging.
71*ccdc9c3eSSadaf Ebrahimi static const bool ExtraDebug = false;
72*ccdc9c3eSSadaf Ebrahimi 
73*ccdc9c3eSSadaf Ebrahimi // A DFA implementation of a regular expression program.
74*ccdc9c3eSSadaf Ebrahimi // Since this is entirely a forward declaration mandated by C++,
75*ccdc9c3eSSadaf Ebrahimi // some of the comments here are better understood after reading
76*ccdc9c3eSSadaf Ebrahimi // the comments in the sections that follow the DFA definition.
77*ccdc9c3eSSadaf Ebrahimi class DFA {
78*ccdc9c3eSSadaf Ebrahimi  public:
79*ccdc9c3eSSadaf Ebrahimi   DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
80*ccdc9c3eSSadaf Ebrahimi   ~DFA();
ok() const81*ccdc9c3eSSadaf Ebrahimi   bool ok() const { return !init_failed_; }
kind()82*ccdc9c3eSSadaf Ebrahimi   Prog::MatchKind kind() { return kind_; }
83*ccdc9c3eSSadaf Ebrahimi 
84*ccdc9c3eSSadaf Ebrahimi   // Searches for the regular expression in text, which is considered
85*ccdc9c3eSSadaf Ebrahimi   // as a subsection of context for the purposes of interpreting flags
86*ccdc9c3eSSadaf Ebrahimi   // like ^ and $ and \A and \z.
87*ccdc9c3eSSadaf Ebrahimi   // Returns whether a match was found.
88*ccdc9c3eSSadaf Ebrahimi   // If a match is found, sets *ep to the end point of the best match in text.
89*ccdc9c3eSSadaf Ebrahimi   // If "anchored", the match must begin at the start of text.
90*ccdc9c3eSSadaf Ebrahimi   // If "want_earliest_match", the match that ends first is used, not
91*ccdc9c3eSSadaf Ebrahimi   //   necessarily the best one.
92*ccdc9c3eSSadaf Ebrahimi   // If "run_forward" is true, the DFA runs from text.begin() to text.end().
93*ccdc9c3eSSadaf Ebrahimi   //   If it is false, the DFA runs from text.end() to text.begin(),
94*ccdc9c3eSSadaf Ebrahimi   //   returning the leftmost end of the match instead of the rightmost one.
95*ccdc9c3eSSadaf Ebrahimi   // If the DFA cannot complete the search (for example, if it is out of
96*ccdc9c3eSSadaf Ebrahimi   //   memory), it sets *failed and returns false.
97*ccdc9c3eSSadaf Ebrahimi   bool Search(const StringPiece& text, const StringPiece& context,
98*ccdc9c3eSSadaf Ebrahimi               bool anchored, bool want_earliest_match, bool run_forward,
99*ccdc9c3eSSadaf Ebrahimi               bool* failed, const char** ep, SparseSet* matches);
100*ccdc9c3eSSadaf Ebrahimi 
101*ccdc9c3eSSadaf Ebrahimi   // Builds out all states for the entire DFA.
102*ccdc9c3eSSadaf Ebrahimi   // If cb is not empty, it receives one callback per state built.
103*ccdc9c3eSSadaf Ebrahimi   // Returns the number of states built.
104*ccdc9c3eSSadaf Ebrahimi   // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
105*ccdc9c3eSSadaf Ebrahimi   int BuildAllStates(const Prog::DFAStateCallback& cb);
106*ccdc9c3eSSadaf Ebrahimi 
107*ccdc9c3eSSadaf Ebrahimi   // Computes min and max for matching strings.  Won't return strings
108*ccdc9c3eSSadaf Ebrahimi   // bigger than maxlen.
109*ccdc9c3eSSadaf Ebrahimi   bool PossibleMatchRange(string* min, string* max, int maxlen);
110*ccdc9c3eSSadaf Ebrahimi 
111*ccdc9c3eSSadaf Ebrahimi   // These data structures are logically private, but C++ makes it too
112*ccdc9c3eSSadaf Ebrahimi   // difficult to mark them as such.
113*ccdc9c3eSSadaf Ebrahimi   class RWLocker;
114*ccdc9c3eSSadaf Ebrahimi   class StateSaver;
115*ccdc9c3eSSadaf Ebrahimi   class Workq;
116*ccdc9c3eSSadaf Ebrahimi 
117*ccdc9c3eSSadaf Ebrahimi   // A single DFA state.  The DFA is represented as a graph of these
118*ccdc9c3eSSadaf Ebrahimi   // States, linked by the next_ pointers.  If in state s and reading
119*ccdc9c3eSSadaf Ebrahimi   // byte c, the next state should be s->next_[c].
120*ccdc9c3eSSadaf Ebrahimi   struct State {
IsMatchre2::DFA::State121*ccdc9c3eSSadaf Ebrahimi     inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
122*ccdc9c3eSSadaf Ebrahimi     void SaveMatch(std::vector<int>* v);
123*ccdc9c3eSSadaf Ebrahimi 
124*ccdc9c3eSSadaf Ebrahimi     int* inst_;         // Instruction pointers in the state.
125*ccdc9c3eSSadaf Ebrahimi     int ninst_;         // # of inst_ pointers.
126*ccdc9c3eSSadaf Ebrahimi     uint32_t flag_;     // Empty string bitfield flags in effect on the way
127*ccdc9c3eSSadaf Ebrahimi                         // into this state, along with kFlagMatch if this
128*ccdc9c3eSSadaf Ebrahimi                         // is a matching state.
129*ccdc9c3eSSadaf Ebrahimi 
130*ccdc9c3eSSadaf Ebrahimi // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1).
131*ccdc9c3eSSadaf Ebrahimi // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932)
132*ccdc9c3eSSadaf Ebrahimi #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1
133*ccdc9c3eSSadaf Ebrahimi     std::atomic<State*> next_[0];   // Outgoing arrows from State,
134*ccdc9c3eSSadaf Ebrahimi #else
135*ccdc9c3eSSadaf Ebrahimi     std::atomic<State*> next_[];    // Outgoing arrows from State,
136*ccdc9c3eSSadaf Ebrahimi #endif
137*ccdc9c3eSSadaf Ebrahimi 
138*ccdc9c3eSSadaf Ebrahimi                         // one per input byte class
139*ccdc9c3eSSadaf Ebrahimi   };
140*ccdc9c3eSSadaf Ebrahimi 
141*ccdc9c3eSSadaf Ebrahimi   enum {
142*ccdc9c3eSSadaf Ebrahimi     kByteEndText = 256,         // imaginary byte at end of text
143*ccdc9c3eSSadaf Ebrahimi 
144*ccdc9c3eSSadaf Ebrahimi     kFlagEmptyMask = 0xFF,      // State.flag_: bits holding kEmptyXXX flags
145*ccdc9c3eSSadaf Ebrahimi     kFlagMatch = 0x0100,        // State.flag_: this is a matching state
146*ccdc9c3eSSadaf Ebrahimi     kFlagLastWord = 0x0200,     // State.flag_: last byte was a word char
147*ccdc9c3eSSadaf Ebrahimi     kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
148*ccdc9c3eSSadaf Ebrahimi   };
149*ccdc9c3eSSadaf Ebrahimi 
150*ccdc9c3eSSadaf Ebrahimi   struct StateHash {
operator ()re2::DFA::StateHash151*ccdc9c3eSSadaf Ebrahimi     size_t operator()(const State* a) const {
152*ccdc9c3eSSadaf Ebrahimi       DCHECK(a != NULL);
153*ccdc9c3eSSadaf Ebrahimi       HashMix mix(a->flag_);
154*ccdc9c3eSSadaf Ebrahimi       for (int i = 0; i < a->ninst_; i++)
155*ccdc9c3eSSadaf Ebrahimi         mix.Mix(a->inst_[i]);
156*ccdc9c3eSSadaf Ebrahimi       mix.Mix(0);
157*ccdc9c3eSSadaf Ebrahimi       return mix.get();
158*ccdc9c3eSSadaf Ebrahimi     }
159*ccdc9c3eSSadaf Ebrahimi   };
160*ccdc9c3eSSadaf Ebrahimi 
161*ccdc9c3eSSadaf Ebrahimi   struct StateEqual {
operator ()re2::DFA::StateEqual162*ccdc9c3eSSadaf Ebrahimi     bool operator()(const State* a, const State* b) const {
163*ccdc9c3eSSadaf Ebrahimi       DCHECK(a != NULL);
164*ccdc9c3eSSadaf Ebrahimi       DCHECK(b != NULL);
165*ccdc9c3eSSadaf Ebrahimi       if (a == b)
166*ccdc9c3eSSadaf Ebrahimi         return true;
167*ccdc9c3eSSadaf Ebrahimi       if (a->flag_ != b->flag_)
168*ccdc9c3eSSadaf Ebrahimi         return false;
169*ccdc9c3eSSadaf Ebrahimi       if (a->ninst_ != b->ninst_)
170*ccdc9c3eSSadaf Ebrahimi         return false;
171*ccdc9c3eSSadaf Ebrahimi       for (int i = 0; i < a->ninst_; i++)
172*ccdc9c3eSSadaf Ebrahimi         if (a->inst_[i] != b->inst_[i])
173*ccdc9c3eSSadaf Ebrahimi           return false;
174*ccdc9c3eSSadaf Ebrahimi       return true;
175*ccdc9c3eSSadaf Ebrahimi     }
176*ccdc9c3eSSadaf Ebrahimi   };
177*ccdc9c3eSSadaf Ebrahimi 
178*ccdc9c3eSSadaf Ebrahimi   typedef std::unordered_set<State*, StateHash, StateEqual> StateSet;
179*ccdc9c3eSSadaf Ebrahimi 
180*ccdc9c3eSSadaf Ebrahimi  private:
181*ccdc9c3eSSadaf Ebrahimi   // Special "first_byte" values for a state.  (Values >= 0 denote actual bytes.)
182*ccdc9c3eSSadaf Ebrahimi   enum {
183*ccdc9c3eSSadaf Ebrahimi     kFbUnknown = -1,   // No analysis has been performed.
184*ccdc9c3eSSadaf Ebrahimi     kFbNone = -2,      // The first-byte trick cannot be used.
185*ccdc9c3eSSadaf Ebrahimi   };
186*ccdc9c3eSSadaf Ebrahimi 
187*ccdc9c3eSSadaf Ebrahimi   enum {
188*ccdc9c3eSSadaf Ebrahimi     // Indices into start_ for unanchored searches.
189*ccdc9c3eSSadaf Ebrahimi     // Add kStartAnchored for anchored searches.
190*ccdc9c3eSSadaf Ebrahimi     kStartBeginText = 0,          // text at beginning of context
191*ccdc9c3eSSadaf Ebrahimi     kStartBeginLine = 2,          // text at beginning of line
192*ccdc9c3eSSadaf Ebrahimi     kStartAfterWordChar = 4,      // text follows a word character
193*ccdc9c3eSSadaf Ebrahimi     kStartAfterNonWordChar = 6,   // text follows non-word character
194*ccdc9c3eSSadaf Ebrahimi     kMaxStart = 8,
195*ccdc9c3eSSadaf Ebrahimi 
196*ccdc9c3eSSadaf Ebrahimi     kStartAnchored = 1,
197*ccdc9c3eSSadaf Ebrahimi   };
198*ccdc9c3eSSadaf Ebrahimi 
199*ccdc9c3eSSadaf Ebrahimi   // Resets the DFA State cache, flushing all saved State* information.
200*ccdc9c3eSSadaf Ebrahimi   // Releases and reacquires cache_mutex_ via cache_lock, so any
201*ccdc9c3eSSadaf Ebrahimi   // State* existing before the call are not valid after the call.
202*ccdc9c3eSSadaf Ebrahimi   // Use a StateSaver to preserve important states across the call.
203*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
204*ccdc9c3eSSadaf Ebrahimi   // After: cache_mutex_.w <= L < mutex_
205*ccdc9c3eSSadaf Ebrahimi   void ResetCache(RWLocker* cache_lock);
206*ccdc9c3eSSadaf Ebrahimi 
207*ccdc9c3eSSadaf Ebrahimi   // Looks up and returns the State corresponding to a Workq.
208*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
209*ccdc9c3eSSadaf Ebrahimi   State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
210*ccdc9c3eSSadaf Ebrahimi 
211*ccdc9c3eSSadaf Ebrahimi   // Looks up and returns a State matching the inst, ninst, and flag.
212*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
213*ccdc9c3eSSadaf Ebrahimi   State* CachedState(int* inst, int ninst, uint32_t flag);
214*ccdc9c3eSSadaf Ebrahimi 
215*ccdc9c3eSSadaf Ebrahimi   // Clear the cache entirely.
216*ccdc9c3eSSadaf Ebrahimi   // Must hold cache_mutex_.w or be in destructor.
217*ccdc9c3eSSadaf Ebrahimi   void ClearCache();
218*ccdc9c3eSSadaf Ebrahimi 
219*ccdc9c3eSSadaf Ebrahimi   // Converts a State into a Workq: the opposite of WorkqToCachedState.
220*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
221*ccdc9c3eSSadaf Ebrahimi   void StateToWorkq(State* s, Workq* q);
222*ccdc9c3eSSadaf Ebrahimi 
223*ccdc9c3eSSadaf Ebrahimi   // Runs a State on a given byte, returning the next state.
224*ccdc9c3eSSadaf Ebrahimi   State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
225*ccdc9c3eSSadaf Ebrahimi   State* RunStateOnByte(State*, int);          // L >= mutex_
226*ccdc9c3eSSadaf Ebrahimi 
227*ccdc9c3eSSadaf Ebrahimi   // Runs a Workq on a given byte followed by a set of empty-string flags,
228*ccdc9c3eSSadaf Ebrahimi   // producing a new Workq in nq.  If a match instruction is encountered,
229*ccdc9c3eSSadaf Ebrahimi   // sets *ismatch to true.
230*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
231*ccdc9c3eSSadaf Ebrahimi   void RunWorkqOnByte(Workq* q, Workq* nq,
232*ccdc9c3eSSadaf Ebrahimi                       int c, uint32_t flag, bool* ismatch);
233*ccdc9c3eSSadaf Ebrahimi 
234*ccdc9c3eSSadaf Ebrahimi   // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
235*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
236*ccdc9c3eSSadaf Ebrahimi   void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
237*ccdc9c3eSSadaf Ebrahimi 
238*ccdc9c3eSSadaf Ebrahimi   // Adds the instruction id to the Workq, following empty arrows
239*ccdc9c3eSSadaf Ebrahimi   // according to flag.
240*ccdc9c3eSSadaf Ebrahimi   // L >= mutex_
241*ccdc9c3eSSadaf Ebrahimi   void AddToQueue(Workq* q, int id, uint32_t flag);
242*ccdc9c3eSSadaf Ebrahimi 
243*ccdc9c3eSSadaf Ebrahimi   // For debugging, returns a text representation of State.
244*ccdc9c3eSSadaf Ebrahimi   static string DumpState(State* state);
245*ccdc9c3eSSadaf Ebrahimi 
246*ccdc9c3eSSadaf Ebrahimi   // For debugging, returns a text representation of a Workq.
247*ccdc9c3eSSadaf Ebrahimi   static string DumpWorkq(Workq* q);
248*ccdc9c3eSSadaf Ebrahimi 
249*ccdc9c3eSSadaf Ebrahimi   // Search parameters
250*ccdc9c3eSSadaf Ebrahimi   struct SearchParams {
SearchParamsre2::DFA::SearchParams251*ccdc9c3eSSadaf Ebrahimi     SearchParams(const StringPiece& text, const StringPiece& context,
252*ccdc9c3eSSadaf Ebrahimi                  RWLocker* cache_lock)
253*ccdc9c3eSSadaf Ebrahimi       : text(text), context(context),
254*ccdc9c3eSSadaf Ebrahimi         anchored(false),
255*ccdc9c3eSSadaf Ebrahimi         want_earliest_match(false),
256*ccdc9c3eSSadaf Ebrahimi         run_forward(false),
257*ccdc9c3eSSadaf Ebrahimi         start(NULL),
258*ccdc9c3eSSadaf Ebrahimi         first_byte(kFbUnknown),
259*ccdc9c3eSSadaf Ebrahimi         cache_lock(cache_lock),
260*ccdc9c3eSSadaf Ebrahimi         failed(false),
261*ccdc9c3eSSadaf Ebrahimi         ep(NULL),
262*ccdc9c3eSSadaf Ebrahimi         matches(NULL) { }
263*ccdc9c3eSSadaf Ebrahimi 
264*ccdc9c3eSSadaf Ebrahimi     StringPiece text;
265*ccdc9c3eSSadaf Ebrahimi     StringPiece context;
266*ccdc9c3eSSadaf Ebrahimi     bool anchored;
267*ccdc9c3eSSadaf Ebrahimi     bool want_earliest_match;
268*ccdc9c3eSSadaf Ebrahimi     bool run_forward;
269*ccdc9c3eSSadaf Ebrahimi     State* start;
270*ccdc9c3eSSadaf Ebrahimi     int first_byte;
271*ccdc9c3eSSadaf Ebrahimi     RWLocker *cache_lock;
272*ccdc9c3eSSadaf Ebrahimi     bool failed;     // "out" parameter: whether search gave up
273*ccdc9c3eSSadaf Ebrahimi     const char* ep;  // "out" parameter: end pointer for match
274*ccdc9c3eSSadaf Ebrahimi     SparseSet* matches;
275*ccdc9c3eSSadaf Ebrahimi 
276*ccdc9c3eSSadaf Ebrahimi    private:
277*ccdc9c3eSSadaf Ebrahimi     SearchParams(const SearchParams&) = delete;
278*ccdc9c3eSSadaf Ebrahimi     SearchParams& operator=(const SearchParams&) = delete;
279*ccdc9c3eSSadaf Ebrahimi   };
280*ccdc9c3eSSadaf Ebrahimi 
281*ccdc9c3eSSadaf Ebrahimi   // Before each search, the parameters to Search are analyzed by
282*ccdc9c3eSSadaf Ebrahimi   // AnalyzeSearch to determine the state in which to start and the
283*ccdc9c3eSSadaf Ebrahimi   // "first_byte" for that state, if any.
284*ccdc9c3eSSadaf Ebrahimi   struct StartInfo {
StartInfore2::DFA::StartInfo285*ccdc9c3eSSadaf Ebrahimi     StartInfo() : start(NULL), first_byte(kFbUnknown) {}
286*ccdc9c3eSSadaf Ebrahimi     State* start;
287*ccdc9c3eSSadaf Ebrahimi     std::atomic<int> first_byte;
288*ccdc9c3eSSadaf Ebrahimi   };
289*ccdc9c3eSSadaf Ebrahimi 
290*ccdc9c3eSSadaf Ebrahimi   // Fills in params->start and params->first_byte using
291*ccdc9c3eSSadaf Ebrahimi   // the other search parameters.  Returns true on success,
292*ccdc9c3eSSadaf Ebrahimi   // false on failure.
293*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
294*ccdc9c3eSSadaf Ebrahimi   bool AnalyzeSearch(SearchParams* params);
295*ccdc9c3eSSadaf Ebrahimi   bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
296*ccdc9c3eSSadaf Ebrahimi                            uint32_t flags);
297*ccdc9c3eSSadaf Ebrahimi 
298*ccdc9c3eSSadaf Ebrahimi   // The generic search loop, inlined to create specialized versions.
299*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
300*ccdc9c3eSSadaf Ebrahimi   // Might unlock and relock cache_mutex_ via params->cache_lock.
301*ccdc9c3eSSadaf Ebrahimi   inline bool InlinedSearchLoop(SearchParams* params,
302*ccdc9c3eSSadaf Ebrahimi                                 bool have_first_byte,
303*ccdc9c3eSSadaf Ebrahimi                                 bool want_earliest_match,
304*ccdc9c3eSSadaf Ebrahimi                                 bool run_forward);
305*ccdc9c3eSSadaf Ebrahimi 
306*ccdc9c3eSSadaf Ebrahimi   // The specialized versions of InlinedSearchLoop.  The three letters
307*ccdc9c3eSSadaf Ebrahimi   // at the ends of the name denote the true/false values used as the
308*ccdc9c3eSSadaf Ebrahimi   // last three parameters of InlinedSearchLoop.
309*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
310*ccdc9c3eSSadaf Ebrahimi   // Might unlock and relock cache_mutex_ via params->cache_lock.
311*ccdc9c3eSSadaf Ebrahimi   bool SearchFFF(SearchParams* params);
312*ccdc9c3eSSadaf Ebrahimi   bool SearchFFT(SearchParams* params);
313*ccdc9c3eSSadaf Ebrahimi   bool SearchFTF(SearchParams* params);
314*ccdc9c3eSSadaf Ebrahimi   bool SearchFTT(SearchParams* params);
315*ccdc9c3eSSadaf Ebrahimi   bool SearchTFF(SearchParams* params);
316*ccdc9c3eSSadaf Ebrahimi   bool SearchTFT(SearchParams* params);
317*ccdc9c3eSSadaf Ebrahimi   bool SearchTTF(SearchParams* params);
318*ccdc9c3eSSadaf Ebrahimi   bool SearchTTT(SearchParams* params);
319*ccdc9c3eSSadaf Ebrahimi 
320*ccdc9c3eSSadaf Ebrahimi   // The main search loop: calls an appropriate specialized version of
321*ccdc9c3eSSadaf Ebrahimi   // InlinedSearchLoop.
322*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
323*ccdc9c3eSSadaf Ebrahimi   // Might unlock and relock cache_mutex_ via params->cache_lock.
324*ccdc9c3eSSadaf Ebrahimi   bool FastSearchLoop(SearchParams* params);
325*ccdc9c3eSSadaf Ebrahimi 
326*ccdc9c3eSSadaf Ebrahimi   // For debugging, a slow search loop that calls InlinedSearchLoop
327*ccdc9c3eSSadaf Ebrahimi   // directly -- because the booleans passed are not constants, the
328*ccdc9c3eSSadaf Ebrahimi   // loop is not specialized like the SearchFFF etc. versions, so it
329*ccdc9c3eSSadaf Ebrahimi   // runs much more slowly.  Useful only for debugging.
330*ccdc9c3eSSadaf Ebrahimi   // cache_mutex_.r <= L < mutex_
331*ccdc9c3eSSadaf Ebrahimi   // Might unlock and relock cache_mutex_ via params->cache_lock.
332*ccdc9c3eSSadaf Ebrahimi   bool SlowSearchLoop(SearchParams* params);
333*ccdc9c3eSSadaf Ebrahimi 
334*ccdc9c3eSSadaf Ebrahimi   // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)335*ccdc9c3eSSadaf Ebrahimi   int ByteMap(int c) {
336*ccdc9c3eSSadaf Ebrahimi     if (c == kByteEndText)
337*ccdc9c3eSSadaf Ebrahimi       return prog_->bytemap_range();
338*ccdc9c3eSSadaf Ebrahimi     return prog_->bytemap()[c];
339*ccdc9c3eSSadaf Ebrahimi   }
340*ccdc9c3eSSadaf Ebrahimi 
341*ccdc9c3eSSadaf Ebrahimi   // Constant after initialization.
342*ccdc9c3eSSadaf Ebrahimi   Prog* prog_;              // The regular expression program to run.
343*ccdc9c3eSSadaf Ebrahimi   Prog::MatchKind kind_;    // The kind of DFA.
344*ccdc9c3eSSadaf Ebrahimi   bool init_failed_;        // initialization failed (out of memory)
345*ccdc9c3eSSadaf Ebrahimi 
346*ccdc9c3eSSadaf Ebrahimi   Mutex mutex_;  // mutex_ >= cache_mutex_.r
347*ccdc9c3eSSadaf Ebrahimi 
348*ccdc9c3eSSadaf Ebrahimi   // Scratch areas, protected by mutex_.
349*ccdc9c3eSSadaf Ebrahimi   Workq* q0_;             // Two pre-allocated work queues.
350*ccdc9c3eSSadaf Ebrahimi   Workq* q1_;
351*ccdc9c3eSSadaf Ebrahimi   PODArray<int> stack_;   // Pre-allocated stack for AddToQueue
352*ccdc9c3eSSadaf Ebrahimi 
353*ccdc9c3eSSadaf Ebrahimi   // State* cache.  Many threads use and add to the cache simultaneously,
354*ccdc9c3eSSadaf Ebrahimi   // holding cache_mutex_ for reading and mutex_ (above) when adding.
355*ccdc9c3eSSadaf Ebrahimi   // If the cache fills and needs to be discarded, the discarding is done
356*ccdc9c3eSSadaf Ebrahimi   // while holding cache_mutex_ for writing, to avoid interrupting other
357*ccdc9c3eSSadaf Ebrahimi   // readers.  Any State* pointers are only valid while cache_mutex_
358*ccdc9c3eSSadaf Ebrahimi   // is held.
359*ccdc9c3eSSadaf Ebrahimi   Mutex cache_mutex_;
360*ccdc9c3eSSadaf Ebrahimi   int64_t mem_budget_;     // Total memory budget for all States.
361*ccdc9c3eSSadaf Ebrahimi   int64_t state_budget_;   // Amount of memory remaining for new States.
362*ccdc9c3eSSadaf Ebrahimi   StateSet state_cache_;   // All States computed so far.
363*ccdc9c3eSSadaf Ebrahimi   StartInfo start_[kMaxStart];
364*ccdc9c3eSSadaf Ebrahimi };
365*ccdc9c3eSSadaf Ebrahimi 
366*ccdc9c3eSSadaf Ebrahimi // Shorthand for casting to uint8_t*.
BytePtr(const void * v)367*ccdc9c3eSSadaf Ebrahimi static inline const uint8_t* BytePtr(const void* v) {
368*ccdc9c3eSSadaf Ebrahimi   return reinterpret_cast<const uint8_t*>(v);
369*ccdc9c3eSSadaf Ebrahimi }
370*ccdc9c3eSSadaf Ebrahimi 
371*ccdc9c3eSSadaf Ebrahimi // Work queues
372*ccdc9c3eSSadaf Ebrahimi 
373*ccdc9c3eSSadaf Ebrahimi // Marks separate thread groups of different priority
374*ccdc9c3eSSadaf Ebrahimi // in the work queue when in leftmost-longest matching mode.
375*ccdc9c3eSSadaf Ebrahimi #define Mark (-1)
376*ccdc9c3eSSadaf Ebrahimi 
377*ccdc9c3eSSadaf Ebrahimi // Separates the match IDs from the instructions in inst_.
378*ccdc9c3eSSadaf Ebrahimi // Used only for "many match" DFA states.
379*ccdc9c3eSSadaf Ebrahimi #define MatchSep (-2)
380*ccdc9c3eSSadaf Ebrahimi 
381*ccdc9c3eSSadaf Ebrahimi // Internally, the DFA uses a sparse array of
382*ccdc9c3eSSadaf Ebrahimi // program instruction pointers as a work queue.
383*ccdc9c3eSSadaf Ebrahimi // In leftmost longest mode, marks separate sections
384*ccdc9c3eSSadaf Ebrahimi // of workq that started executing at different
385*ccdc9c3eSSadaf Ebrahimi // locations in the string (earlier locations first).
386*ccdc9c3eSSadaf Ebrahimi class DFA::Workq : public SparseSet {
387*ccdc9c3eSSadaf Ebrahimi  public:
388*ccdc9c3eSSadaf Ebrahimi   // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)389*ccdc9c3eSSadaf Ebrahimi   Workq(int n, int maxmark) :
390*ccdc9c3eSSadaf Ebrahimi     SparseSet(n+maxmark),
391*ccdc9c3eSSadaf Ebrahimi     n_(n),
392*ccdc9c3eSSadaf Ebrahimi     maxmark_(maxmark),
393*ccdc9c3eSSadaf Ebrahimi     nextmark_(n),
394*ccdc9c3eSSadaf Ebrahimi     last_was_mark_(true) {
395*ccdc9c3eSSadaf Ebrahimi   }
396*ccdc9c3eSSadaf Ebrahimi 
is_mark(int i)397*ccdc9c3eSSadaf Ebrahimi   bool is_mark(int i) { return i >= n_; }
398*ccdc9c3eSSadaf Ebrahimi 
maxmark()399*ccdc9c3eSSadaf Ebrahimi   int maxmark() { return maxmark_; }
400*ccdc9c3eSSadaf Ebrahimi 
clear()401*ccdc9c3eSSadaf Ebrahimi   void clear() {
402*ccdc9c3eSSadaf Ebrahimi     SparseSet::clear();
403*ccdc9c3eSSadaf Ebrahimi     nextmark_ = n_;
404*ccdc9c3eSSadaf Ebrahimi   }
405*ccdc9c3eSSadaf Ebrahimi 
mark()406*ccdc9c3eSSadaf Ebrahimi   void mark() {
407*ccdc9c3eSSadaf Ebrahimi     if (last_was_mark_)
408*ccdc9c3eSSadaf Ebrahimi       return;
409*ccdc9c3eSSadaf Ebrahimi     last_was_mark_ = false;
410*ccdc9c3eSSadaf Ebrahimi     SparseSet::insert_new(nextmark_++);
411*ccdc9c3eSSadaf Ebrahimi   }
412*ccdc9c3eSSadaf Ebrahimi 
size()413*ccdc9c3eSSadaf Ebrahimi   int size() {
414*ccdc9c3eSSadaf Ebrahimi     return n_ + maxmark_;
415*ccdc9c3eSSadaf Ebrahimi   }
416*ccdc9c3eSSadaf Ebrahimi 
insert(int id)417*ccdc9c3eSSadaf Ebrahimi   void insert(int id) {
418*ccdc9c3eSSadaf Ebrahimi     if (contains(id))
419*ccdc9c3eSSadaf Ebrahimi       return;
420*ccdc9c3eSSadaf Ebrahimi     insert_new(id);
421*ccdc9c3eSSadaf Ebrahimi   }
422*ccdc9c3eSSadaf Ebrahimi 
insert_new(int id)423*ccdc9c3eSSadaf Ebrahimi   void insert_new(int id) {
424*ccdc9c3eSSadaf Ebrahimi     last_was_mark_ = false;
425*ccdc9c3eSSadaf Ebrahimi     SparseSet::insert_new(id);
426*ccdc9c3eSSadaf Ebrahimi   }
427*ccdc9c3eSSadaf Ebrahimi 
428*ccdc9c3eSSadaf Ebrahimi  private:
429*ccdc9c3eSSadaf Ebrahimi   int n_;                // size excluding marks
430*ccdc9c3eSSadaf Ebrahimi   int maxmark_;          // maximum number of marks
431*ccdc9c3eSSadaf Ebrahimi   int nextmark_;         // id of next mark
432*ccdc9c3eSSadaf Ebrahimi   bool last_was_mark_;   // last inserted was mark
433*ccdc9c3eSSadaf Ebrahimi 
434*ccdc9c3eSSadaf Ebrahimi   Workq(const Workq&) = delete;
435*ccdc9c3eSSadaf Ebrahimi   Workq& operator=(const Workq&) = delete;
436*ccdc9c3eSSadaf Ebrahimi };
437*ccdc9c3eSSadaf Ebrahimi 
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)438*ccdc9c3eSSadaf Ebrahimi DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
439*ccdc9c3eSSadaf Ebrahimi   : prog_(prog),
440*ccdc9c3eSSadaf Ebrahimi     kind_(kind),
441*ccdc9c3eSSadaf Ebrahimi     init_failed_(false),
442*ccdc9c3eSSadaf Ebrahimi     q0_(NULL),
443*ccdc9c3eSSadaf Ebrahimi     q1_(NULL),
444*ccdc9c3eSSadaf Ebrahimi     mem_budget_(max_mem) {
445*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
446*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
447*ccdc9c3eSSadaf Ebrahimi   int nmark = 0;
448*ccdc9c3eSSadaf Ebrahimi   if (kind_ == Prog::kLongestMatch)
449*ccdc9c3eSSadaf Ebrahimi     nmark = prog_->size();
450*ccdc9c3eSSadaf Ebrahimi   // See DFA::AddToQueue() for why this is so.
451*ccdc9c3eSSadaf Ebrahimi   int nstack = prog_->inst_count(kInstCapture) +
452*ccdc9c3eSSadaf Ebrahimi                prog_->inst_count(kInstEmptyWidth) +
453*ccdc9c3eSSadaf Ebrahimi                prog_->inst_count(kInstNop) +
454*ccdc9c3eSSadaf Ebrahimi                nmark + 1;  // + 1 for start inst
455*ccdc9c3eSSadaf Ebrahimi 
456*ccdc9c3eSSadaf Ebrahimi   // Account for space needed for DFA, q0, q1, stack.
457*ccdc9c3eSSadaf Ebrahimi   mem_budget_ -= sizeof(DFA);
458*ccdc9c3eSSadaf Ebrahimi   mem_budget_ -= (prog_->size() + nmark) *
459*ccdc9c3eSSadaf Ebrahimi                  (sizeof(int)+sizeof(int)) * 2;  // q0, q1
460*ccdc9c3eSSadaf Ebrahimi   mem_budget_ -= nstack * sizeof(int);  // stack
461*ccdc9c3eSSadaf Ebrahimi   if (mem_budget_ < 0) {
462*ccdc9c3eSSadaf Ebrahimi     init_failed_ = true;
463*ccdc9c3eSSadaf Ebrahimi     return;
464*ccdc9c3eSSadaf Ebrahimi   }
465*ccdc9c3eSSadaf Ebrahimi 
466*ccdc9c3eSSadaf Ebrahimi   state_budget_ = mem_budget_;
467*ccdc9c3eSSadaf Ebrahimi 
468*ccdc9c3eSSadaf Ebrahimi   // Make sure there is a reasonable amount of working room left.
469*ccdc9c3eSSadaf Ebrahimi   // At minimum, the search requires room for two states in order
470*ccdc9c3eSSadaf Ebrahimi   // to limp along, restarting frequently.  We'll get better performance
471*ccdc9c3eSSadaf Ebrahimi   // if there is room for a larger number of states, say 20.
472*ccdc9c3eSSadaf Ebrahimi   // Note that a state stores list heads only, so we use the program
473*ccdc9c3eSSadaf Ebrahimi   // list count for the upper bound, not the program size.
474*ccdc9c3eSSadaf Ebrahimi   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
475*ccdc9c3eSSadaf Ebrahimi   int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
476*ccdc9c3eSSadaf Ebrahimi                       (prog_->list_count()+nmark)*sizeof(int);
477*ccdc9c3eSSadaf Ebrahimi   if (state_budget_ < 20*one_state) {
478*ccdc9c3eSSadaf Ebrahimi     init_failed_ = true;
479*ccdc9c3eSSadaf Ebrahimi     return;
480*ccdc9c3eSSadaf Ebrahimi   }
481*ccdc9c3eSSadaf Ebrahimi 
482*ccdc9c3eSSadaf Ebrahimi   q0_ = new Workq(prog_->size(), nmark);
483*ccdc9c3eSSadaf Ebrahimi   q1_ = new Workq(prog_->size(), nmark);
484*ccdc9c3eSSadaf Ebrahimi   stack_ = PODArray<int>(nstack);
485*ccdc9c3eSSadaf Ebrahimi }
486*ccdc9c3eSSadaf Ebrahimi 
~DFA()487*ccdc9c3eSSadaf Ebrahimi DFA::~DFA() {
488*ccdc9c3eSSadaf Ebrahimi   delete q0_;
489*ccdc9c3eSSadaf Ebrahimi   delete q1_;
490*ccdc9c3eSSadaf Ebrahimi   ClearCache();
491*ccdc9c3eSSadaf Ebrahimi }
492*ccdc9c3eSSadaf Ebrahimi 
493*ccdc9c3eSSadaf Ebrahimi // In the DFA state graph, s->next[c] == NULL means that the
494*ccdc9c3eSSadaf Ebrahimi // state has not yet been computed and needs to be.  We need
495*ccdc9c3eSSadaf Ebrahimi // a different special value to signal that s->next[c] is a
496*ccdc9c3eSSadaf Ebrahimi // state that can never lead to a match (and thus the search
497*ccdc9c3eSSadaf Ebrahimi // can be called off).  Hence DeadState.
498*ccdc9c3eSSadaf Ebrahimi #define DeadState reinterpret_cast<State*>(1)
499*ccdc9c3eSSadaf Ebrahimi 
500*ccdc9c3eSSadaf Ebrahimi // Signals that the rest of the string matches no matter what it is.
501*ccdc9c3eSSadaf Ebrahimi #define FullMatchState reinterpret_cast<State*>(2)
502*ccdc9c3eSSadaf Ebrahimi 
503*ccdc9c3eSSadaf Ebrahimi #define SpecialStateMax FullMatchState
504*ccdc9c3eSSadaf Ebrahimi 
505*ccdc9c3eSSadaf Ebrahimi // Debugging printouts
506*ccdc9c3eSSadaf Ebrahimi 
507*ccdc9c3eSSadaf Ebrahimi // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)508*ccdc9c3eSSadaf Ebrahimi string DFA::DumpWorkq(Workq* q) {
509*ccdc9c3eSSadaf Ebrahimi   string s;
510*ccdc9c3eSSadaf Ebrahimi   const char* sep = "";
511*ccdc9c3eSSadaf Ebrahimi   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
512*ccdc9c3eSSadaf Ebrahimi     if (q->is_mark(*it)) {
513*ccdc9c3eSSadaf Ebrahimi       StringAppendF(&s, "|");
514*ccdc9c3eSSadaf Ebrahimi       sep = "";
515*ccdc9c3eSSadaf Ebrahimi     } else {
516*ccdc9c3eSSadaf Ebrahimi       StringAppendF(&s, "%s%d", sep, *it);
517*ccdc9c3eSSadaf Ebrahimi       sep = ",";
518*ccdc9c3eSSadaf Ebrahimi     }
519*ccdc9c3eSSadaf Ebrahimi   }
520*ccdc9c3eSSadaf Ebrahimi   return s;
521*ccdc9c3eSSadaf Ebrahimi }
522*ccdc9c3eSSadaf Ebrahimi 
523*ccdc9c3eSSadaf Ebrahimi // For debugging, returns a string representation of the state.
DumpState(State * state)524*ccdc9c3eSSadaf Ebrahimi string DFA::DumpState(State* state) {
525*ccdc9c3eSSadaf Ebrahimi   if (state == NULL)
526*ccdc9c3eSSadaf Ebrahimi     return "_";
527*ccdc9c3eSSadaf Ebrahimi   if (state == DeadState)
528*ccdc9c3eSSadaf Ebrahimi     return "X";
529*ccdc9c3eSSadaf Ebrahimi   if (state == FullMatchState)
530*ccdc9c3eSSadaf Ebrahimi     return "*";
531*ccdc9c3eSSadaf Ebrahimi   string s;
532*ccdc9c3eSSadaf Ebrahimi   const char* sep = "";
533*ccdc9c3eSSadaf Ebrahimi   StringAppendF(&s, "(%p)", state);
534*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < state->ninst_; i++) {
535*ccdc9c3eSSadaf Ebrahimi     if (state->inst_[i] == Mark) {
536*ccdc9c3eSSadaf Ebrahimi       StringAppendF(&s, "|");
537*ccdc9c3eSSadaf Ebrahimi       sep = "";
538*ccdc9c3eSSadaf Ebrahimi     } else if (state->inst_[i] == MatchSep) {
539*ccdc9c3eSSadaf Ebrahimi       StringAppendF(&s, "||");
540*ccdc9c3eSSadaf Ebrahimi       sep = "";
541*ccdc9c3eSSadaf Ebrahimi     } else {
542*ccdc9c3eSSadaf Ebrahimi       StringAppendF(&s, "%s%d", sep, state->inst_[i]);
543*ccdc9c3eSSadaf Ebrahimi       sep = ",";
544*ccdc9c3eSSadaf Ebrahimi     }
545*ccdc9c3eSSadaf Ebrahimi   }
546*ccdc9c3eSSadaf Ebrahimi   StringAppendF(&s, " flag=%#x", state->flag_);
547*ccdc9c3eSSadaf Ebrahimi   return s;
548*ccdc9c3eSSadaf Ebrahimi }
549*ccdc9c3eSSadaf Ebrahimi 
550*ccdc9c3eSSadaf Ebrahimi //////////////////////////////////////////////////////////////////////
551*ccdc9c3eSSadaf Ebrahimi //
552*ccdc9c3eSSadaf Ebrahimi // DFA state graph construction.
553*ccdc9c3eSSadaf Ebrahimi //
554*ccdc9c3eSSadaf Ebrahimi // The DFA state graph is a heavily-linked collection of State* structures.
555*ccdc9c3eSSadaf Ebrahimi // The state_cache_ is a set of all the State structures ever allocated,
556*ccdc9c3eSSadaf Ebrahimi // so that if the same state is reached by two different paths,
557*ccdc9c3eSSadaf Ebrahimi // the same State structure can be used.  This reduces allocation
558*ccdc9c3eSSadaf Ebrahimi // requirements and also avoids duplication of effort across the two
559*ccdc9c3eSSadaf Ebrahimi // identical states.
560*ccdc9c3eSSadaf Ebrahimi //
561*ccdc9c3eSSadaf Ebrahimi // A State is defined by an ordered list of instruction ids and a flag word.
562*ccdc9c3eSSadaf Ebrahimi //
563*ccdc9c3eSSadaf Ebrahimi // The choice of an ordered list of instructions differs from a typical
564*ccdc9c3eSSadaf Ebrahimi // textbook DFA implementation, which would use an unordered set.
565*ccdc9c3eSSadaf Ebrahimi // Textbook descriptions, however, only care about whether
566*ccdc9c3eSSadaf Ebrahimi // the DFA matches, not where it matches in the text.  To decide where the
567*ccdc9c3eSSadaf Ebrahimi // DFA matches, we need to mimic the behavior of the dominant backtracking
568*ccdc9c3eSSadaf Ebrahimi // implementations like PCRE, which try one possible regular expression
569*ccdc9c3eSSadaf Ebrahimi // execution, then another, then another, stopping when one of them succeeds.
570*ccdc9c3eSSadaf Ebrahimi // The DFA execution tries these many executions in parallel, representing
571*ccdc9c3eSSadaf Ebrahimi // each by an instruction id.  These pointers are ordered in the State.inst_
572*ccdc9c3eSSadaf Ebrahimi // list in the same order that the executions would happen in a backtracking
573*ccdc9c3eSSadaf Ebrahimi // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
574*ccdc9c3eSSadaf Ebrahimi // can be discarded.
575*ccdc9c3eSSadaf Ebrahimi //
576*ccdc9c3eSSadaf Ebrahimi // Textbooks also typically do not consider context-aware empty string operators
577*ccdc9c3eSSadaf Ebrahimi // like ^ or $.  These are handled by the flag word, which specifies the set
578*ccdc9c3eSSadaf Ebrahimi // of empty-string operators that should be matched when executing at the
579*ccdc9c3eSSadaf Ebrahimi // current text position.  These flag bits are defined in prog.h.
580*ccdc9c3eSSadaf Ebrahimi // The flag word also contains two DFA-specific bits: kFlagMatch if the state
581*ccdc9c3eSSadaf Ebrahimi // is a matching state (one that reached a kInstMatch in the program)
582*ccdc9c3eSSadaf Ebrahimi // and kFlagLastWord if the last processed byte was a word character, for the
583*ccdc9c3eSSadaf Ebrahimi // implementation of \B and \b.
584*ccdc9c3eSSadaf Ebrahimi //
585*ccdc9c3eSSadaf Ebrahimi // The flag word also contains, shifted up 16 bits, the bits looked for by
586*ccdc9c3eSSadaf Ebrahimi // any kInstEmptyWidth instructions in the state.  These provide a useful
587*ccdc9c3eSSadaf Ebrahimi // summary indicating when new flags might be useful.
588*ccdc9c3eSSadaf Ebrahimi //
589*ccdc9c3eSSadaf Ebrahimi // The permanent representation of a State's instruction ids is just an array,
590*ccdc9c3eSSadaf Ebrahimi // but while a state is being analyzed, these instruction ids are represented
591*ccdc9c3eSSadaf Ebrahimi // as a Workq, which is an array that allows iteration in insertion order.
592*ccdc9c3eSSadaf Ebrahimi 
593*ccdc9c3eSSadaf Ebrahimi // NOTE(rsc): The choice of State construction determines whether the DFA
594*ccdc9c3eSSadaf Ebrahimi // mimics backtracking implementations (so-called leftmost first matching) or
595*ccdc9c3eSSadaf Ebrahimi // traditional DFA implementations (so-called leftmost longest matching as
596*ccdc9c3eSSadaf Ebrahimi // prescribed by POSIX).  This implementation chooses to mimic the
597*ccdc9c3eSSadaf Ebrahimi // backtracking implementations, because we want to replace PCRE.  To get
598*ccdc9c3eSSadaf Ebrahimi // POSIX behavior, the states would need to be considered not as a simple
599*ccdc9c3eSSadaf Ebrahimi // ordered list of instruction ids, but as a list of unordered sets of instruction
600*ccdc9c3eSSadaf Ebrahimi // ids.  A match by a state in one set would inhibit the running of sets
601*ccdc9c3eSSadaf Ebrahimi // farther down the list but not other instruction ids in the same set.  Each
602*ccdc9c3eSSadaf Ebrahimi // set would correspond to matches beginning at a given point in the string.
603*ccdc9c3eSSadaf Ebrahimi // This is implemented by separating different sets with Mark pointers.
604*ccdc9c3eSSadaf Ebrahimi 
605*ccdc9c3eSSadaf Ebrahimi // Looks in the State cache for a State matching q, flag.
606*ccdc9c3eSSadaf Ebrahimi // If one is found, returns it.  If one is not found, allocates one,
607*ccdc9c3eSSadaf Ebrahimi // inserts it in the cache, and returns it.
608*ccdc9c3eSSadaf Ebrahimi // If mq is not null, MatchSep and the match IDs in mq will be appended
609*ccdc9c3eSSadaf Ebrahimi // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)610*ccdc9c3eSSadaf Ebrahimi DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
611*ccdc9c3eSSadaf Ebrahimi   //mutex_.AssertHeld();
612*ccdc9c3eSSadaf Ebrahimi 
613*ccdc9c3eSSadaf Ebrahimi   // Construct array of instruction ids for the new state.
614*ccdc9c3eSSadaf Ebrahimi   // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
615*ccdc9c3eSSadaf Ebrahimi   // those are the only operators with any effect in
616*ccdc9c3eSSadaf Ebrahimi   // RunWorkqOnEmptyString or RunWorkqOnByte.
617*ccdc9c3eSSadaf Ebrahimi   int* inst = new int[q->size()];
618*ccdc9c3eSSadaf Ebrahimi   int n = 0;
619*ccdc9c3eSSadaf Ebrahimi   uint32_t needflags = 0;  // flags needed by kInstEmptyWidth instructions
620*ccdc9c3eSSadaf Ebrahimi   bool sawmatch = false;   // whether queue contains guaranteed kInstMatch
621*ccdc9c3eSSadaf Ebrahimi   bool sawmark = false;    // whether queue contains a Mark
622*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
623*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
624*ccdc9c3eSSadaf Ebrahimi   for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
625*ccdc9c3eSSadaf Ebrahimi     int id = *it;
626*ccdc9c3eSSadaf Ebrahimi     if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
627*ccdc9c3eSSadaf Ebrahimi       break;
628*ccdc9c3eSSadaf Ebrahimi     if (q->is_mark(id)) {
629*ccdc9c3eSSadaf Ebrahimi       if (n > 0 && inst[n-1] != Mark) {
630*ccdc9c3eSSadaf Ebrahimi         sawmark = true;
631*ccdc9c3eSSadaf Ebrahimi         inst[n++] = Mark;
632*ccdc9c3eSSadaf Ebrahimi       }
633*ccdc9c3eSSadaf Ebrahimi       continue;
634*ccdc9c3eSSadaf Ebrahimi     }
635*ccdc9c3eSSadaf Ebrahimi     Prog::Inst* ip = prog_->inst(id);
636*ccdc9c3eSSadaf Ebrahimi     switch (ip->opcode()) {
637*ccdc9c3eSSadaf Ebrahimi       case kInstAltMatch:
638*ccdc9c3eSSadaf Ebrahimi         // This state will continue to a match no matter what
639*ccdc9c3eSSadaf Ebrahimi         // the rest of the input is.  If it is the highest priority match
640*ccdc9c3eSSadaf Ebrahimi         // being considered, return the special FullMatchState
641*ccdc9c3eSSadaf Ebrahimi         // to indicate that it's all matches from here out.
642*ccdc9c3eSSadaf Ebrahimi         if (kind_ != Prog::kManyMatch &&
643*ccdc9c3eSSadaf Ebrahimi             (kind_ != Prog::kFirstMatch ||
644*ccdc9c3eSSadaf Ebrahimi              (it == q->begin() && ip->greedy(prog_))) &&
645*ccdc9c3eSSadaf Ebrahimi             (kind_ != Prog::kLongestMatch || !sawmark) &&
646*ccdc9c3eSSadaf Ebrahimi             (flag & kFlagMatch)) {
647*ccdc9c3eSSadaf Ebrahimi           delete[] inst;
648*ccdc9c3eSSadaf Ebrahimi           if (ExtraDebug)
649*ccdc9c3eSSadaf Ebrahimi             fprintf(stderr, " -> FullMatchState\n");
650*ccdc9c3eSSadaf Ebrahimi           return FullMatchState;
651*ccdc9c3eSSadaf Ebrahimi         }
652*ccdc9c3eSSadaf Ebrahimi         FALLTHROUGH_INTENDED;
653*ccdc9c3eSSadaf Ebrahimi       default:
654*ccdc9c3eSSadaf Ebrahimi         // Record iff id is the head of its list, which must
655*ccdc9c3eSSadaf Ebrahimi         // be the case if id-1 is the last of *its* list. :)
656*ccdc9c3eSSadaf Ebrahimi         if (prog_->inst(id-1)->last())
657*ccdc9c3eSSadaf Ebrahimi           inst[n++] = *it;
658*ccdc9c3eSSadaf Ebrahimi         if (ip->opcode() == kInstEmptyWidth)
659*ccdc9c3eSSadaf Ebrahimi           needflags |= ip->empty();
660*ccdc9c3eSSadaf Ebrahimi         if (ip->opcode() == kInstMatch && !prog_->anchor_end())
661*ccdc9c3eSSadaf Ebrahimi           sawmatch = true;
662*ccdc9c3eSSadaf Ebrahimi         break;
663*ccdc9c3eSSadaf Ebrahimi     }
664*ccdc9c3eSSadaf Ebrahimi   }
665*ccdc9c3eSSadaf Ebrahimi   DCHECK_LE(n, q->size());
666*ccdc9c3eSSadaf Ebrahimi   if (n > 0 && inst[n-1] == Mark)
667*ccdc9c3eSSadaf Ebrahimi     n--;
668*ccdc9c3eSSadaf Ebrahimi 
669*ccdc9c3eSSadaf Ebrahimi   // If there are no empty-width instructions waiting to execute,
670*ccdc9c3eSSadaf Ebrahimi   // then the extra flag bits will not be used, so there is no
671*ccdc9c3eSSadaf Ebrahimi   // point in saving them.  (Discarding them reduces the number
672*ccdc9c3eSSadaf Ebrahimi   // of distinct states.)
673*ccdc9c3eSSadaf Ebrahimi   if (needflags == 0)
674*ccdc9c3eSSadaf Ebrahimi     flag &= kFlagMatch;
675*ccdc9c3eSSadaf Ebrahimi 
676*ccdc9c3eSSadaf Ebrahimi   // NOTE(rsc): The code above cannot do flag &= needflags,
677*ccdc9c3eSSadaf Ebrahimi   // because if the right flags were present to pass the current
678*ccdc9c3eSSadaf Ebrahimi   // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
679*ccdc9c3eSSadaf Ebrahimi   // might be reached that in turn need different flags.
680*ccdc9c3eSSadaf Ebrahimi   // The only sure thing is that if there are no kInstEmptyWidth
681*ccdc9c3eSSadaf Ebrahimi   // instructions at all, no flags will be needed.
682*ccdc9c3eSSadaf Ebrahimi   // We could do the extra work to figure out the full set of
683*ccdc9c3eSSadaf Ebrahimi   // possibly needed flags by exploring past the kInstEmptyWidth
684*ccdc9c3eSSadaf Ebrahimi   // instructions, but the check above -- are any flags needed
685*ccdc9c3eSSadaf Ebrahimi   // at all? -- handles the most common case.  More fine-grained
686*ccdc9c3eSSadaf Ebrahimi   // analysis can only be justified by measurements showing that
687*ccdc9c3eSSadaf Ebrahimi   // too many redundant states are being allocated.
688*ccdc9c3eSSadaf Ebrahimi 
689*ccdc9c3eSSadaf Ebrahimi   // If there are no Insts in the list, it's a dead state,
690*ccdc9c3eSSadaf Ebrahimi   // which is useful to signal with a special pointer so that
691*ccdc9c3eSSadaf Ebrahimi   // the execution loop can stop early.  This is only okay
692*ccdc9c3eSSadaf Ebrahimi   // if the state is *not* a matching state.
693*ccdc9c3eSSadaf Ebrahimi   if (n == 0 && flag == 0) {
694*ccdc9c3eSSadaf Ebrahimi     delete[] inst;
695*ccdc9c3eSSadaf Ebrahimi     if (ExtraDebug)
696*ccdc9c3eSSadaf Ebrahimi       fprintf(stderr, " -> DeadState\n");
697*ccdc9c3eSSadaf Ebrahimi     return DeadState;
698*ccdc9c3eSSadaf Ebrahimi   }
699*ccdc9c3eSSadaf Ebrahimi 
700*ccdc9c3eSSadaf Ebrahimi   // If we're in longest match mode, the state is a sequence of
701*ccdc9c3eSSadaf Ebrahimi   // unordered state sets separated by Marks.  Sort each set
702*ccdc9c3eSSadaf Ebrahimi   // to canonicalize, to reduce the number of distinct sets stored.
703*ccdc9c3eSSadaf Ebrahimi   if (kind_ == Prog::kLongestMatch) {
704*ccdc9c3eSSadaf Ebrahimi     int* ip = inst;
705*ccdc9c3eSSadaf Ebrahimi     int* ep = ip + n;
706*ccdc9c3eSSadaf Ebrahimi     while (ip < ep) {
707*ccdc9c3eSSadaf Ebrahimi       int* markp = ip;
708*ccdc9c3eSSadaf Ebrahimi       while (markp < ep && *markp != Mark)
709*ccdc9c3eSSadaf Ebrahimi         markp++;
710*ccdc9c3eSSadaf Ebrahimi       std::sort(ip, markp);
711*ccdc9c3eSSadaf Ebrahimi       if (markp < ep)
712*ccdc9c3eSSadaf Ebrahimi         markp++;
713*ccdc9c3eSSadaf Ebrahimi       ip = markp;
714*ccdc9c3eSSadaf Ebrahimi     }
715*ccdc9c3eSSadaf Ebrahimi   }
716*ccdc9c3eSSadaf Ebrahimi 
717*ccdc9c3eSSadaf Ebrahimi   // Append MatchSep and the match IDs in mq if necessary.
718*ccdc9c3eSSadaf Ebrahimi   if (mq != NULL) {
719*ccdc9c3eSSadaf Ebrahimi     inst[n++] = MatchSep;
720*ccdc9c3eSSadaf Ebrahimi     for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
721*ccdc9c3eSSadaf Ebrahimi       int id = *i;
722*ccdc9c3eSSadaf Ebrahimi       Prog::Inst* ip = prog_->inst(id);
723*ccdc9c3eSSadaf Ebrahimi       if (ip->opcode() == kInstMatch)
724*ccdc9c3eSSadaf Ebrahimi         inst[n++] = ip->match_id();
725*ccdc9c3eSSadaf Ebrahimi     }
726*ccdc9c3eSSadaf Ebrahimi   }
727*ccdc9c3eSSadaf Ebrahimi 
728*ccdc9c3eSSadaf Ebrahimi   // Save the needed empty-width flags in the top bits for use later.
729*ccdc9c3eSSadaf Ebrahimi   flag |= needflags << kFlagNeedShift;
730*ccdc9c3eSSadaf Ebrahimi 
731*ccdc9c3eSSadaf Ebrahimi   State* state = CachedState(inst, n, flag);
732*ccdc9c3eSSadaf Ebrahimi   delete[] inst;
733*ccdc9c3eSSadaf Ebrahimi   return state;
734*ccdc9c3eSSadaf Ebrahimi }
735*ccdc9c3eSSadaf Ebrahimi 
736*ccdc9c3eSSadaf Ebrahimi // Looks in the State cache for a State matching inst, ninst, flag.
737*ccdc9c3eSSadaf Ebrahimi // If one is found, returns it.  If one is not found, allocates one,
738*ccdc9c3eSSadaf Ebrahimi // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)739*ccdc9c3eSSadaf Ebrahimi DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
740*ccdc9c3eSSadaf Ebrahimi   //mutex_.AssertHeld();
741*ccdc9c3eSSadaf Ebrahimi 
742*ccdc9c3eSSadaf Ebrahimi   // Look in the cache for a pre-existing state.
743*ccdc9c3eSSadaf Ebrahimi   // We have to initialise the struct like this because otherwise
744*ccdc9c3eSSadaf Ebrahimi   // MSVC will complain about the flexible array member. :(
745*ccdc9c3eSSadaf Ebrahimi   State state;
746*ccdc9c3eSSadaf Ebrahimi   state.inst_ = inst;
747*ccdc9c3eSSadaf Ebrahimi   state.ninst_ = ninst;
748*ccdc9c3eSSadaf Ebrahimi   state.flag_ = flag;
749*ccdc9c3eSSadaf Ebrahimi   StateSet::iterator it = state_cache_.find(&state);
750*ccdc9c3eSSadaf Ebrahimi   if (it != state_cache_.end()) {
751*ccdc9c3eSSadaf Ebrahimi     if (ExtraDebug)
752*ccdc9c3eSSadaf Ebrahimi       fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
753*ccdc9c3eSSadaf Ebrahimi     return *it;
754*ccdc9c3eSSadaf Ebrahimi   }
755*ccdc9c3eSSadaf Ebrahimi 
756*ccdc9c3eSSadaf Ebrahimi   // Must have enough memory for new state.
757*ccdc9c3eSSadaf Ebrahimi   // In addition to what we're going to allocate,
758*ccdc9c3eSSadaf Ebrahimi   // the state cache hash table seems to incur about 40 bytes per
759*ccdc9c3eSSadaf Ebrahimi   // State*, empirically.
760*ccdc9c3eSSadaf Ebrahimi   const int kStateCacheOverhead = 40;
761*ccdc9c3eSSadaf Ebrahimi   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
762*ccdc9c3eSSadaf Ebrahimi   int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
763*ccdc9c3eSSadaf Ebrahimi             ninst*sizeof(int);
764*ccdc9c3eSSadaf Ebrahimi   if (mem_budget_ < mem + kStateCacheOverhead) {
765*ccdc9c3eSSadaf Ebrahimi     mem_budget_ = -1;
766*ccdc9c3eSSadaf Ebrahimi     return NULL;
767*ccdc9c3eSSadaf Ebrahimi   }
768*ccdc9c3eSSadaf Ebrahimi   mem_budget_ -= mem + kStateCacheOverhead;
769*ccdc9c3eSSadaf Ebrahimi 
770*ccdc9c3eSSadaf Ebrahimi   // Allocate new state along with room for next_ and inst_.
771*ccdc9c3eSSadaf Ebrahimi   char* space = std::allocator<char>().allocate(mem);
772*ccdc9c3eSSadaf Ebrahimi   State* s = new (space) State;
773*ccdc9c3eSSadaf Ebrahimi   (void) new (s->next_) std::atomic<State*>[nnext];
774*ccdc9c3eSSadaf Ebrahimi   // Work around a unfortunate bug in older versions of libstdc++.
775*ccdc9c3eSSadaf Ebrahimi   // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
776*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < nnext; i++)
777*ccdc9c3eSSadaf Ebrahimi     (void) new (s->next_ + i) std::atomic<State*>(NULL);
778*ccdc9c3eSSadaf Ebrahimi   s->inst_ = new (s->next_ + nnext) int[ninst];
779*ccdc9c3eSSadaf Ebrahimi   memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
780*ccdc9c3eSSadaf Ebrahimi   s->ninst_ = ninst;
781*ccdc9c3eSSadaf Ebrahimi   s->flag_ = flag;
782*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
783*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, " -> %s\n", DumpState(s).c_str());
784*ccdc9c3eSSadaf Ebrahimi 
785*ccdc9c3eSSadaf Ebrahimi   // Put state in cache and return it.
786*ccdc9c3eSSadaf Ebrahimi   state_cache_.insert(s);
787*ccdc9c3eSSadaf Ebrahimi   return s;
788*ccdc9c3eSSadaf Ebrahimi }
789*ccdc9c3eSSadaf Ebrahimi 
790*ccdc9c3eSSadaf Ebrahimi // Clear the cache.  Must hold cache_mutex_.w or be in destructor.
ClearCache()791*ccdc9c3eSSadaf Ebrahimi void DFA::ClearCache() {
792*ccdc9c3eSSadaf Ebrahimi   StateSet::iterator begin = state_cache_.begin();
793*ccdc9c3eSSadaf Ebrahimi   StateSet::iterator end = state_cache_.end();
794*ccdc9c3eSSadaf Ebrahimi   while (begin != end) {
795*ccdc9c3eSSadaf Ebrahimi     StateSet::iterator tmp = begin;
796*ccdc9c3eSSadaf Ebrahimi     ++begin;
797*ccdc9c3eSSadaf Ebrahimi     // Deallocate the blob of memory that we allocated in DFA::CachedState().
798*ccdc9c3eSSadaf Ebrahimi     // We recompute mem in order to benefit from sized delete where possible.
799*ccdc9c3eSSadaf Ebrahimi     int ninst = (*tmp)->ninst_;
800*ccdc9c3eSSadaf Ebrahimi     int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
801*ccdc9c3eSSadaf Ebrahimi     int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
802*ccdc9c3eSSadaf Ebrahimi               ninst*sizeof(int);
803*ccdc9c3eSSadaf Ebrahimi     std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
804*ccdc9c3eSSadaf Ebrahimi   }
805*ccdc9c3eSSadaf Ebrahimi   state_cache_.clear();
806*ccdc9c3eSSadaf Ebrahimi }
807*ccdc9c3eSSadaf Ebrahimi 
808*ccdc9c3eSSadaf Ebrahimi // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)809*ccdc9c3eSSadaf Ebrahimi void DFA::StateToWorkq(State* s, Workq* q) {
810*ccdc9c3eSSadaf Ebrahimi   q->clear();
811*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < s->ninst_; i++) {
812*ccdc9c3eSSadaf Ebrahimi     if (s->inst_[i] == Mark) {
813*ccdc9c3eSSadaf Ebrahimi       q->mark();
814*ccdc9c3eSSadaf Ebrahimi     } else if (s->inst_[i] == MatchSep) {
815*ccdc9c3eSSadaf Ebrahimi       // Nothing after this is an instruction!
816*ccdc9c3eSSadaf Ebrahimi       break;
817*ccdc9c3eSSadaf Ebrahimi     } else {
818*ccdc9c3eSSadaf Ebrahimi       // Explore from the head of the list.
819*ccdc9c3eSSadaf Ebrahimi       AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
820*ccdc9c3eSSadaf Ebrahimi     }
821*ccdc9c3eSSadaf Ebrahimi   }
822*ccdc9c3eSSadaf Ebrahimi }
823*ccdc9c3eSSadaf Ebrahimi 
824*ccdc9c3eSSadaf Ebrahimi // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)825*ccdc9c3eSSadaf Ebrahimi void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
826*ccdc9c3eSSadaf Ebrahimi 
827*ccdc9c3eSSadaf Ebrahimi   // Use stack_ to hold our stack of instructions yet to process.
828*ccdc9c3eSSadaf Ebrahimi   // It was preallocated as follows:
829*ccdc9c3eSSadaf Ebrahimi   //   one entry per Capture;
830*ccdc9c3eSSadaf Ebrahimi   //   one entry per EmptyWidth; and
831*ccdc9c3eSSadaf Ebrahimi   //   one entry per Nop.
832*ccdc9c3eSSadaf Ebrahimi   // This reflects the maximum number of stack pushes that each can
833*ccdc9c3eSSadaf Ebrahimi   // perform. (Each instruction can be processed at most once.)
834*ccdc9c3eSSadaf Ebrahimi   // When using marks, we also added nmark == prog_->size().
835*ccdc9c3eSSadaf Ebrahimi   // (Otherwise, nmark == 0.)
836*ccdc9c3eSSadaf Ebrahimi   int* stk = stack_.data();
837*ccdc9c3eSSadaf Ebrahimi   int nstk = 0;
838*ccdc9c3eSSadaf Ebrahimi 
839*ccdc9c3eSSadaf Ebrahimi   stk[nstk++] = id;
840*ccdc9c3eSSadaf Ebrahimi   while (nstk > 0) {
841*ccdc9c3eSSadaf Ebrahimi     DCHECK_LE(nstk, stack_.size());
842*ccdc9c3eSSadaf Ebrahimi     id = stk[--nstk];
843*ccdc9c3eSSadaf Ebrahimi 
844*ccdc9c3eSSadaf Ebrahimi   Loop:
845*ccdc9c3eSSadaf Ebrahimi     if (id == Mark) {
846*ccdc9c3eSSadaf Ebrahimi       q->mark();
847*ccdc9c3eSSadaf Ebrahimi       continue;
848*ccdc9c3eSSadaf Ebrahimi     }
849*ccdc9c3eSSadaf Ebrahimi 
850*ccdc9c3eSSadaf Ebrahimi     if (id == 0)
851*ccdc9c3eSSadaf Ebrahimi       continue;
852*ccdc9c3eSSadaf Ebrahimi 
853*ccdc9c3eSSadaf Ebrahimi     // If ip is already on the queue, nothing to do.
854*ccdc9c3eSSadaf Ebrahimi     // Otherwise add it.  We don't actually keep all the
855*ccdc9c3eSSadaf Ebrahimi     // ones that get added, but adding all of them here
856*ccdc9c3eSSadaf Ebrahimi     // increases the likelihood of q->contains(id),
857*ccdc9c3eSSadaf Ebrahimi     // reducing the amount of duplicated work.
858*ccdc9c3eSSadaf Ebrahimi     if (q->contains(id))
859*ccdc9c3eSSadaf Ebrahimi       continue;
860*ccdc9c3eSSadaf Ebrahimi     q->insert_new(id);
861*ccdc9c3eSSadaf Ebrahimi 
862*ccdc9c3eSSadaf Ebrahimi     // Process instruction.
863*ccdc9c3eSSadaf Ebrahimi     Prog::Inst* ip = prog_->inst(id);
864*ccdc9c3eSSadaf Ebrahimi     switch (ip->opcode()) {
865*ccdc9c3eSSadaf Ebrahimi       default:
866*ccdc9c3eSSadaf Ebrahimi         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
867*ccdc9c3eSSadaf Ebrahimi         break;
868*ccdc9c3eSSadaf Ebrahimi 
869*ccdc9c3eSSadaf Ebrahimi       case kInstByteRange:  // just save these on the queue
870*ccdc9c3eSSadaf Ebrahimi       case kInstMatch:
871*ccdc9c3eSSadaf Ebrahimi         if (ip->last())
872*ccdc9c3eSSadaf Ebrahimi           break;
873*ccdc9c3eSSadaf Ebrahimi         id = id+1;
874*ccdc9c3eSSadaf Ebrahimi         goto Loop;
875*ccdc9c3eSSadaf Ebrahimi 
876*ccdc9c3eSSadaf Ebrahimi       case kInstCapture:    // DFA treats captures as no-ops.
877*ccdc9c3eSSadaf Ebrahimi       case kInstNop:
878*ccdc9c3eSSadaf Ebrahimi         if (!ip->last())
879*ccdc9c3eSSadaf Ebrahimi           stk[nstk++] = id+1;
880*ccdc9c3eSSadaf Ebrahimi 
881*ccdc9c3eSSadaf Ebrahimi         // If this instruction is the [00-FF]* loop at the beginning of
882*ccdc9c3eSSadaf Ebrahimi         // a leftmost-longest unanchored search, separate with a Mark so
883*ccdc9c3eSSadaf Ebrahimi         // that future threads (which will start farther to the right in
884*ccdc9c3eSSadaf Ebrahimi         // the input string) are lower priority than current threads.
885*ccdc9c3eSSadaf Ebrahimi         if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
886*ccdc9c3eSSadaf Ebrahimi             id == prog_->start_unanchored() && id != prog_->start())
887*ccdc9c3eSSadaf Ebrahimi           stk[nstk++] = Mark;
888*ccdc9c3eSSadaf Ebrahimi         id = ip->out();
889*ccdc9c3eSSadaf Ebrahimi         goto Loop;
890*ccdc9c3eSSadaf Ebrahimi 
891*ccdc9c3eSSadaf Ebrahimi       case kInstAltMatch:
892*ccdc9c3eSSadaf Ebrahimi         DCHECK(!ip->last());
893*ccdc9c3eSSadaf Ebrahimi         id = id+1;
894*ccdc9c3eSSadaf Ebrahimi         goto Loop;
895*ccdc9c3eSSadaf Ebrahimi 
896*ccdc9c3eSSadaf Ebrahimi       case kInstEmptyWidth:
897*ccdc9c3eSSadaf Ebrahimi         if (!ip->last())
898*ccdc9c3eSSadaf Ebrahimi           stk[nstk++] = id+1;
899*ccdc9c3eSSadaf Ebrahimi 
900*ccdc9c3eSSadaf Ebrahimi         // Continue on if we have all the right flag bits.
901*ccdc9c3eSSadaf Ebrahimi         if (ip->empty() & ~flag)
902*ccdc9c3eSSadaf Ebrahimi           break;
903*ccdc9c3eSSadaf Ebrahimi         id = ip->out();
904*ccdc9c3eSSadaf Ebrahimi         goto Loop;
905*ccdc9c3eSSadaf Ebrahimi     }
906*ccdc9c3eSSadaf Ebrahimi   }
907*ccdc9c3eSSadaf Ebrahimi }
908*ccdc9c3eSSadaf Ebrahimi 
909*ccdc9c3eSSadaf Ebrahimi // Running of work queues.  In the work queue, order matters:
910*ccdc9c3eSSadaf Ebrahimi // the queue is sorted in priority order.  If instruction i comes before j,
911*ccdc9c3eSSadaf Ebrahimi // then the instructions that i produces during the run must come before
912*ccdc9c3eSSadaf Ebrahimi // the ones that j produces.  In order to keep this invariant, all the
913*ccdc9c3eSSadaf Ebrahimi // work queue runners have to take an old queue to process and then
914*ccdc9c3eSSadaf Ebrahimi // also a new queue to fill in.  It's not acceptable to add to the end of
915*ccdc9c3eSSadaf Ebrahimi // an existing queue, because new instructions will not end up in the
916*ccdc9c3eSSadaf Ebrahimi // correct position.
917*ccdc9c3eSSadaf Ebrahimi 
918*ccdc9c3eSSadaf Ebrahimi // Runs the work queue, processing the empty strings indicated by flag.
919*ccdc9c3eSSadaf Ebrahimi // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
920*ccdc9c3eSSadaf Ebrahimi // both ^ and $.  It is important that callers pass all flags at once:
921*ccdc9c3eSSadaf Ebrahimi // processing both ^ and $ is not the same as first processing only ^
922*ccdc9c3eSSadaf Ebrahimi // and then processing only $.  Doing the two-step sequence won't match
923*ccdc9c3eSSadaf Ebrahimi // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
924*ccdc9c3eSSadaf Ebrahimi // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)925*ccdc9c3eSSadaf Ebrahimi void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
926*ccdc9c3eSSadaf Ebrahimi   newq->clear();
927*ccdc9c3eSSadaf Ebrahimi   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
928*ccdc9c3eSSadaf Ebrahimi     if (oldq->is_mark(*i))
929*ccdc9c3eSSadaf Ebrahimi       AddToQueue(newq, Mark, flag);
930*ccdc9c3eSSadaf Ebrahimi     else
931*ccdc9c3eSSadaf Ebrahimi       AddToQueue(newq, *i, flag);
932*ccdc9c3eSSadaf Ebrahimi   }
933*ccdc9c3eSSadaf Ebrahimi }
934*ccdc9c3eSSadaf Ebrahimi 
935*ccdc9c3eSSadaf Ebrahimi // Runs the work queue, processing the single byte c followed by any empty
936*ccdc9c3eSSadaf Ebrahimi // strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
937*ccdc9c3eSSadaf Ebrahimi // means to match c$.  Sets the bool *ismatch to true if the end of the
938*ccdc9c3eSSadaf Ebrahimi // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)939*ccdc9c3eSSadaf Ebrahimi void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
940*ccdc9c3eSSadaf Ebrahimi                          int c, uint32_t flag, bool* ismatch) {
941*ccdc9c3eSSadaf Ebrahimi   //mutex_.AssertHeld();
942*ccdc9c3eSSadaf Ebrahimi 
943*ccdc9c3eSSadaf Ebrahimi   newq->clear();
944*ccdc9c3eSSadaf Ebrahimi   for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
945*ccdc9c3eSSadaf Ebrahimi     if (oldq->is_mark(*i)) {
946*ccdc9c3eSSadaf Ebrahimi       if (*ismatch)
947*ccdc9c3eSSadaf Ebrahimi         return;
948*ccdc9c3eSSadaf Ebrahimi       newq->mark();
949*ccdc9c3eSSadaf Ebrahimi       continue;
950*ccdc9c3eSSadaf Ebrahimi     }
951*ccdc9c3eSSadaf Ebrahimi     int id = *i;
952*ccdc9c3eSSadaf Ebrahimi     Prog::Inst* ip = prog_->inst(id);
953*ccdc9c3eSSadaf Ebrahimi     switch (ip->opcode()) {
954*ccdc9c3eSSadaf Ebrahimi       default:
955*ccdc9c3eSSadaf Ebrahimi         LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
956*ccdc9c3eSSadaf Ebrahimi         break;
957*ccdc9c3eSSadaf Ebrahimi 
958*ccdc9c3eSSadaf Ebrahimi       case kInstFail:        // never succeeds
959*ccdc9c3eSSadaf Ebrahimi       case kInstCapture:     // already followed
960*ccdc9c3eSSadaf Ebrahimi       case kInstNop:         // already followed
961*ccdc9c3eSSadaf Ebrahimi       case kInstAltMatch:    // already followed
962*ccdc9c3eSSadaf Ebrahimi       case kInstEmptyWidth:  // already followed
963*ccdc9c3eSSadaf Ebrahimi         break;
964*ccdc9c3eSSadaf Ebrahimi 
965*ccdc9c3eSSadaf Ebrahimi       case kInstByteRange:   // can follow if c is in range
966*ccdc9c3eSSadaf Ebrahimi         if (ip->Matches(c))
967*ccdc9c3eSSadaf Ebrahimi           AddToQueue(newq, ip->out(), flag);
968*ccdc9c3eSSadaf Ebrahimi         break;
969*ccdc9c3eSSadaf Ebrahimi 
970*ccdc9c3eSSadaf Ebrahimi       case kInstMatch:
971*ccdc9c3eSSadaf Ebrahimi         if (prog_->anchor_end() && c != kByteEndText &&
972*ccdc9c3eSSadaf Ebrahimi             kind_ != Prog::kManyMatch)
973*ccdc9c3eSSadaf Ebrahimi           break;
974*ccdc9c3eSSadaf Ebrahimi         *ismatch = true;
975*ccdc9c3eSSadaf Ebrahimi         if (kind_ == Prog::kFirstMatch) {
976*ccdc9c3eSSadaf Ebrahimi           // Can stop processing work queue since we found a match.
977*ccdc9c3eSSadaf Ebrahimi           return;
978*ccdc9c3eSSadaf Ebrahimi         }
979*ccdc9c3eSSadaf Ebrahimi         break;
980*ccdc9c3eSSadaf Ebrahimi     }
981*ccdc9c3eSSadaf Ebrahimi   }
982*ccdc9c3eSSadaf Ebrahimi 
983*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
984*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
985*ccdc9c3eSSadaf Ebrahimi             c, flag, DumpWorkq(newq).c_str(), *ismatch);
986*ccdc9c3eSSadaf Ebrahimi }
987*ccdc9c3eSSadaf Ebrahimi 
988*ccdc9c3eSSadaf Ebrahimi // Processes input byte c in state, returning new state.
989*ccdc9c3eSSadaf Ebrahimi // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)990*ccdc9c3eSSadaf Ebrahimi DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
991*ccdc9c3eSSadaf Ebrahimi   // Keep only one RunStateOnByte going
992*ccdc9c3eSSadaf Ebrahimi   // even if the DFA is being run by multiple threads.
993*ccdc9c3eSSadaf Ebrahimi   MutexLock l(&mutex_);
994*ccdc9c3eSSadaf Ebrahimi   return RunStateOnByte(state, c);
995*ccdc9c3eSSadaf Ebrahimi }
996*ccdc9c3eSSadaf Ebrahimi 
997*ccdc9c3eSSadaf Ebrahimi // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)998*ccdc9c3eSSadaf Ebrahimi DFA::State* DFA::RunStateOnByte(State* state, int c) {
999*ccdc9c3eSSadaf Ebrahimi   //mutex_.AssertHeld();
1000*ccdc9c3eSSadaf Ebrahimi 
1001*ccdc9c3eSSadaf Ebrahimi   if (state <= SpecialStateMax) {
1002*ccdc9c3eSSadaf Ebrahimi     if (state == FullMatchState) {
1003*ccdc9c3eSSadaf Ebrahimi       // It is convenient for routines like PossibleMatchRange
1004*ccdc9c3eSSadaf Ebrahimi       // if we implement RunStateOnByte for FullMatchState:
1005*ccdc9c3eSSadaf Ebrahimi       // once you get into this state you never get out,
1006*ccdc9c3eSSadaf Ebrahimi       // so it's pretty easy.
1007*ccdc9c3eSSadaf Ebrahimi       return FullMatchState;
1008*ccdc9c3eSSadaf Ebrahimi     }
1009*ccdc9c3eSSadaf Ebrahimi     if (state == DeadState) {
1010*ccdc9c3eSSadaf Ebrahimi       LOG(DFATAL) << "DeadState in RunStateOnByte";
1011*ccdc9c3eSSadaf Ebrahimi       return NULL;
1012*ccdc9c3eSSadaf Ebrahimi     }
1013*ccdc9c3eSSadaf Ebrahimi     if (state == NULL) {
1014*ccdc9c3eSSadaf Ebrahimi       LOG(DFATAL) << "NULL state in RunStateOnByte";
1015*ccdc9c3eSSadaf Ebrahimi       return NULL;
1016*ccdc9c3eSSadaf Ebrahimi     }
1017*ccdc9c3eSSadaf Ebrahimi     LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1018*ccdc9c3eSSadaf Ebrahimi     return NULL;
1019*ccdc9c3eSSadaf Ebrahimi   }
1020*ccdc9c3eSSadaf Ebrahimi 
1021*ccdc9c3eSSadaf Ebrahimi   // If someone else already computed this, return it.
1022*ccdc9c3eSSadaf Ebrahimi   State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1023*ccdc9c3eSSadaf Ebrahimi   if (ns != NULL)
1024*ccdc9c3eSSadaf Ebrahimi     return ns;
1025*ccdc9c3eSSadaf Ebrahimi 
1026*ccdc9c3eSSadaf Ebrahimi   // Convert state into Workq.
1027*ccdc9c3eSSadaf Ebrahimi   StateToWorkq(state, q0_);
1028*ccdc9c3eSSadaf Ebrahimi 
1029*ccdc9c3eSSadaf Ebrahimi   // Flags marking the kinds of empty-width things (^ $ etc)
1030*ccdc9c3eSSadaf Ebrahimi   // around this byte.  Before the byte we have the flags recorded
1031*ccdc9c3eSSadaf Ebrahimi   // in the State structure itself.  After the byte we have
1032*ccdc9c3eSSadaf Ebrahimi   // nothing yet (but that will change: read on).
1033*ccdc9c3eSSadaf Ebrahimi   uint32_t needflag = state->flag_ >> kFlagNeedShift;
1034*ccdc9c3eSSadaf Ebrahimi   uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1035*ccdc9c3eSSadaf Ebrahimi   uint32_t oldbeforeflag = beforeflag;
1036*ccdc9c3eSSadaf Ebrahimi   uint32_t afterflag = 0;
1037*ccdc9c3eSSadaf Ebrahimi 
1038*ccdc9c3eSSadaf Ebrahimi   if (c == '\n') {
1039*ccdc9c3eSSadaf Ebrahimi     // Insert implicit $ and ^ around \n
1040*ccdc9c3eSSadaf Ebrahimi     beforeflag |= kEmptyEndLine;
1041*ccdc9c3eSSadaf Ebrahimi     afterflag |= kEmptyBeginLine;
1042*ccdc9c3eSSadaf Ebrahimi   }
1043*ccdc9c3eSSadaf Ebrahimi 
1044*ccdc9c3eSSadaf Ebrahimi   if (c == kByteEndText) {
1045*ccdc9c3eSSadaf Ebrahimi     // Insert implicit $ and \z before the fake "end text" byte.
1046*ccdc9c3eSSadaf Ebrahimi     beforeflag |= kEmptyEndLine | kEmptyEndText;
1047*ccdc9c3eSSadaf Ebrahimi   }
1048*ccdc9c3eSSadaf Ebrahimi 
1049*ccdc9c3eSSadaf Ebrahimi   // The state flag kFlagLastWord says whether the last
1050*ccdc9c3eSSadaf Ebrahimi   // byte processed was a word character.  Use that info to
1051*ccdc9c3eSSadaf Ebrahimi   // insert empty-width (non-)word boundaries.
1052*ccdc9c3eSSadaf Ebrahimi   bool islastword = (state->flag_ & kFlagLastWord) != 0;
1053*ccdc9c3eSSadaf Ebrahimi   bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1054*ccdc9c3eSSadaf Ebrahimi   if (isword == islastword)
1055*ccdc9c3eSSadaf Ebrahimi     beforeflag |= kEmptyNonWordBoundary;
1056*ccdc9c3eSSadaf Ebrahimi   else
1057*ccdc9c3eSSadaf Ebrahimi     beforeflag |= kEmptyWordBoundary;
1058*ccdc9c3eSSadaf Ebrahimi 
1059*ccdc9c3eSSadaf Ebrahimi   // Okay, finally ready to run.
1060*ccdc9c3eSSadaf Ebrahimi   // Only useful to rerun on empty string if there are new, useful flags.
1061*ccdc9c3eSSadaf Ebrahimi   if (beforeflag & ~oldbeforeflag & needflag) {
1062*ccdc9c3eSSadaf Ebrahimi     RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1063*ccdc9c3eSSadaf Ebrahimi     using std::swap;
1064*ccdc9c3eSSadaf Ebrahimi     swap(q0_, q1_);
1065*ccdc9c3eSSadaf Ebrahimi   }
1066*ccdc9c3eSSadaf Ebrahimi   bool ismatch = false;
1067*ccdc9c3eSSadaf Ebrahimi   RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1068*ccdc9c3eSSadaf Ebrahimi   using std::swap;
1069*ccdc9c3eSSadaf Ebrahimi   swap(q0_, q1_);
1070*ccdc9c3eSSadaf Ebrahimi 
1071*ccdc9c3eSSadaf Ebrahimi   // Save afterflag along with ismatch and isword in new state.
1072*ccdc9c3eSSadaf Ebrahimi   uint32_t flag = afterflag;
1073*ccdc9c3eSSadaf Ebrahimi   if (ismatch)
1074*ccdc9c3eSSadaf Ebrahimi     flag |= kFlagMatch;
1075*ccdc9c3eSSadaf Ebrahimi   if (isword)
1076*ccdc9c3eSSadaf Ebrahimi     flag |= kFlagLastWord;
1077*ccdc9c3eSSadaf Ebrahimi 
1078*ccdc9c3eSSadaf Ebrahimi   if (ismatch && kind_ == Prog::kManyMatch)
1079*ccdc9c3eSSadaf Ebrahimi     ns = WorkqToCachedState(q0_, q1_, flag);
1080*ccdc9c3eSSadaf Ebrahimi   else
1081*ccdc9c3eSSadaf Ebrahimi     ns = WorkqToCachedState(q0_, NULL, flag);
1082*ccdc9c3eSSadaf Ebrahimi 
1083*ccdc9c3eSSadaf Ebrahimi   // Flush ns before linking to it.
1084*ccdc9c3eSSadaf Ebrahimi   // Write barrier before updating state->next_ so that the
1085*ccdc9c3eSSadaf Ebrahimi   // main search loop can proceed without any locking, for speed.
1086*ccdc9c3eSSadaf Ebrahimi   // (Otherwise it would need one mutex operation per input byte.)
1087*ccdc9c3eSSadaf Ebrahimi   state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1088*ccdc9c3eSSadaf Ebrahimi   return ns;
1089*ccdc9c3eSSadaf Ebrahimi }
1090*ccdc9c3eSSadaf Ebrahimi 
1091*ccdc9c3eSSadaf Ebrahimi 
1092*ccdc9c3eSSadaf Ebrahimi //////////////////////////////////////////////////////////////////////
1093*ccdc9c3eSSadaf Ebrahimi // DFA cache reset.
1094*ccdc9c3eSSadaf Ebrahimi 
1095*ccdc9c3eSSadaf Ebrahimi // Reader-writer lock helper.
1096*ccdc9c3eSSadaf Ebrahimi //
1097*ccdc9c3eSSadaf Ebrahimi // The DFA uses a reader-writer mutex to protect the state graph itself.
1098*ccdc9c3eSSadaf Ebrahimi // Traversing the state graph requires holding the mutex for reading,
1099*ccdc9c3eSSadaf Ebrahimi // and discarding the state graph and starting over requires holding the
1100*ccdc9c3eSSadaf Ebrahimi // lock for writing.  If a search needs to expand the graph but is out
1101*ccdc9c3eSSadaf Ebrahimi // of memory, it will need to drop its read lock and then acquire the
1102*ccdc9c3eSSadaf Ebrahimi // write lock.  Since it cannot then atomically downgrade from write lock
1103*ccdc9c3eSSadaf Ebrahimi // to read lock, it runs the rest of the search holding the write lock.
1104*ccdc9c3eSSadaf Ebrahimi // (This probably helps avoid repeated contention, but really the decision
1105*ccdc9c3eSSadaf Ebrahimi // is forced by the Mutex interface.)  It's a bit complicated to keep
1106*ccdc9c3eSSadaf Ebrahimi // track of whether the lock is held for reading or writing and thread
1107*ccdc9c3eSSadaf Ebrahimi // that through the search, so instead we encapsulate it in the RWLocker
1108*ccdc9c3eSSadaf Ebrahimi // and pass that around.
1109*ccdc9c3eSSadaf Ebrahimi 
1110*ccdc9c3eSSadaf Ebrahimi class DFA::RWLocker {
1111*ccdc9c3eSSadaf Ebrahimi  public:
1112*ccdc9c3eSSadaf Ebrahimi   explicit RWLocker(Mutex* mu);
1113*ccdc9c3eSSadaf Ebrahimi   ~RWLocker();
1114*ccdc9c3eSSadaf Ebrahimi 
1115*ccdc9c3eSSadaf Ebrahimi   // If the lock is only held for reading right now,
1116*ccdc9c3eSSadaf Ebrahimi   // drop the read lock and re-acquire for writing.
1117*ccdc9c3eSSadaf Ebrahimi   // Subsequent calls to LockForWriting are no-ops.
1118*ccdc9c3eSSadaf Ebrahimi   // Notice that the lock is *released* temporarily.
1119*ccdc9c3eSSadaf Ebrahimi   void LockForWriting();
1120*ccdc9c3eSSadaf Ebrahimi 
1121*ccdc9c3eSSadaf Ebrahimi  private:
1122*ccdc9c3eSSadaf Ebrahimi   Mutex* mu_;
1123*ccdc9c3eSSadaf Ebrahimi   bool writing_;
1124*ccdc9c3eSSadaf Ebrahimi 
1125*ccdc9c3eSSadaf Ebrahimi   RWLocker(const RWLocker&) = delete;
1126*ccdc9c3eSSadaf Ebrahimi   RWLocker& operator=(const RWLocker&) = delete;
1127*ccdc9c3eSSadaf Ebrahimi };
1128*ccdc9c3eSSadaf Ebrahimi 
RWLocker(Mutex * mu)1129*ccdc9c3eSSadaf Ebrahimi DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) {
1130*ccdc9c3eSSadaf Ebrahimi   mu_->ReaderLock();
1131*ccdc9c3eSSadaf Ebrahimi }
1132*ccdc9c3eSSadaf Ebrahimi 
1133*ccdc9c3eSSadaf Ebrahimi // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
1134*ccdc9c3eSSadaf Ebrahimi // does not support lock upgrade.
LockForWriting()1135*ccdc9c3eSSadaf Ebrahimi void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1136*ccdc9c3eSSadaf Ebrahimi   if (!writing_) {
1137*ccdc9c3eSSadaf Ebrahimi     mu_->ReaderUnlock();
1138*ccdc9c3eSSadaf Ebrahimi     mu_->WriterLock();
1139*ccdc9c3eSSadaf Ebrahimi     writing_ = true;
1140*ccdc9c3eSSadaf Ebrahimi   }
1141*ccdc9c3eSSadaf Ebrahimi }
1142*ccdc9c3eSSadaf Ebrahimi 
~RWLocker()1143*ccdc9c3eSSadaf Ebrahimi DFA::RWLocker::~RWLocker() {
1144*ccdc9c3eSSadaf Ebrahimi   if (!writing_)
1145*ccdc9c3eSSadaf Ebrahimi     mu_->ReaderUnlock();
1146*ccdc9c3eSSadaf Ebrahimi   else
1147*ccdc9c3eSSadaf Ebrahimi     mu_->WriterUnlock();
1148*ccdc9c3eSSadaf Ebrahimi }
1149*ccdc9c3eSSadaf Ebrahimi 
1150*ccdc9c3eSSadaf Ebrahimi 
1151*ccdc9c3eSSadaf Ebrahimi // When the DFA's State cache fills, we discard all the states in the
1152*ccdc9c3eSSadaf Ebrahimi // cache and start over.  Many threads can be using and adding to the
1153*ccdc9c3eSSadaf Ebrahimi // cache at the same time, so we synchronize using the cache_mutex_
1154*ccdc9c3eSSadaf Ebrahimi // to keep from stepping on other threads.  Specifically, all the
1155*ccdc9c3eSSadaf Ebrahimi // threads using the current cache hold cache_mutex_ for reading.
1156*ccdc9c3eSSadaf Ebrahimi // When a thread decides to flush the cache, it drops cache_mutex_
1157*ccdc9c3eSSadaf Ebrahimi // and then re-acquires it for writing.  That ensures there are no
1158*ccdc9c3eSSadaf Ebrahimi // other threads accessing the cache anymore.  The rest of the search
1159*ccdc9c3eSSadaf Ebrahimi // runs holding cache_mutex_ for writing, avoiding any contention
1160*ccdc9c3eSSadaf Ebrahimi // with or cache pollution caused by other threads.
1161*ccdc9c3eSSadaf Ebrahimi 
ResetCache(RWLocker * cache_lock)1162*ccdc9c3eSSadaf Ebrahimi void DFA::ResetCache(RWLocker* cache_lock) {
1163*ccdc9c3eSSadaf Ebrahimi   // Re-acquire the cache_mutex_ for writing (exclusive use).
1164*ccdc9c3eSSadaf Ebrahimi   cache_lock->LockForWriting();
1165*ccdc9c3eSSadaf Ebrahimi 
1166*ccdc9c3eSSadaf Ebrahimi   // Clear the cache, reset the memory budget.
1167*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < kMaxStart; i++) {
1168*ccdc9c3eSSadaf Ebrahimi     start_[i].start = NULL;
1169*ccdc9c3eSSadaf Ebrahimi     start_[i].first_byte.store(kFbUnknown, std::memory_order_relaxed);
1170*ccdc9c3eSSadaf Ebrahimi   }
1171*ccdc9c3eSSadaf Ebrahimi   ClearCache();
1172*ccdc9c3eSSadaf Ebrahimi   mem_budget_ = state_budget_;
1173*ccdc9c3eSSadaf Ebrahimi }
1174*ccdc9c3eSSadaf Ebrahimi 
1175*ccdc9c3eSSadaf Ebrahimi // Typically, a couple States do need to be preserved across a cache
1176*ccdc9c3eSSadaf Ebrahimi // reset, like the State at the current point in the search.
1177*ccdc9c3eSSadaf Ebrahimi // The StateSaver class helps keep States across cache resets.
1178*ccdc9c3eSSadaf Ebrahimi // It makes a copy of the state's guts outside the cache (before the reset)
1179*ccdc9c3eSSadaf Ebrahimi // and then can be asked, after the reset, to recreate the State
1180*ccdc9c3eSSadaf Ebrahimi // in the new cache.  For example, in a DFA method ("this" is a DFA):
1181*ccdc9c3eSSadaf Ebrahimi //
1182*ccdc9c3eSSadaf Ebrahimi //   StateSaver saver(this, s);
1183*ccdc9c3eSSadaf Ebrahimi //   ResetCache(cache_lock);
1184*ccdc9c3eSSadaf Ebrahimi //   s = saver.Restore();
1185*ccdc9c3eSSadaf Ebrahimi //
1186*ccdc9c3eSSadaf Ebrahimi // The saver should always have room in the cache to re-create the state,
1187*ccdc9c3eSSadaf Ebrahimi // because resetting the cache locks out all other threads, and the cache
1188*ccdc9c3eSSadaf Ebrahimi // is known to have room for at least a couple states (otherwise the DFA
1189*ccdc9c3eSSadaf Ebrahimi // constructor fails).
1190*ccdc9c3eSSadaf Ebrahimi 
1191*ccdc9c3eSSadaf Ebrahimi class DFA::StateSaver {
1192*ccdc9c3eSSadaf Ebrahimi  public:
1193*ccdc9c3eSSadaf Ebrahimi   explicit StateSaver(DFA* dfa, State* state);
1194*ccdc9c3eSSadaf Ebrahimi   ~StateSaver();
1195*ccdc9c3eSSadaf Ebrahimi 
1196*ccdc9c3eSSadaf Ebrahimi   // Recreates and returns a state equivalent to the
1197*ccdc9c3eSSadaf Ebrahimi   // original state passed to the constructor.
1198*ccdc9c3eSSadaf Ebrahimi   // Returns NULL if the cache has filled, but
1199*ccdc9c3eSSadaf Ebrahimi   // since the DFA guarantees to have room in the cache
1200*ccdc9c3eSSadaf Ebrahimi   // for a couple states, should never return NULL
1201*ccdc9c3eSSadaf Ebrahimi   // if used right after ResetCache.
1202*ccdc9c3eSSadaf Ebrahimi   State* Restore();
1203*ccdc9c3eSSadaf Ebrahimi 
1204*ccdc9c3eSSadaf Ebrahimi  private:
1205*ccdc9c3eSSadaf Ebrahimi   DFA* dfa_;         // the DFA to use
1206*ccdc9c3eSSadaf Ebrahimi   int* inst_;        // saved info from State
1207*ccdc9c3eSSadaf Ebrahimi   int ninst_;
1208*ccdc9c3eSSadaf Ebrahimi   uint32_t flag_;
1209*ccdc9c3eSSadaf Ebrahimi   bool is_special_;  // whether original state was special
1210*ccdc9c3eSSadaf Ebrahimi   State* special_;   // if is_special_, the original state
1211*ccdc9c3eSSadaf Ebrahimi 
1212*ccdc9c3eSSadaf Ebrahimi   StateSaver(const StateSaver&) = delete;
1213*ccdc9c3eSSadaf Ebrahimi   StateSaver& operator=(const StateSaver&) = delete;
1214*ccdc9c3eSSadaf Ebrahimi };
1215*ccdc9c3eSSadaf Ebrahimi 
StateSaver(DFA * dfa,State * state)1216*ccdc9c3eSSadaf Ebrahimi DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1217*ccdc9c3eSSadaf Ebrahimi   dfa_ = dfa;
1218*ccdc9c3eSSadaf Ebrahimi   if (state <= SpecialStateMax) {
1219*ccdc9c3eSSadaf Ebrahimi     inst_ = NULL;
1220*ccdc9c3eSSadaf Ebrahimi     ninst_ = 0;
1221*ccdc9c3eSSadaf Ebrahimi     flag_ = 0;
1222*ccdc9c3eSSadaf Ebrahimi     is_special_ = true;
1223*ccdc9c3eSSadaf Ebrahimi     special_ = state;
1224*ccdc9c3eSSadaf Ebrahimi     return;
1225*ccdc9c3eSSadaf Ebrahimi   }
1226*ccdc9c3eSSadaf Ebrahimi   is_special_ = false;
1227*ccdc9c3eSSadaf Ebrahimi   special_ = NULL;
1228*ccdc9c3eSSadaf Ebrahimi   flag_ = state->flag_;
1229*ccdc9c3eSSadaf Ebrahimi   ninst_ = state->ninst_;
1230*ccdc9c3eSSadaf Ebrahimi   inst_ = new int[ninst_];
1231*ccdc9c3eSSadaf Ebrahimi   memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1232*ccdc9c3eSSadaf Ebrahimi }
1233*ccdc9c3eSSadaf Ebrahimi 
~StateSaver()1234*ccdc9c3eSSadaf Ebrahimi DFA::StateSaver::~StateSaver() {
1235*ccdc9c3eSSadaf Ebrahimi   if (!is_special_)
1236*ccdc9c3eSSadaf Ebrahimi     delete[] inst_;
1237*ccdc9c3eSSadaf Ebrahimi }
1238*ccdc9c3eSSadaf Ebrahimi 
Restore()1239*ccdc9c3eSSadaf Ebrahimi DFA::State* DFA::StateSaver::Restore() {
1240*ccdc9c3eSSadaf Ebrahimi   if (is_special_)
1241*ccdc9c3eSSadaf Ebrahimi     return special_;
1242*ccdc9c3eSSadaf Ebrahimi   MutexLock l(&dfa_->mutex_);
1243*ccdc9c3eSSadaf Ebrahimi   State* s = dfa_->CachedState(inst_, ninst_, flag_);
1244*ccdc9c3eSSadaf Ebrahimi   if (s == NULL)
1245*ccdc9c3eSSadaf Ebrahimi     LOG(DFATAL) << "StateSaver failed to restore state.";
1246*ccdc9c3eSSadaf Ebrahimi   return s;
1247*ccdc9c3eSSadaf Ebrahimi }
1248*ccdc9c3eSSadaf Ebrahimi 
1249*ccdc9c3eSSadaf Ebrahimi 
1250*ccdc9c3eSSadaf Ebrahimi //////////////////////////////////////////////////////////////////////
1251*ccdc9c3eSSadaf Ebrahimi //
1252*ccdc9c3eSSadaf Ebrahimi // DFA execution.
1253*ccdc9c3eSSadaf Ebrahimi //
1254*ccdc9c3eSSadaf Ebrahimi // The basic search loop is easy: start in a state s and then for each
1255*ccdc9c3eSSadaf Ebrahimi // byte c in the input, s = s->next[c].
1256*ccdc9c3eSSadaf Ebrahimi //
1257*ccdc9c3eSSadaf Ebrahimi // This simple description omits a few efficiency-driven complications.
1258*ccdc9c3eSSadaf Ebrahimi //
1259*ccdc9c3eSSadaf Ebrahimi // First, the State graph is constructed incrementally: it is possible
1260*ccdc9c3eSSadaf Ebrahimi // that s->next[c] is null, indicating that that state has not been
1261*ccdc9c3eSSadaf Ebrahimi // fully explored.  In this case, RunStateOnByte must be invoked to
1262*ccdc9c3eSSadaf Ebrahimi // determine the next state, which is cached in s->next[c] to save
1263*ccdc9c3eSSadaf Ebrahimi // future effort.  An alternative reason for s->next[c] to be null is
1264*ccdc9c3eSSadaf Ebrahimi // that the DFA has reached a so-called "dead state", in which any match
1265*ccdc9c3eSSadaf Ebrahimi // is no longer possible.  In this case RunStateOnByte will return NULL
1266*ccdc9c3eSSadaf Ebrahimi // and the processing of the string can stop early.
1267*ccdc9c3eSSadaf Ebrahimi //
1268*ccdc9c3eSSadaf Ebrahimi // Second, a 256-element pointer array for s->next_ makes each State
1269*ccdc9c3eSSadaf Ebrahimi // quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
1270*ccdc9c3eSSadaf Ebrahimi // maps from bytes to "byte classes" and then next_ only needs to have
1271*ccdc9c3eSSadaf Ebrahimi // as many pointers as there are byte classes.  A byte class is simply a
1272*ccdc9c3eSSadaf Ebrahimi // range of bytes that the regexp never distinguishes between.
1273*ccdc9c3eSSadaf Ebrahimi // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1274*ccdc9c3eSSadaf Ebrahimi // 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
1275*ccdc9c3eSSadaf Ebrahimi // but in exchange we typically cut the size of a State (and thus our
1276*ccdc9c3eSSadaf Ebrahimi // memory footprint) by about 5-10x.  The comments still refer to
1277*ccdc9c3eSSadaf Ebrahimi // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1278*ccdc9c3eSSadaf Ebrahimi //
1279*ccdc9c3eSSadaf Ebrahimi // Third, it is common for a DFA for an unanchored match to begin in a
1280*ccdc9c3eSSadaf Ebrahimi // state in which only one particular byte value can take the DFA to a
1281*ccdc9c3eSSadaf Ebrahimi // different state.  That is, s->next[c] != s for only one c.  In this
1282*ccdc9c3eSSadaf Ebrahimi // situation, the DFA can do better than executing the simple loop.
1283*ccdc9c3eSSadaf Ebrahimi // Instead, it can call memchr to search very quickly for the byte c.
1284*ccdc9c3eSSadaf Ebrahimi // Whether the start state has this property is determined during a
1285*ccdc9c3eSSadaf Ebrahimi // pre-compilation pass, and if so, the byte b is passed to the search
1286*ccdc9c3eSSadaf Ebrahimi // loop as the "first_byte" argument, along with a boolean "have_first_byte".
1287*ccdc9c3eSSadaf Ebrahimi //
1288*ccdc9c3eSSadaf Ebrahimi // Fourth, the desired behavior is to search for the leftmost-best match
1289*ccdc9c3eSSadaf Ebrahimi // (approximately, the same one that Perl would find), which is not
1290*ccdc9c3eSSadaf Ebrahimi // necessarily the match ending earliest in the string.  Each time a
1291*ccdc9c3eSSadaf Ebrahimi // match is found, it must be noted, but the DFA must continue on in
1292*ccdc9c3eSSadaf Ebrahimi // hope of finding a higher-priority match.  In some cases, the caller only
1293*ccdc9c3eSSadaf Ebrahimi // cares whether there is any match at all, not which one is found.
1294*ccdc9c3eSSadaf Ebrahimi // The "want_earliest_match" flag causes the search to stop at the first
1295*ccdc9c3eSSadaf Ebrahimi // match found.
1296*ccdc9c3eSSadaf Ebrahimi //
1297*ccdc9c3eSSadaf Ebrahimi // Fifth, one algorithm that uses the DFA needs it to run over the
1298*ccdc9c3eSSadaf Ebrahimi // input string backward, beginning at the end and ending at the beginning.
1299*ccdc9c3eSSadaf Ebrahimi // Passing false for the "run_forward" flag causes the DFA to run backward.
1300*ccdc9c3eSSadaf Ebrahimi //
1301*ccdc9c3eSSadaf Ebrahimi // The checks for these last three cases, which in a naive implementation
1302*ccdc9c3eSSadaf Ebrahimi // would be performed once per input byte, slow the general loop enough
1303*ccdc9c3eSSadaf Ebrahimi // to merit specialized versions of the search loop for each of the
1304*ccdc9c3eSSadaf Ebrahimi // eight possible settings of the three booleans.  Rather than write
1305*ccdc9c3eSSadaf Ebrahimi // eight different functions, we write one general implementation and then
1306*ccdc9c3eSSadaf Ebrahimi // inline it to create the specialized ones.
1307*ccdc9c3eSSadaf Ebrahimi //
1308*ccdc9c3eSSadaf Ebrahimi // Note that matches are delayed by one byte, to make it easier to
1309*ccdc9c3eSSadaf Ebrahimi // accomodate match conditions depending on the next input byte (like $ and \b).
1310*ccdc9c3eSSadaf Ebrahimi // When s->next[c]->IsMatch(), it means that there is a match ending just
1311*ccdc9c3eSSadaf Ebrahimi // *before* byte c.
1312*ccdc9c3eSSadaf Ebrahimi 
1313*ccdc9c3eSSadaf Ebrahimi // The generic search loop.  Searches text for a match, returning
1314*ccdc9c3eSSadaf Ebrahimi // the pointer to the end of the chosen match, or NULL if no match.
1315*ccdc9c3eSSadaf Ebrahimi // The bools are equal to the same-named variables in params, but
1316*ccdc9c3eSSadaf Ebrahimi // making them function arguments lets the inliner specialize
1317*ccdc9c3eSSadaf Ebrahimi // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool have_first_byte,bool want_earliest_match,bool run_forward)1318*ccdc9c3eSSadaf Ebrahimi inline bool DFA::InlinedSearchLoop(SearchParams* params,
1319*ccdc9c3eSSadaf Ebrahimi                                    bool have_first_byte,
1320*ccdc9c3eSSadaf Ebrahimi                                    bool want_earliest_match,
1321*ccdc9c3eSSadaf Ebrahimi                                    bool run_forward) {
1322*ccdc9c3eSSadaf Ebrahimi   State* start = params->start;
1323*ccdc9c3eSSadaf Ebrahimi   const uint8_t* bp = BytePtr(params->text.begin());  // start of text
1324*ccdc9c3eSSadaf Ebrahimi   const uint8_t* p = bp;                              // text scanning point
1325*ccdc9c3eSSadaf Ebrahimi   const uint8_t* ep = BytePtr(params->text.end());    // end of text
1326*ccdc9c3eSSadaf Ebrahimi   const uint8_t* resetp = NULL;                       // p at last cache reset
1327*ccdc9c3eSSadaf Ebrahimi   if (!run_forward) {
1328*ccdc9c3eSSadaf Ebrahimi     using std::swap;
1329*ccdc9c3eSSadaf Ebrahimi     swap(p, ep);
1330*ccdc9c3eSSadaf Ebrahimi   }
1331*ccdc9c3eSSadaf Ebrahimi 
1332*ccdc9c3eSSadaf Ebrahimi   const uint8_t* bytemap = prog_->bytemap();
1333*ccdc9c3eSSadaf Ebrahimi   const uint8_t* lastmatch = NULL;   // most recent matching position in text
1334*ccdc9c3eSSadaf Ebrahimi   bool matched = false;
1335*ccdc9c3eSSadaf Ebrahimi 
1336*ccdc9c3eSSadaf Ebrahimi   State* s = start;
1337*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
1338*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "@stx: %s\n", DumpState(s).c_str());
1339*ccdc9c3eSSadaf Ebrahimi 
1340*ccdc9c3eSSadaf Ebrahimi   if (s->IsMatch()) {
1341*ccdc9c3eSSadaf Ebrahimi     matched = true;
1342*ccdc9c3eSSadaf Ebrahimi     lastmatch = p;
1343*ccdc9c3eSSadaf Ebrahimi     if (ExtraDebug)
1344*ccdc9c3eSSadaf Ebrahimi       fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str());
1345*ccdc9c3eSSadaf Ebrahimi     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1346*ccdc9c3eSSadaf Ebrahimi       for (int i = s->ninst_ - 1; i >= 0; i--) {
1347*ccdc9c3eSSadaf Ebrahimi         int id = s->inst_[i];
1348*ccdc9c3eSSadaf Ebrahimi         if (id == MatchSep)
1349*ccdc9c3eSSadaf Ebrahimi           break;
1350*ccdc9c3eSSadaf Ebrahimi         params->matches->insert(id);
1351*ccdc9c3eSSadaf Ebrahimi       }
1352*ccdc9c3eSSadaf Ebrahimi     }
1353*ccdc9c3eSSadaf Ebrahimi     if (want_earliest_match) {
1354*ccdc9c3eSSadaf Ebrahimi       params->ep = reinterpret_cast<const char*>(lastmatch);
1355*ccdc9c3eSSadaf Ebrahimi       return true;
1356*ccdc9c3eSSadaf Ebrahimi     }
1357*ccdc9c3eSSadaf Ebrahimi   }
1358*ccdc9c3eSSadaf Ebrahimi 
1359*ccdc9c3eSSadaf Ebrahimi   while (p != ep) {
1360*ccdc9c3eSSadaf Ebrahimi     if (ExtraDebug)
1361*ccdc9c3eSSadaf Ebrahimi       fprintf(stderr, "@%td: %s\n",
1362*ccdc9c3eSSadaf Ebrahimi               p - bp, DumpState(s).c_str());
1363*ccdc9c3eSSadaf Ebrahimi 
1364*ccdc9c3eSSadaf Ebrahimi     if (have_first_byte && s == start) {
1365*ccdc9c3eSSadaf Ebrahimi       // In start state, only way out is to find first_byte,
1366*ccdc9c3eSSadaf Ebrahimi       // so use optimized assembly in memchr to skip ahead.
1367*ccdc9c3eSSadaf Ebrahimi       // If first_byte isn't found, we can skip to the end
1368*ccdc9c3eSSadaf Ebrahimi       // of the string.
1369*ccdc9c3eSSadaf Ebrahimi       if (run_forward) {
1370*ccdc9c3eSSadaf Ebrahimi         if ((p = BytePtr(memchr(p, params->first_byte, ep - p))) == NULL) {
1371*ccdc9c3eSSadaf Ebrahimi           p = ep;
1372*ccdc9c3eSSadaf Ebrahimi           break;
1373*ccdc9c3eSSadaf Ebrahimi         }
1374*ccdc9c3eSSadaf Ebrahimi       } else {
1375*ccdc9c3eSSadaf Ebrahimi         if ((p = BytePtr(memrchr(ep, params->first_byte, p - ep))) == NULL) {
1376*ccdc9c3eSSadaf Ebrahimi           p = ep;
1377*ccdc9c3eSSadaf Ebrahimi           break;
1378*ccdc9c3eSSadaf Ebrahimi         }
1379*ccdc9c3eSSadaf Ebrahimi         p++;
1380*ccdc9c3eSSadaf Ebrahimi       }
1381*ccdc9c3eSSadaf Ebrahimi     }
1382*ccdc9c3eSSadaf Ebrahimi 
1383*ccdc9c3eSSadaf Ebrahimi     int c;
1384*ccdc9c3eSSadaf Ebrahimi     if (run_forward)
1385*ccdc9c3eSSadaf Ebrahimi       c = *p++;
1386*ccdc9c3eSSadaf Ebrahimi     else
1387*ccdc9c3eSSadaf Ebrahimi       c = *--p;
1388*ccdc9c3eSSadaf Ebrahimi 
1389*ccdc9c3eSSadaf Ebrahimi     // Note that multiple threads might be consulting
1390*ccdc9c3eSSadaf Ebrahimi     // s->next_[bytemap[c]] simultaneously.
1391*ccdc9c3eSSadaf Ebrahimi     // RunStateOnByte takes care of the appropriate locking,
1392*ccdc9c3eSSadaf Ebrahimi     // including a memory barrier so that the unlocked access
1393*ccdc9c3eSSadaf Ebrahimi     // (sometimes known as "double-checked locking") is safe.
1394*ccdc9c3eSSadaf Ebrahimi     // The alternative would be either one DFA per thread
1395*ccdc9c3eSSadaf Ebrahimi     // or one mutex operation per input byte.
1396*ccdc9c3eSSadaf Ebrahimi     //
1397*ccdc9c3eSSadaf Ebrahimi     // ns == DeadState means the state is known to be dead
1398*ccdc9c3eSSadaf Ebrahimi     // (no more matches are possible).
1399*ccdc9c3eSSadaf Ebrahimi     // ns == NULL means the state has not yet been computed
1400*ccdc9c3eSSadaf Ebrahimi     // (need to call RunStateOnByteUnlocked).
1401*ccdc9c3eSSadaf Ebrahimi     // RunStateOnByte returns ns == NULL if it is out of memory.
1402*ccdc9c3eSSadaf Ebrahimi     // ns == FullMatchState means the rest of the string matches.
1403*ccdc9c3eSSadaf Ebrahimi     //
1404*ccdc9c3eSSadaf Ebrahimi     // Okay to use bytemap[] not ByteMap() here, because
1405*ccdc9c3eSSadaf Ebrahimi     // c is known to be an actual byte and not kByteEndText.
1406*ccdc9c3eSSadaf Ebrahimi 
1407*ccdc9c3eSSadaf Ebrahimi     State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1408*ccdc9c3eSSadaf Ebrahimi     if (ns == NULL) {
1409*ccdc9c3eSSadaf Ebrahimi       ns = RunStateOnByteUnlocked(s, c);
1410*ccdc9c3eSSadaf Ebrahimi       if (ns == NULL) {
1411*ccdc9c3eSSadaf Ebrahimi         // After we reset the cache, we hold cache_mutex exclusively,
1412*ccdc9c3eSSadaf Ebrahimi         // so if resetp != NULL, it means we filled the DFA state
1413*ccdc9c3eSSadaf Ebrahimi         // cache with this search alone (without any other threads).
1414*ccdc9c3eSSadaf Ebrahimi         // Benchmarks show that doing a state computation on every
1415*ccdc9c3eSSadaf Ebrahimi         // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1416*ccdc9c3eSSadaf Ebrahimi         // same at about 2 MB/s.  Unless we're processing an average
1417*ccdc9c3eSSadaf Ebrahimi         // of 10 bytes per state computation, fail so that RE2 can
1418*ccdc9c3eSSadaf Ebrahimi         // fall back to the NFA.
1419*ccdc9c3eSSadaf Ebrahimi         if (dfa_should_bail_when_slow && resetp != NULL &&
1420*ccdc9c3eSSadaf Ebrahimi             static_cast<size_t>(p - resetp) < 10*state_cache_.size()) {
1421*ccdc9c3eSSadaf Ebrahimi           params->failed = true;
1422*ccdc9c3eSSadaf Ebrahimi           return false;
1423*ccdc9c3eSSadaf Ebrahimi         }
1424*ccdc9c3eSSadaf Ebrahimi         resetp = p;
1425*ccdc9c3eSSadaf Ebrahimi 
1426*ccdc9c3eSSadaf Ebrahimi         // Prepare to save start and s across the reset.
1427*ccdc9c3eSSadaf Ebrahimi         StateSaver save_start(this, start);
1428*ccdc9c3eSSadaf Ebrahimi         StateSaver save_s(this, s);
1429*ccdc9c3eSSadaf Ebrahimi 
1430*ccdc9c3eSSadaf Ebrahimi         // Discard all the States in the cache.
1431*ccdc9c3eSSadaf Ebrahimi         ResetCache(params->cache_lock);
1432*ccdc9c3eSSadaf Ebrahimi 
1433*ccdc9c3eSSadaf Ebrahimi         // Restore start and s so we can continue.
1434*ccdc9c3eSSadaf Ebrahimi         if ((start = save_start.Restore()) == NULL ||
1435*ccdc9c3eSSadaf Ebrahimi             (s = save_s.Restore()) == NULL) {
1436*ccdc9c3eSSadaf Ebrahimi           // Restore already did LOG(DFATAL).
1437*ccdc9c3eSSadaf Ebrahimi           params->failed = true;
1438*ccdc9c3eSSadaf Ebrahimi           return false;
1439*ccdc9c3eSSadaf Ebrahimi         }
1440*ccdc9c3eSSadaf Ebrahimi         ns = RunStateOnByteUnlocked(s, c);
1441*ccdc9c3eSSadaf Ebrahimi         if (ns == NULL) {
1442*ccdc9c3eSSadaf Ebrahimi           LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1443*ccdc9c3eSSadaf Ebrahimi           params->failed = true;
1444*ccdc9c3eSSadaf Ebrahimi           return false;
1445*ccdc9c3eSSadaf Ebrahimi         }
1446*ccdc9c3eSSadaf Ebrahimi       }
1447*ccdc9c3eSSadaf Ebrahimi     }
1448*ccdc9c3eSSadaf Ebrahimi     if (ns <= SpecialStateMax) {
1449*ccdc9c3eSSadaf Ebrahimi       if (ns == DeadState) {
1450*ccdc9c3eSSadaf Ebrahimi         params->ep = reinterpret_cast<const char*>(lastmatch);
1451*ccdc9c3eSSadaf Ebrahimi         return matched;
1452*ccdc9c3eSSadaf Ebrahimi       }
1453*ccdc9c3eSSadaf Ebrahimi       // FullMatchState
1454*ccdc9c3eSSadaf Ebrahimi       params->ep = reinterpret_cast<const char*>(ep);
1455*ccdc9c3eSSadaf Ebrahimi       return true;
1456*ccdc9c3eSSadaf Ebrahimi     }
1457*ccdc9c3eSSadaf Ebrahimi 
1458*ccdc9c3eSSadaf Ebrahimi     s = ns;
1459*ccdc9c3eSSadaf Ebrahimi     if (s->IsMatch()) {
1460*ccdc9c3eSSadaf Ebrahimi       matched = true;
1461*ccdc9c3eSSadaf Ebrahimi       // The DFA notices the match one byte late,
1462*ccdc9c3eSSadaf Ebrahimi       // so adjust p before using it in the match.
1463*ccdc9c3eSSadaf Ebrahimi       if (run_forward)
1464*ccdc9c3eSSadaf Ebrahimi         lastmatch = p - 1;
1465*ccdc9c3eSSadaf Ebrahimi       else
1466*ccdc9c3eSSadaf Ebrahimi         lastmatch = p + 1;
1467*ccdc9c3eSSadaf Ebrahimi       if (ExtraDebug)
1468*ccdc9c3eSSadaf Ebrahimi         fprintf(stderr, "match @%td! [%s]\n",
1469*ccdc9c3eSSadaf Ebrahimi                 lastmatch - bp, DumpState(s).c_str());
1470*ccdc9c3eSSadaf Ebrahimi       if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1471*ccdc9c3eSSadaf Ebrahimi         for (int i = s->ninst_ - 1; i >= 0; i--) {
1472*ccdc9c3eSSadaf Ebrahimi           int id = s->inst_[i];
1473*ccdc9c3eSSadaf Ebrahimi           if (id == MatchSep)
1474*ccdc9c3eSSadaf Ebrahimi             break;
1475*ccdc9c3eSSadaf Ebrahimi           params->matches->insert(id);
1476*ccdc9c3eSSadaf Ebrahimi         }
1477*ccdc9c3eSSadaf Ebrahimi       }
1478*ccdc9c3eSSadaf Ebrahimi       if (want_earliest_match) {
1479*ccdc9c3eSSadaf Ebrahimi         params->ep = reinterpret_cast<const char*>(lastmatch);
1480*ccdc9c3eSSadaf Ebrahimi         return true;
1481*ccdc9c3eSSadaf Ebrahimi       }
1482*ccdc9c3eSSadaf Ebrahimi     }
1483*ccdc9c3eSSadaf Ebrahimi   }
1484*ccdc9c3eSSadaf Ebrahimi 
1485*ccdc9c3eSSadaf Ebrahimi   // Process one more byte to see if it triggers a match.
1486*ccdc9c3eSSadaf Ebrahimi   // (Remember, matches are delayed one byte.)
1487*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
1488*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "@etx: %s\n", DumpState(s).c_str());
1489*ccdc9c3eSSadaf Ebrahimi 
1490*ccdc9c3eSSadaf Ebrahimi   int lastbyte;
1491*ccdc9c3eSSadaf Ebrahimi   if (run_forward) {
1492*ccdc9c3eSSadaf Ebrahimi     if (params->text.end() == params->context.end())
1493*ccdc9c3eSSadaf Ebrahimi       lastbyte = kByteEndText;
1494*ccdc9c3eSSadaf Ebrahimi     else
1495*ccdc9c3eSSadaf Ebrahimi       lastbyte = params->text.end()[0] & 0xFF;
1496*ccdc9c3eSSadaf Ebrahimi   } else {
1497*ccdc9c3eSSadaf Ebrahimi     if (params->text.begin() == params->context.begin())
1498*ccdc9c3eSSadaf Ebrahimi       lastbyte = kByteEndText;
1499*ccdc9c3eSSadaf Ebrahimi     else
1500*ccdc9c3eSSadaf Ebrahimi       lastbyte = params->text.begin()[-1] & 0xFF;
1501*ccdc9c3eSSadaf Ebrahimi   }
1502*ccdc9c3eSSadaf Ebrahimi 
1503*ccdc9c3eSSadaf Ebrahimi   State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1504*ccdc9c3eSSadaf Ebrahimi   if (ns == NULL) {
1505*ccdc9c3eSSadaf Ebrahimi     ns = RunStateOnByteUnlocked(s, lastbyte);
1506*ccdc9c3eSSadaf Ebrahimi     if (ns == NULL) {
1507*ccdc9c3eSSadaf Ebrahimi       StateSaver save_s(this, s);
1508*ccdc9c3eSSadaf Ebrahimi       ResetCache(params->cache_lock);
1509*ccdc9c3eSSadaf Ebrahimi       if ((s = save_s.Restore()) == NULL) {
1510*ccdc9c3eSSadaf Ebrahimi         params->failed = true;
1511*ccdc9c3eSSadaf Ebrahimi         return false;
1512*ccdc9c3eSSadaf Ebrahimi       }
1513*ccdc9c3eSSadaf Ebrahimi       ns = RunStateOnByteUnlocked(s, lastbyte);
1514*ccdc9c3eSSadaf Ebrahimi       if (ns == NULL) {
1515*ccdc9c3eSSadaf Ebrahimi         LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1516*ccdc9c3eSSadaf Ebrahimi         params->failed = true;
1517*ccdc9c3eSSadaf Ebrahimi         return false;
1518*ccdc9c3eSSadaf Ebrahimi       }
1519*ccdc9c3eSSadaf Ebrahimi     }
1520*ccdc9c3eSSadaf Ebrahimi   }
1521*ccdc9c3eSSadaf Ebrahimi   if (ns <= SpecialStateMax) {
1522*ccdc9c3eSSadaf Ebrahimi     if (ns == DeadState) {
1523*ccdc9c3eSSadaf Ebrahimi       params->ep = reinterpret_cast<const char*>(lastmatch);
1524*ccdc9c3eSSadaf Ebrahimi       return matched;
1525*ccdc9c3eSSadaf Ebrahimi     }
1526*ccdc9c3eSSadaf Ebrahimi     // FullMatchState
1527*ccdc9c3eSSadaf Ebrahimi     params->ep = reinterpret_cast<const char*>(ep);
1528*ccdc9c3eSSadaf Ebrahimi     return true;
1529*ccdc9c3eSSadaf Ebrahimi   }
1530*ccdc9c3eSSadaf Ebrahimi 
1531*ccdc9c3eSSadaf Ebrahimi   s = ns;
1532*ccdc9c3eSSadaf Ebrahimi   if (s->IsMatch()) {
1533*ccdc9c3eSSadaf Ebrahimi     matched = true;
1534*ccdc9c3eSSadaf Ebrahimi     lastmatch = p;
1535*ccdc9c3eSSadaf Ebrahimi     if (ExtraDebug)
1536*ccdc9c3eSSadaf Ebrahimi       fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str());
1537*ccdc9c3eSSadaf Ebrahimi     if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1538*ccdc9c3eSSadaf Ebrahimi       for (int i = s->ninst_ - 1; i >= 0; i--) {
1539*ccdc9c3eSSadaf Ebrahimi         int id = s->inst_[i];
1540*ccdc9c3eSSadaf Ebrahimi         if (id == MatchSep)
1541*ccdc9c3eSSadaf Ebrahimi           break;
1542*ccdc9c3eSSadaf Ebrahimi         params->matches->insert(id);
1543*ccdc9c3eSSadaf Ebrahimi       }
1544*ccdc9c3eSSadaf Ebrahimi     }
1545*ccdc9c3eSSadaf Ebrahimi   }
1546*ccdc9c3eSSadaf Ebrahimi 
1547*ccdc9c3eSSadaf Ebrahimi   params->ep = reinterpret_cast<const char*>(lastmatch);
1548*ccdc9c3eSSadaf Ebrahimi   return matched;
1549*ccdc9c3eSSadaf Ebrahimi }
1550*ccdc9c3eSSadaf Ebrahimi 
1551*ccdc9c3eSSadaf Ebrahimi // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1552*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchFFF(SearchParams* params) {
1553*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 0, 0, 0);
1554*ccdc9c3eSSadaf Ebrahimi }
SearchFFT(SearchParams * params)1555*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchFFT(SearchParams* params) {
1556*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 0, 0, 1);
1557*ccdc9c3eSSadaf Ebrahimi }
SearchFTF(SearchParams * params)1558*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchFTF(SearchParams* params) {
1559*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 0, 1, 0);
1560*ccdc9c3eSSadaf Ebrahimi }
SearchFTT(SearchParams * params)1561*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchFTT(SearchParams* params) {
1562*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 0, 1, 1);
1563*ccdc9c3eSSadaf Ebrahimi }
SearchTFF(SearchParams * params)1564*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchTFF(SearchParams* params) {
1565*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 1, 0, 0);
1566*ccdc9c3eSSadaf Ebrahimi }
SearchTFT(SearchParams * params)1567*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchTFT(SearchParams* params) {
1568*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 1, 0, 1);
1569*ccdc9c3eSSadaf Ebrahimi }
SearchTTF(SearchParams * params)1570*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchTTF(SearchParams* params) {
1571*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 1, 1, 0);
1572*ccdc9c3eSSadaf Ebrahimi }
SearchTTT(SearchParams * params)1573*ccdc9c3eSSadaf Ebrahimi bool DFA::SearchTTT(SearchParams* params) {
1574*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params, 1, 1, 1);
1575*ccdc9c3eSSadaf Ebrahimi }
1576*ccdc9c3eSSadaf Ebrahimi 
1577*ccdc9c3eSSadaf Ebrahimi // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1578*ccdc9c3eSSadaf Ebrahimi bool DFA::SlowSearchLoop(SearchParams* params) {
1579*ccdc9c3eSSadaf Ebrahimi   return InlinedSearchLoop(params,
1580*ccdc9c3eSSadaf Ebrahimi                            params->first_byte >= 0,
1581*ccdc9c3eSSadaf Ebrahimi                            params->want_earliest_match,
1582*ccdc9c3eSSadaf Ebrahimi                            params->run_forward);
1583*ccdc9c3eSSadaf Ebrahimi }
1584*ccdc9c3eSSadaf Ebrahimi 
1585*ccdc9c3eSSadaf Ebrahimi // For performance, calls the appropriate specialized version
1586*ccdc9c3eSSadaf Ebrahimi // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1587*ccdc9c3eSSadaf Ebrahimi bool DFA::FastSearchLoop(SearchParams* params) {
1588*ccdc9c3eSSadaf Ebrahimi   // Because the methods are private, the Searches array
1589*ccdc9c3eSSadaf Ebrahimi   // cannot be declared at top level.
1590*ccdc9c3eSSadaf Ebrahimi   static bool (DFA::*Searches[])(SearchParams*) = {
1591*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchFFF,
1592*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchFFT,
1593*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchFTF,
1594*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchFTT,
1595*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchTFF,
1596*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchTFT,
1597*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchTTF,
1598*ccdc9c3eSSadaf Ebrahimi     &DFA::SearchTTT,
1599*ccdc9c3eSSadaf Ebrahimi   };
1600*ccdc9c3eSSadaf Ebrahimi 
1601*ccdc9c3eSSadaf Ebrahimi   bool have_first_byte = params->first_byte >= 0;
1602*ccdc9c3eSSadaf Ebrahimi   int index = 4 * have_first_byte +
1603*ccdc9c3eSSadaf Ebrahimi               2 * params->want_earliest_match +
1604*ccdc9c3eSSadaf Ebrahimi               1 * params->run_forward;
1605*ccdc9c3eSSadaf Ebrahimi   return (this->*Searches[index])(params);
1606*ccdc9c3eSSadaf Ebrahimi }
1607*ccdc9c3eSSadaf Ebrahimi 
1608*ccdc9c3eSSadaf Ebrahimi 
1609*ccdc9c3eSSadaf Ebrahimi // The discussion of DFA execution above ignored the question of how
1610*ccdc9c3eSSadaf Ebrahimi // to determine the initial state for the search loop.  There are two
1611*ccdc9c3eSSadaf Ebrahimi // factors that influence the choice of start state.
1612*ccdc9c3eSSadaf Ebrahimi //
1613*ccdc9c3eSSadaf Ebrahimi // The first factor is whether the search is anchored or not.
1614*ccdc9c3eSSadaf Ebrahimi // The regexp program (Prog*) itself has
1615*ccdc9c3eSSadaf Ebrahimi // two different entry points: one for anchored searches and one for
1616*ccdc9c3eSSadaf Ebrahimi // unanchored searches.  (The unanchored version starts with a leading ".*?"
1617*ccdc9c3eSSadaf Ebrahimi // and then jumps to the anchored one.)
1618*ccdc9c3eSSadaf Ebrahimi //
1619*ccdc9c3eSSadaf Ebrahimi // The second factor is where text appears in the larger context, which
1620*ccdc9c3eSSadaf Ebrahimi // determines which empty-string operators can be matched at the beginning
1621*ccdc9c3eSSadaf Ebrahimi // of execution.  If text is at the very beginning of context, \A and ^ match.
1622*ccdc9c3eSSadaf Ebrahimi // Otherwise if text is at the beginning of a line, then ^ matches.
1623*ccdc9c3eSSadaf Ebrahimi // Otherwise it matters whether the character before text is a word character
1624*ccdc9c3eSSadaf Ebrahimi // or a non-word character.
1625*ccdc9c3eSSadaf Ebrahimi //
1626*ccdc9c3eSSadaf Ebrahimi // The two cases (unanchored vs not) and four cases (empty-string flags)
1627*ccdc9c3eSSadaf Ebrahimi // combine to make the eight cases recorded in the DFA's begin_text_[2],
1628*ccdc9c3eSSadaf Ebrahimi // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1629*ccdc9c3eSSadaf Ebrahimi // StartInfos.  The start state for each is filled in the first time it
1630*ccdc9c3eSSadaf Ebrahimi // is used for an actual search.
1631*ccdc9c3eSSadaf Ebrahimi 
1632*ccdc9c3eSSadaf Ebrahimi // Examines text, context, and anchored to determine the right start
1633*ccdc9c3eSSadaf Ebrahimi // state for the DFA search loop.  Fills in params and returns true on success.
1634*ccdc9c3eSSadaf Ebrahimi // Returns false on failure.
AnalyzeSearch(SearchParams * params)1635*ccdc9c3eSSadaf Ebrahimi bool DFA::AnalyzeSearch(SearchParams* params) {
1636*ccdc9c3eSSadaf Ebrahimi   const StringPiece& text = params->text;
1637*ccdc9c3eSSadaf Ebrahimi   const StringPiece& context = params->context;
1638*ccdc9c3eSSadaf Ebrahimi 
1639*ccdc9c3eSSadaf Ebrahimi   // Sanity check: make sure that text lies within context.
1640*ccdc9c3eSSadaf Ebrahimi   if (text.begin() < context.begin() || text.end() > context.end()) {
1641*ccdc9c3eSSadaf Ebrahimi     LOG(DFATAL) << "context does not contain text";
1642*ccdc9c3eSSadaf Ebrahimi     params->start = DeadState;
1643*ccdc9c3eSSadaf Ebrahimi     return true;
1644*ccdc9c3eSSadaf Ebrahimi   }
1645*ccdc9c3eSSadaf Ebrahimi 
1646*ccdc9c3eSSadaf Ebrahimi   // Determine correct search type.
1647*ccdc9c3eSSadaf Ebrahimi   int start;
1648*ccdc9c3eSSadaf Ebrahimi   uint32_t flags;
1649*ccdc9c3eSSadaf Ebrahimi   if (params->run_forward) {
1650*ccdc9c3eSSadaf Ebrahimi     if (text.begin() == context.begin()) {
1651*ccdc9c3eSSadaf Ebrahimi       start = kStartBeginText;
1652*ccdc9c3eSSadaf Ebrahimi       flags = kEmptyBeginText|kEmptyBeginLine;
1653*ccdc9c3eSSadaf Ebrahimi     } else if (text.begin()[-1] == '\n') {
1654*ccdc9c3eSSadaf Ebrahimi       start = kStartBeginLine;
1655*ccdc9c3eSSadaf Ebrahimi       flags = kEmptyBeginLine;
1656*ccdc9c3eSSadaf Ebrahimi     } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1657*ccdc9c3eSSadaf Ebrahimi       start = kStartAfterWordChar;
1658*ccdc9c3eSSadaf Ebrahimi       flags = kFlagLastWord;
1659*ccdc9c3eSSadaf Ebrahimi     } else {
1660*ccdc9c3eSSadaf Ebrahimi       start = kStartAfterNonWordChar;
1661*ccdc9c3eSSadaf Ebrahimi       flags = 0;
1662*ccdc9c3eSSadaf Ebrahimi     }
1663*ccdc9c3eSSadaf Ebrahimi   } else {
1664*ccdc9c3eSSadaf Ebrahimi     if (text.end() == context.end()) {
1665*ccdc9c3eSSadaf Ebrahimi       start = kStartBeginText;
1666*ccdc9c3eSSadaf Ebrahimi       flags = kEmptyBeginText|kEmptyBeginLine;
1667*ccdc9c3eSSadaf Ebrahimi     } else if (text.end()[0] == '\n') {
1668*ccdc9c3eSSadaf Ebrahimi       start = kStartBeginLine;
1669*ccdc9c3eSSadaf Ebrahimi       flags = kEmptyBeginLine;
1670*ccdc9c3eSSadaf Ebrahimi     } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1671*ccdc9c3eSSadaf Ebrahimi       start = kStartAfterWordChar;
1672*ccdc9c3eSSadaf Ebrahimi       flags = kFlagLastWord;
1673*ccdc9c3eSSadaf Ebrahimi     } else {
1674*ccdc9c3eSSadaf Ebrahimi       start = kStartAfterNonWordChar;
1675*ccdc9c3eSSadaf Ebrahimi       flags = 0;
1676*ccdc9c3eSSadaf Ebrahimi     }
1677*ccdc9c3eSSadaf Ebrahimi   }
1678*ccdc9c3eSSadaf Ebrahimi   if (params->anchored)
1679*ccdc9c3eSSadaf Ebrahimi     start |= kStartAnchored;
1680*ccdc9c3eSSadaf Ebrahimi   StartInfo* info = &start_[start];
1681*ccdc9c3eSSadaf Ebrahimi 
1682*ccdc9c3eSSadaf Ebrahimi   // Try once without cache_lock for writing.
1683*ccdc9c3eSSadaf Ebrahimi   // Try again after resetting the cache
1684*ccdc9c3eSSadaf Ebrahimi   // (ResetCache will relock cache_lock for writing).
1685*ccdc9c3eSSadaf Ebrahimi   if (!AnalyzeSearchHelper(params, info, flags)) {
1686*ccdc9c3eSSadaf Ebrahimi     ResetCache(params->cache_lock);
1687*ccdc9c3eSSadaf Ebrahimi     if (!AnalyzeSearchHelper(params, info, flags)) {
1688*ccdc9c3eSSadaf Ebrahimi       LOG(DFATAL) << "Failed to analyze start state.";
1689*ccdc9c3eSSadaf Ebrahimi       params->failed = true;
1690*ccdc9c3eSSadaf Ebrahimi       return false;
1691*ccdc9c3eSSadaf Ebrahimi     }
1692*ccdc9c3eSSadaf Ebrahimi   }
1693*ccdc9c3eSSadaf Ebrahimi 
1694*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
1695*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s first_byte=%d\n",
1696*ccdc9c3eSSadaf Ebrahimi             params->anchored, params->run_forward, flags,
1697*ccdc9c3eSSadaf Ebrahimi             DumpState(info->start).c_str(), info->first_byte.load());
1698*ccdc9c3eSSadaf Ebrahimi 
1699*ccdc9c3eSSadaf Ebrahimi   params->start = info->start;
1700*ccdc9c3eSSadaf Ebrahimi   params->first_byte = info->first_byte.load(std::memory_order_acquire);
1701*ccdc9c3eSSadaf Ebrahimi 
1702*ccdc9c3eSSadaf Ebrahimi   return true;
1703*ccdc9c3eSSadaf Ebrahimi }
1704*ccdc9c3eSSadaf Ebrahimi 
1705*ccdc9c3eSSadaf Ebrahimi // Fills in info if needed.  Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1706*ccdc9c3eSSadaf Ebrahimi bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1707*ccdc9c3eSSadaf Ebrahimi                               uint32_t flags) {
1708*ccdc9c3eSSadaf Ebrahimi   // Quick check.
1709*ccdc9c3eSSadaf Ebrahimi   int fb = info->first_byte.load(std::memory_order_acquire);
1710*ccdc9c3eSSadaf Ebrahimi   if (fb != kFbUnknown)
1711*ccdc9c3eSSadaf Ebrahimi     return true;
1712*ccdc9c3eSSadaf Ebrahimi 
1713*ccdc9c3eSSadaf Ebrahimi   MutexLock l(&mutex_);
1714*ccdc9c3eSSadaf Ebrahimi   fb = info->first_byte.load(std::memory_order_relaxed);
1715*ccdc9c3eSSadaf Ebrahimi   if (fb != kFbUnknown)
1716*ccdc9c3eSSadaf Ebrahimi     return true;
1717*ccdc9c3eSSadaf Ebrahimi 
1718*ccdc9c3eSSadaf Ebrahimi   q0_->clear();
1719*ccdc9c3eSSadaf Ebrahimi   AddToQueue(q0_,
1720*ccdc9c3eSSadaf Ebrahimi              params->anchored ? prog_->start() : prog_->start_unanchored(),
1721*ccdc9c3eSSadaf Ebrahimi              flags);
1722*ccdc9c3eSSadaf Ebrahimi   info->start = WorkqToCachedState(q0_, NULL, flags);
1723*ccdc9c3eSSadaf Ebrahimi   if (info->start == NULL)
1724*ccdc9c3eSSadaf Ebrahimi     return false;
1725*ccdc9c3eSSadaf Ebrahimi 
1726*ccdc9c3eSSadaf Ebrahimi   if (info->start == DeadState) {
1727*ccdc9c3eSSadaf Ebrahimi     // Synchronize with "quick check" above.
1728*ccdc9c3eSSadaf Ebrahimi     info->first_byte.store(kFbNone, std::memory_order_release);
1729*ccdc9c3eSSadaf Ebrahimi     return true;
1730*ccdc9c3eSSadaf Ebrahimi   }
1731*ccdc9c3eSSadaf Ebrahimi 
1732*ccdc9c3eSSadaf Ebrahimi   if (info->start == FullMatchState) {
1733*ccdc9c3eSSadaf Ebrahimi     // Synchronize with "quick check" above.
1734*ccdc9c3eSSadaf Ebrahimi     info->first_byte.store(kFbNone, std::memory_order_release);  // will be ignored
1735*ccdc9c3eSSadaf Ebrahimi     return true;
1736*ccdc9c3eSSadaf Ebrahimi   }
1737*ccdc9c3eSSadaf Ebrahimi 
1738*ccdc9c3eSSadaf Ebrahimi   // Even if we have a first_byte, we cannot use it when anchored and,
1739*ccdc9c3eSSadaf Ebrahimi   // less obviously, we cannot use it when we are going to need flags.
1740*ccdc9c3eSSadaf Ebrahimi   // This trick works only when there is a single byte that leads to a
1741*ccdc9c3eSSadaf Ebrahimi   // different state!
1742*ccdc9c3eSSadaf Ebrahimi   int first_byte = prog_->first_byte();
1743*ccdc9c3eSSadaf Ebrahimi   if (first_byte == -1 ||
1744*ccdc9c3eSSadaf Ebrahimi       params->anchored ||
1745*ccdc9c3eSSadaf Ebrahimi       info->start->flag_ >> kFlagNeedShift != 0)
1746*ccdc9c3eSSadaf Ebrahimi     first_byte = kFbNone;
1747*ccdc9c3eSSadaf Ebrahimi 
1748*ccdc9c3eSSadaf Ebrahimi   // Synchronize with "quick check" above.
1749*ccdc9c3eSSadaf Ebrahimi   info->first_byte.store(first_byte, std::memory_order_release);
1750*ccdc9c3eSSadaf Ebrahimi   return true;
1751*ccdc9c3eSSadaf Ebrahimi }
1752*ccdc9c3eSSadaf Ebrahimi 
1753*ccdc9c3eSSadaf Ebrahimi // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1754*ccdc9c3eSSadaf Ebrahimi bool DFA::Search(const StringPiece& text,
1755*ccdc9c3eSSadaf Ebrahimi                  const StringPiece& context,
1756*ccdc9c3eSSadaf Ebrahimi                  bool anchored,
1757*ccdc9c3eSSadaf Ebrahimi                  bool want_earliest_match,
1758*ccdc9c3eSSadaf Ebrahimi                  bool run_forward,
1759*ccdc9c3eSSadaf Ebrahimi                  bool* failed,
1760*ccdc9c3eSSadaf Ebrahimi                  const char** epp,
1761*ccdc9c3eSSadaf Ebrahimi                  SparseSet* matches) {
1762*ccdc9c3eSSadaf Ebrahimi   *epp = NULL;
1763*ccdc9c3eSSadaf Ebrahimi   if (!ok()) {
1764*ccdc9c3eSSadaf Ebrahimi     *failed = true;
1765*ccdc9c3eSSadaf Ebrahimi     return false;
1766*ccdc9c3eSSadaf Ebrahimi   }
1767*ccdc9c3eSSadaf Ebrahimi   *failed = false;
1768*ccdc9c3eSSadaf Ebrahimi 
1769*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug) {
1770*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1771*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1772*ccdc9c3eSSadaf Ebrahimi             string(text).c_str(), anchored, want_earliest_match,
1773*ccdc9c3eSSadaf Ebrahimi             run_forward, kind_);
1774*ccdc9c3eSSadaf Ebrahimi   }
1775*ccdc9c3eSSadaf Ebrahimi 
1776*ccdc9c3eSSadaf Ebrahimi   RWLocker l(&cache_mutex_);
1777*ccdc9c3eSSadaf Ebrahimi   SearchParams params(text, context, &l);
1778*ccdc9c3eSSadaf Ebrahimi   params.anchored = anchored;
1779*ccdc9c3eSSadaf Ebrahimi   params.want_earliest_match = want_earliest_match;
1780*ccdc9c3eSSadaf Ebrahimi   params.run_forward = run_forward;
1781*ccdc9c3eSSadaf Ebrahimi   params.matches = matches;
1782*ccdc9c3eSSadaf Ebrahimi 
1783*ccdc9c3eSSadaf Ebrahimi   if (!AnalyzeSearch(&params)) {
1784*ccdc9c3eSSadaf Ebrahimi     *failed = true;
1785*ccdc9c3eSSadaf Ebrahimi     return false;
1786*ccdc9c3eSSadaf Ebrahimi   }
1787*ccdc9c3eSSadaf Ebrahimi   if (params.start == DeadState)
1788*ccdc9c3eSSadaf Ebrahimi     return false;
1789*ccdc9c3eSSadaf Ebrahimi   if (params.start == FullMatchState) {
1790*ccdc9c3eSSadaf Ebrahimi     if (run_forward == want_earliest_match)
1791*ccdc9c3eSSadaf Ebrahimi       *epp = text.begin();
1792*ccdc9c3eSSadaf Ebrahimi     else
1793*ccdc9c3eSSadaf Ebrahimi       *epp = text.end();
1794*ccdc9c3eSSadaf Ebrahimi     return true;
1795*ccdc9c3eSSadaf Ebrahimi   }
1796*ccdc9c3eSSadaf Ebrahimi   if (ExtraDebug)
1797*ccdc9c3eSSadaf Ebrahimi     fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1798*ccdc9c3eSSadaf Ebrahimi   bool ret = FastSearchLoop(&params);
1799*ccdc9c3eSSadaf Ebrahimi   if (params.failed) {
1800*ccdc9c3eSSadaf Ebrahimi     *failed = true;
1801*ccdc9c3eSSadaf Ebrahimi     return false;
1802*ccdc9c3eSSadaf Ebrahimi   }
1803*ccdc9c3eSSadaf Ebrahimi   *epp = params.ep;
1804*ccdc9c3eSSadaf Ebrahimi   return ret;
1805*ccdc9c3eSSadaf Ebrahimi }
1806*ccdc9c3eSSadaf Ebrahimi 
GetDFA(MatchKind kind)1807*ccdc9c3eSSadaf Ebrahimi DFA* Prog::GetDFA(MatchKind kind) {
1808*ccdc9c3eSSadaf Ebrahimi   // For a forward DFA, half the memory goes to each DFA.
1809*ccdc9c3eSSadaf Ebrahimi   // However, if it is a "many match" DFA, then there is
1810*ccdc9c3eSSadaf Ebrahimi   // no counterpart with which the memory must be shared.
1811*ccdc9c3eSSadaf Ebrahimi   //
1812*ccdc9c3eSSadaf Ebrahimi   // For a reverse DFA, all the memory goes to the
1813*ccdc9c3eSSadaf Ebrahimi   // "longest match" DFA, because RE2 never does reverse
1814*ccdc9c3eSSadaf Ebrahimi   // "first match" searches.
1815*ccdc9c3eSSadaf Ebrahimi   if (kind == kFirstMatch) {
1816*ccdc9c3eSSadaf Ebrahimi     std::call_once(dfa_first_once_, [](Prog* prog) {
1817*ccdc9c3eSSadaf Ebrahimi       prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1818*ccdc9c3eSSadaf Ebrahimi     }, this);
1819*ccdc9c3eSSadaf Ebrahimi     return dfa_first_;
1820*ccdc9c3eSSadaf Ebrahimi   } else if (kind == kManyMatch) {
1821*ccdc9c3eSSadaf Ebrahimi     std::call_once(dfa_first_once_, [](Prog* prog) {
1822*ccdc9c3eSSadaf Ebrahimi       prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1823*ccdc9c3eSSadaf Ebrahimi     }, this);
1824*ccdc9c3eSSadaf Ebrahimi     return dfa_first_;
1825*ccdc9c3eSSadaf Ebrahimi   } else {
1826*ccdc9c3eSSadaf Ebrahimi     std::call_once(dfa_longest_once_, [](Prog* prog) {
1827*ccdc9c3eSSadaf Ebrahimi       if (!prog->reversed_)
1828*ccdc9c3eSSadaf Ebrahimi         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1829*ccdc9c3eSSadaf Ebrahimi       else
1830*ccdc9c3eSSadaf Ebrahimi         prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1831*ccdc9c3eSSadaf Ebrahimi     }, this);
1832*ccdc9c3eSSadaf Ebrahimi     return dfa_longest_;
1833*ccdc9c3eSSadaf Ebrahimi   }
1834*ccdc9c3eSSadaf Ebrahimi }
1835*ccdc9c3eSSadaf Ebrahimi 
DeleteDFA(DFA * dfa)1836*ccdc9c3eSSadaf Ebrahimi void Prog::DeleteDFA(DFA* dfa) {
1837*ccdc9c3eSSadaf Ebrahimi   delete dfa;
1838*ccdc9c3eSSadaf Ebrahimi }
1839*ccdc9c3eSSadaf Ebrahimi 
1840*ccdc9c3eSSadaf Ebrahimi // Executes the regexp program to search in text,
1841*ccdc9c3eSSadaf Ebrahimi // which itself is inside the larger context.  (As a convenience,
1842*ccdc9c3eSSadaf Ebrahimi // passing a NULL context is equivalent to passing text.)
1843*ccdc9c3eSSadaf Ebrahimi // Returns true if a match is found, false if not.
1844*ccdc9c3eSSadaf Ebrahimi // If a match is found, fills in match0->end() to point at the end of the match
1845*ccdc9c3eSSadaf Ebrahimi // and sets match0->begin() to text.begin(), since the DFA can't track
1846*ccdc9c3eSSadaf Ebrahimi // where the match actually began.
1847*ccdc9c3eSSadaf Ebrahimi //
1848*ccdc9c3eSSadaf Ebrahimi // This is the only external interface (class DFA only exists in this file).
1849*ccdc9c3eSSadaf Ebrahimi //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,SparseSet * matches)1850*ccdc9c3eSSadaf Ebrahimi bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1851*ccdc9c3eSSadaf Ebrahimi                      Anchor anchor, MatchKind kind, StringPiece* match0,
1852*ccdc9c3eSSadaf Ebrahimi                      bool* failed, SparseSet* matches) {
1853*ccdc9c3eSSadaf Ebrahimi   *failed = false;
1854*ccdc9c3eSSadaf Ebrahimi 
1855*ccdc9c3eSSadaf Ebrahimi   StringPiece context = const_context;
1856*ccdc9c3eSSadaf Ebrahimi   if (context.begin() == NULL)
1857*ccdc9c3eSSadaf Ebrahimi     context = text;
1858*ccdc9c3eSSadaf Ebrahimi   bool carat = anchor_start();
1859*ccdc9c3eSSadaf Ebrahimi   bool dollar = anchor_end();
1860*ccdc9c3eSSadaf Ebrahimi   if (reversed_) {
1861*ccdc9c3eSSadaf Ebrahimi     using std::swap;
1862*ccdc9c3eSSadaf Ebrahimi     swap(carat, dollar);
1863*ccdc9c3eSSadaf Ebrahimi   }
1864*ccdc9c3eSSadaf Ebrahimi   if (carat && context.begin() != text.begin())
1865*ccdc9c3eSSadaf Ebrahimi     return false;
1866*ccdc9c3eSSadaf Ebrahimi   if (dollar && context.end() != text.end())
1867*ccdc9c3eSSadaf Ebrahimi     return false;
1868*ccdc9c3eSSadaf Ebrahimi 
1869*ccdc9c3eSSadaf Ebrahimi   // Handle full match by running an anchored longest match
1870*ccdc9c3eSSadaf Ebrahimi   // and then checking if it covers all of text.
1871*ccdc9c3eSSadaf Ebrahimi   bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1872*ccdc9c3eSSadaf Ebrahimi   bool endmatch = false;
1873*ccdc9c3eSSadaf Ebrahimi   if (kind == kManyMatch) {
1874*ccdc9c3eSSadaf Ebrahimi     // This is split out in order to avoid clobbering kind.
1875*ccdc9c3eSSadaf Ebrahimi   } else if (kind == kFullMatch || anchor_end()) {
1876*ccdc9c3eSSadaf Ebrahimi     endmatch = true;
1877*ccdc9c3eSSadaf Ebrahimi     kind = kLongestMatch;
1878*ccdc9c3eSSadaf Ebrahimi   }
1879*ccdc9c3eSSadaf Ebrahimi 
1880*ccdc9c3eSSadaf Ebrahimi   // If the caller doesn't care where the match is (just whether one exists),
1881*ccdc9c3eSSadaf Ebrahimi   // then we can stop at the very first match we find, the so-called
1882*ccdc9c3eSSadaf Ebrahimi   // "earliest match".
1883*ccdc9c3eSSadaf Ebrahimi   bool want_earliest_match = false;
1884*ccdc9c3eSSadaf Ebrahimi   if (kind == kManyMatch) {
1885*ccdc9c3eSSadaf Ebrahimi     // This is split out in order to avoid clobbering kind.
1886*ccdc9c3eSSadaf Ebrahimi     if (matches == NULL) {
1887*ccdc9c3eSSadaf Ebrahimi       want_earliest_match = true;
1888*ccdc9c3eSSadaf Ebrahimi     }
1889*ccdc9c3eSSadaf Ebrahimi   } else if (match0 == NULL && !endmatch) {
1890*ccdc9c3eSSadaf Ebrahimi     want_earliest_match = true;
1891*ccdc9c3eSSadaf Ebrahimi     kind = kLongestMatch;
1892*ccdc9c3eSSadaf Ebrahimi   }
1893*ccdc9c3eSSadaf Ebrahimi 
1894*ccdc9c3eSSadaf Ebrahimi   DFA* dfa = GetDFA(kind);
1895*ccdc9c3eSSadaf Ebrahimi   const char* ep;
1896*ccdc9c3eSSadaf Ebrahimi   bool matched = dfa->Search(text, context, anchored,
1897*ccdc9c3eSSadaf Ebrahimi                              want_earliest_match, !reversed_,
1898*ccdc9c3eSSadaf Ebrahimi                              failed, &ep, matches);
1899*ccdc9c3eSSadaf Ebrahimi   if (*failed)
1900*ccdc9c3eSSadaf Ebrahimi     return false;
1901*ccdc9c3eSSadaf Ebrahimi   if (!matched)
1902*ccdc9c3eSSadaf Ebrahimi     return false;
1903*ccdc9c3eSSadaf Ebrahimi   if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
1904*ccdc9c3eSSadaf Ebrahimi     return false;
1905*ccdc9c3eSSadaf Ebrahimi 
1906*ccdc9c3eSSadaf Ebrahimi   // If caller cares, record the boundary of the match.
1907*ccdc9c3eSSadaf Ebrahimi   // We only know where it ends, so use the boundary of text
1908*ccdc9c3eSSadaf Ebrahimi   // as the beginning.
1909*ccdc9c3eSSadaf Ebrahimi   if (match0) {
1910*ccdc9c3eSSadaf Ebrahimi     if (reversed_)
1911*ccdc9c3eSSadaf Ebrahimi       *match0 = StringPiece(ep, static_cast<size_t>(text.end() - ep));
1912*ccdc9c3eSSadaf Ebrahimi     else
1913*ccdc9c3eSSadaf Ebrahimi       *match0 =
1914*ccdc9c3eSSadaf Ebrahimi           StringPiece(text.begin(), static_cast<size_t>(ep - text.begin()));
1915*ccdc9c3eSSadaf Ebrahimi   }
1916*ccdc9c3eSSadaf Ebrahimi   return true;
1917*ccdc9c3eSSadaf Ebrahimi }
1918*ccdc9c3eSSadaf Ebrahimi 
1919*ccdc9c3eSSadaf Ebrahimi // Build out all states in DFA.  Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1920*ccdc9c3eSSadaf Ebrahimi int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1921*ccdc9c3eSSadaf Ebrahimi   if (!ok())
1922*ccdc9c3eSSadaf Ebrahimi     return 0;
1923*ccdc9c3eSSadaf Ebrahimi 
1924*ccdc9c3eSSadaf Ebrahimi   // Pick out start state for unanchored search
1925*ccdc9c3eSSadaf Ebrahimi   // at beginning of text.
1926*ccdc9c3eSSadaf Ebrahimi   RWLocker l(&cache_mutex_);
1927*ccdc9c3eSSadaf Ebrahimi   SearchParams params(StringPiece(), StringPiece(), &l);
1928*ccdc9c3eSSadaf Ebrahimi   params.anchored = false;
1929*ccdc9c3eSSadaf Ebrahimi   if (!AnalyzeSearch(&params) ||
1930*ccdc9c3eSSadaf Ebrahimi       params.start == NULL ||
1931*ccdc9c3eSSadaf Ebrahimi       params.start == DeadState)
1932*ccdc9c3eSSadaf Ebrahimi     return 0;
1933*ccdc9c3eSSadaf Ebrahimi 
1934*ccdc9c3eSSadaf Ebrahimi   // Add start state to work queue.
1935*ccdc9c3eSSadaf Ebrahimi   // Note that any State* that we handle here must point into the cache,
1936*ccdc9c3eSSadaf Ebrahimi   // so we can simply depend on pointer-as-a-number hashing and equality.
1937*ccdc9c3eSSadaf Ebrahimi   std::unordered_map<State*, int> m;
1938*ccdc9c3eSSadaf Ebrahimi   std::deque<State*> q;
1939*ccdc9c3eSSadaf Ebrahimi   m.emplace(params.start, static_cast<int>(m.size()));
1940*ccdc9c3eSSadaf Ebrahimi   q.push_back(params.start);
1941*ccdc9c3eSSadaf Ebrahimi 
1942*ccdc9c3eSSadaf Ebrahimi   // Compute the input bytes needed to cover all of the next pointers.
1943*ccdc9c3eSSadaf Ebrahimi   int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
1944*ccdc9c3eSSadaf Ebrahimi   std::vector<int> input(nnext);
1945*ccdc9c3eSSadaf Ebrahimi   for (int c = 0; c < 256; c++) {
1946*ccdc9c3eSSadaf Ebrahimi     int b = prog_->bytemap()[c];
1947*ccdc9c3eSSadaf Ebrahimi     while (c < 256-1 && prog_->bytemap()[c+1] == b)
1948*ccdc9c3eSSadaf Ebrahimi       c++;
1949*ccdc9c3eSSadaf Ebrahimi     input[b] = c;
1950*ccdc9c3eSSadaf Ebrahimi   }
1951*ccdc9c3eSSadaf Ebrahimi   input[prog_->bytemap_range()] = kByteEndText;
1952*ccdc9c3eSSadaf Ebrahimi 
1953*ccdc9c3eSSadaf Ebrahimi   // Scratch space for the output.
1954*ccdc9c3eSSadaf Ebrahimi   std::vector<int> output(nnext);
1955*ccdc9c3eSSadaf Ebrahimi 
1956*ccdc9c3eSSadaf Ebrahimi   // Flood to expand every state.
1957*ccdc9c3eSSadaf Ebrahimi   bool oom = false;
1958*ccdc9c3eSSadaf Ebrahimi   while (!q.empty()) {
1959*ccdc9c3eSSadaf Ebrahimi     State* s = q.front();
1960*ccdc9c3eSSadaf Ebrahimi     q.pop_front();
1961*ccdc9c3eSSadaf Ebrahimi     for (int c : input) {
1962*ccdc9c3eSSadaf Ebrahimi       State* ns = RunStateOnByteUnlocked(s, c);
1963*ccdc9c3eSSadaf Ebrahimi       if (ns == NULL) {
1964*ccdc9c3eSSadaf Ebrahimi         oom = true;
1965*ccdc9c3eSSadaf Ebrahimi         break;
1966*ccdc9c3eSSadaf Ebrahimi       }
1967*ccdc9c3eSSadaf Ebrahimi       if (ns == DeadState) {
1968*ccdc9c3eSSadaf Ebrahimi         output[ByteMap(c)] = -1;
1969*ccdc9c3eSSadaf Ebrahimi         continue;
1970*ccdc9c3eSSadaf Ebrahimi       }
1971*ccdc9c3eSSadaf Ebrahimi       if (m.find(ns) == m.end()) {
1972*ccdc9c3eSSadaf Ebrahimi         m.emplace(ns, static_cast<int>(m.size()));
1973*ccdc9c3eSSadaf Ebrahimi         q.push_back(ns);
1974*ccdc9c3eSSadaf Ebrahimi       }
1975*ccdc9c3eSSadaf Ebrahimi       output[ByteMap(c)] = m[ns];
1976*ccdc9c3eSSadaf Ebrahimi     }
1977*ccdc9c3eSSadaf Ebrahimi     if (cb)
1978*ccdc9c3eSSadaf Ebrahimi       cb(oom ? NULL : output.data(),
1979*ccdc9c3eSSadaf Ebrahimi          s == FullMatchState || s->IsMatch());
1980*ccdc9c3eSSadaf Ebrahimi     if (oom)
1981*ccdc9c3eSSadaf Ebrahimi       break;
1982*ccdc9c3eSSadaf Ebrahimi   }
1983*ccdc9c3eSSadaf Ebrahimi 
1984*ccdc9c3eSSadaf Ebrahimi   return static_cast<int>(m.size());
1985*ccdc9c3eSSadaf Ebrahimi }
1986*ccdc9c3eSSadaf Ebrahimi 
1987*ccdc9c3eSSadaf Ebrahimi // Build out all states in DFA for kind.  Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)1988*ccdc9c3eSSadaf Ebrahimi int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
1989*ccdc9c3eSSadaf Ebrahimi   return GetDFA(kind)->BuildAllStates(cb);
1990*ccdc9c3eSSadaf Ebrahimi }
1991*ccdc9c3eSSadaf Ebrahimi 
TEST_dfa_should_bail_when_slow(bool b)1992*ccdc9c3eSSadaf Ebrahimi void Prog::TEST_dfa_should_bail_when_slow(bool b) {
1993*ccdc9c3eSSadaf Ebrahimi   dfa_should_bail_when_slow = b;
1994*ccdc9c3eSSadaf Ebrahimi }
1995*ccdc9c3eSSadaf Ebrahimi 
1996*ccdc9c3eSSadaf Ebrahimi // Computes min and max for matching string.
1997*ccdc9c3eSSadaf Ebrahimi // Won't return strings bigger than maxlen.
PossibleMatchRange(string * min,string * max,int maxlen)1998*ccdc9c3eSSadaf Ebrahimi bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
1999*ccdc9c3eSSadaf Ebrahimi   if (!ok())
2000*ccdc9c3eSSadaf Ebrahimi     return false;
2001*ccdc9c3eSSadaf Ebrahimi 
2002*ccdc9c3eSSadaf Ebrahimi   // NOTE: if future users of PossibleMatchRange want more precision when
2003*ccdc9c3eSSadaf Ebrahimi   // presented with infinitely repeated elements, consider making this a
2004*ccdc9c3eSSadaf Ebrahimi   // parameter to PossibleMatchRange.
2005*ccdc9c3eSSadaf Ebrahimi   static int kMaxEltRepetitions = 0;
2006*ccdc9c3eSSadaf Ebrahimi 
2007*ccdc9c3eSSadaf Ebrahimi   // Keep track of the number of times we've visited states previously. We only
2008*ccdc9c3eSSadaf Ebrahimi   // revisit a given state if it's part of a repeated group, so if the value
2009*ccdc9c3eSSadaf Ebrahimi   // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
2010*ccdc9c3eSSadaf Ebrahimi   // |*max| to |PrefixSuccessor(*max)|.
2011*ccdc9c3eSSadaf Ebrahimi   //
2012*ccdc9c3eSSadaf Ebrahimi   // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2013*ccdc9c3eSSadaf Ebrahimi   // tradition, implicitly insert a '0' value at first use. We take advantage
2014*ccdc9c3eSSadaf Ebrahimi   // of that property below.
2015*ccdc9c3eSSadaf Ebrahimi   std::unordered_map<State*, int> previously_visited_states;
2016*ccdc9c3eSSadaf Ebrahimi 
2017*ccdc9c3eSSadaf Ebrahimi   // Pick out start state for anchored search at beginning of text.
2018*ccdc9c3eSSadaf Ebrahimi   RWLocker l(&cache_mutex_);
2019*ccdc9c3eSSadaf Ebrahimi   SearchParams params(StringPiece(), StringPiece(), &l);
2020*ccdc9c3eSSadaf Ebrahimi   params.anchored = true;
2021*ccdc9c3eSSadaf Ebrahimi   if (!AnalyzeSearch(&params))
2022*ccdc9c3eSSadaf Ebrahimi     return false;
2023*ccdc9c3eSSadaf Ebrahimi   if (params.start == DeadState) {  // No matching strings
2024*ccdc9c3eSSadaf Ebrahimi     *min = "";
2025*ccdc9c3eSSadaf Ebrahimi     *max = "";
2026*ccdc9c3eSSadaf Ebrahimi     return true;
2027*ccdc9c3eSSadaf Ebrahimi   }
2028*ccdc9c3eSSadaf Ebrahimi   if (params.start == FullMatchState)  // Every string matches: no max
2029*ccdc9c3eSSadaf Ebrahimi     return false;
2030*ccdc9c3eSSadaf Ebrahimi 
2031*ccdc9c3eSSadaf Ebrahimi   // The DFA is essentially a big graph rooted at params.start,
2032*ccdc9c3eSSadaf Ebrahimi   // and paths in the graph correspond to accepted strings.
2033*ccdc9c3eSSadaf Ebrahimi   // Each node in the graph has potentially 256+1 arrows
2034*ccdc9c3eSSadaf Ebrahimi   // coming out, one for each byte plus the magic end of
2035*ccdc9c3eSSadaf Ebrahimi   // text character kByteEndText.
2036*ccdc9c3eSSadaf Ebrahimi 
2037*ccdc9c3eSSadaf Ebrahimi   // To find the smallest possible prefix of an accepted
2038*ccdc9c3eSSadaf Ebrahimi   // string, we just walk the graph preferring to follow
2039*ccdc9c3eSSadaf Ebrahimi   // arrows with the lowest bytes possible.  To find the
2040*ccdc9c3eSSadaf Ebrahimi   // largest possible prefix, we follow the largest bytes
2041*ccdc9c3eSSadaf Ebrahimi   // possible.
2042*ccdc9c3eSSadaf Ebrahimi 
2043*ccdc9c3eSSadaf Ebrahimi   // The test for whether there is an arrow from s on byte j is
2044*ccdc9c3eSSadaf Ebrahimi   //    ns = RunStateOnByteUnlocked(s, j);
2045*ccdc9c3eSSadaf Ebrahimi   //    if (ns == NULL)
2046*ccdc9c3eSSadaf Ebrahimi   //      return false;
2047*ccdc9c3eSSadaf Ebrahimi   //    if (ns != DeadState && ns->ninst > 0)
2048*ccdc9c3eSSadaf Ebrahimi   // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2049*ccdc9c3eSSadaf Ebrahimi   // It returns NULL only if the DFA has run out of memory,
2050*ccdc9c3eSSadaf Ebrahimi   // in which case we can't be sure of anything.
2051*ccdc9c3eSSadaf Ebrahimi   // The second check sees whether there was graph built
2052*ccdc9c3eSSadaf Ebrahimi   // and whether it is interesting graph.  Nodes might have
2053*ccdc9c3eSSadaf Ebrahimi   // ns->ninst == 0 if they exist only to represent the fact
2054*ccdc9c3eSSadaf Ebrahimi   // that a match was found on the previous byte.
2055*ccdc9c3eSSadaf Ebrahimi 
2056*ccdc9c3eSSadaf Ebrahimi   // Build minimum prefix.
2057*ccdc9c3eSSadaf Ebrahimi   State* s = params.start;
2058*ccdc9c3eSSadaf Ebrahimi   min->clear();
2059*ccdc9c3eSSadaf Ebrahimi   MutexLock lock(&mutex_);
2060*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < maxlen; i++) {
2061*ccdc9c3eSSadaf Ebrahimi     if (previously_visited_states[s] > kMaxEltRepetitions)
2062*ccdc9c3eSSadaf Ebrahimi       break;
2063*ccdc9c3eSSadaf Ebrahimi     previously_visited_states[s]++;
2064*ccdc9c3eSSadaf Ebrahimi 
2065*ccdc9c3eSSadaf Ebrahimi     // Stop if min is a match.
2066*ccdc9c3eSSadaf Ebrahimi     State* ns = RunStateOnByte(s, kByteEndText);
2067*ccdc9c3eSSadaf Ebrahimi     if (ns == NULL)  // DFA out of memory
2068*ccdc9c3eSSadaf Ebrahimi       return false;
2069*ccdc9c3eSSadaf Ebrahimi     if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2070*ccdc9c3eSSadaf Ebrahimi       break;
2071*ccdc9c3eSSadaf Ebrahimi 
2072*ccdc9c3eSSadaf Ebrahimi     // Try to extend the string with low bytes.
2073*ccdc9c3eSSadaf Ebrahimi     bool extended = false;
2074*ccdc9c3eSSadaf Ebrahimi     for (int j = 0; j < 256; j++) {
2075*ccdc9c3eSSadaf Ebrahimi       ns = RunStateOnByte(s, j);
2076*ccdc9c3eSSadaf Ebrahimi       if (ns == NULL)  // DFA out of memory
2077*ccdc9c3eSSadaf Ebrahimi         return false;
2078*ccdc9c3eSSadaf Ebrahimi       if (ns == FullMatchState ||
2079*ccdc9c3eSSadaf Ebrahimi           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2080*ccdc9c3eSSadaf Ebrahimi         extended = true;
2081*ccdc9c3eSSadaf Ebrahimi         min->append(1, static_cast<char>(j));
2082*ccdc9c3eSSadaf Ebrahimi         s = ns;
2083*ccdc9c3eSSadaf Ebrahimi         break;
2084*ccdc9c3eSSadaf Ebrahimi       }
2085*ccdc9c3eSSadaf Ebrahimi     }
2086*ccdc9c3eSSadaf Ebrahimi     if (!extended)
2087*ccdc9c3eSSadaf Ebrahimi       break;
2088*ccdc9c3eSSadaf Ebrahimi   }
2089*ccdc9c3eSSadaf Ebrahimi 
2090*ccdc9c3eSSadaf Ebrahimi   // Build maximum prefix.
2091*ccdc9c3eSSadaf Ebrahimi   previously_visited_states.clear();
2092*ccdc9c3eSSadaf Ebrahimi   s = params.start;
2093*ccdc9c3eSSadaf Ebrahimi   max->clear();
2094*ccdc9c3eSSadaf Ebrahimi   for (int i = 0; i < maxlen; i++) {
2095*ccdc9c3eSSadaf Ebrahimi     if (previously_visited_states[s] > kMaxEltRepetitions)
2096*ccdc9c3eSSadaf Ebrahimi       break;
2097*ccdc9c3eSSadaf Ebrahimi     previously_visited_states[s] += 1;
2098*ccdc9c3eSSadaf Ebrahimi 
2099*ccdc9c3eSSadaf Ebrahimi     // Try to extend the string with high bytes.
2100*ccdc9c3eSSadaf Ebrahimi     bool extended = false;
2101*ccdc9c3eSSadaf Ebrahimi     for (int j = 255; j >= 0; j--) {
2102*ccdc9c3eSSadaf Ebrahimi       State* ns = RunStateOnByte(s, j);
2103*ccdc9c3eSSadaf Ebrahimi       if (ns == NULL)
2104*ccdc9c3eSSadaf Ebrahimi         return false;
2105*ccdc9c3eSSadaf Ebrahimi       if (ns == FullMatchState ||
2106*ccdc9c3eSSadaf Ebrahimi           (ns > SpecialStateMax && ns->ninst_ > 0)) {
2107*ccdc9c3eSSadaf Ebrahimi         extended = true;
2108*ccdc9c3eSSadaf Ebrahimi         max->append(1, static_cast<char>(j));
2109*ccdc9c3eSSadaf Ebrahimi         s = ns;
2110*ccdc9c3eSSadaf Ebrahimi         break;
2111*ccdc9c3eSSadaf Ebrahimi       }
2112*ccdc9c3eSSadaf Ebrahimi     }
2113*ccdc9c3eSSadaf Ebrahimi     if (!extended) {
2114*ccdc9c3eSSadaf Ebrahimi       // Done, no need for PrefixSuccessor.
2115*ccdc9c3eSSadaf Ebrahimi       return true;
2116*ccdc9c3eSSadaf Ebrahimi     }
2117*ccdc9c3eSSadaf Ebrahimi   }
2118*ccdc9c3eSSadaf Ebrahimi 
2119*ccdc9c3eSSadaf Ebrahimi   // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2120*ccdc9c3eSSadaf Ebrahimi   PrefixSuccessor(max);
2121*ccdc9c3eSSadaf Ebrahimi 
2122*ccdc9c3eSSadaf Ebrahimi   // If there are no bytes left, we have no way to say "there is no maximum
2123*ccdc9c3eSSadaf Ebrahimi   // string".  We could make the interface more complicated and be able to
2124*ccdc9c3eSSadaf Ebrahimi   // return "there is no maximum but here is a minimum", but that seems like
2125*ccdc9c3eSSadaf Ebrahimi   // overkill -- the most common no-max case is all possible strings, so not
2126*ccdc9c3eSSadaf Ebrahimi   // telling the caller that the empty string is the minimum match isn't a
2127*ccdc9c3eSSadaf Ebrahimi   // great loss.
2128*ccdc9c3eSSadaf Ebrahimi   if (max->empty())
2129*ccdc9c3eSSadaf Ebrahimi     return false;
2130*ccdc9c3eSSadaf Ebrahimi 
2131*ccdc9c3eSSadaf Ebrahimi   return true;
2132*ccdc9c3eSSadaf Ebrahimi }
2133*ccdc9c3eSSadaf Ebrahimi 
2134*ccdc9c3eSSadaf Ebrahimi // PossibleMatchRange for a Prog.
PossibleMatchRange(string * min,string * max,int maxlen)2135*ccdc9c3eSSadaf Ebrahimi bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
2136*ccdc9c3eSSadaf Ebrahimi   // Have to use dfa_longest_ to get all strings for full matches.
2137*ccdc9c3eSSadaf Ebrahimi   // For example, (a|aa) never matches aa in first-match mode.
2138*ccdc9c3eSSadaf Ebrahimi   return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2139*ccdc9c3eSSadaf Ebrahimi }
2140*ccdc9c3eSSadaf Ebrahimi 
2141*ccdc9c3eSSadaf Ebrahimi }  // namespace re2
2142