1*2abb3134SXin Li# Copyright 2014 Google Inc. All rights reserved. 2*2abb3134SXin Li# 3*2abb3134SXin Li# Licensed under the Apache License, Version 2.0 (the "License"); 4*2abb3134SXin Li# you may not use this file except in compliance with the License. 5*2abb3134SXin Li# You may obtain a copy of the License at 6*2abb3134SXin Li# 7*2abb3134SXin Li# http://www.apache.org/licenses/LICENSE-2.0 8*2abb3134SXin Li# 9*2abb3134SXin Li# Unless required by applicable law or agreed to in writing, software 10*2abb3134SXin Li# distributed under the License is distributed on an "AS IS" BASIS, 11*2abb3134SXin Li# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12*2abb3134SXin Li# See the License for the specific language governing permissions and 13*2abb3134SXin Li# limitations under the License. 14*2abb3134SXin Li 15*2abb3134SXin Lilibrary(limSolve) 16*2abb3134SXin Lilibrary(Matrix) 17*2abb3134SXin Li 18*2abb3134SXin Li# The next two functions create a matrix (G) and a vector (H) encoding 19*2abb3134SXin Li# linear inequality constraints that a solution vector (x) must satisfy: 20*2abb3134SXin Li# G * x >= H 21*2abb3134SXin Li 22*2abb3134SXin Li# Currently represent three sets of constraints on the solution vector: 23*2abb3134SXin Li# - all solution coefficients are nonnegative 24*2abb3134SXin Li# - the sum total of all solution coefficients is no more than 1 25*2abb3134SXin Li# - in each of the coordinates of the target vector (estimated Bloom filter) 26*2abb3134SXin Li# we don't overshoot by more than three standard deviations. 27*2abb3134SXin LiMakeG <- function(n, X) { 28*2abb3134SXin Li d <- Diagonal(n) 29*2abb3134SXin Li last <- rep(-1, n) 30*2abb3134SXin Li rbind2(rbind2(d, last), -X) 31*2abb3134SXin Li} 32*2abb3134SXin Li 33*2abb3134SXin LiMakeH <- function(n, Y, stds) { 34*2abb3134SXin Li # set the floor at 0.01 to avoid degenerate cases 35*2abb3134SXin Li YY <- apply(Y + 3 * stds, # in each bin don't overshoot by more than 3 stds 36*2abb3134SXin Li 1:2, 37*2abb3134SXin Li function(x) min(1, max(0.01, x))) # clamp the bound to [0.01,1] 38*2abb3134SXin Li 39*2abb3134SXin Li c(rep(0, n), # non-negativity condition 40*2abb3134SXin Li -1, # coefficients sum up to no more than 1 41*2abb3134SXin Li -as.vector(t(YY)) # t is important! 42*2abb3134SXin Li ) 43*2abb3134SXin Li} 44*2abb3134SXin Li 45*2abb3134SXin LiMakeLseiModel <- function(X, Y, stds) { 46*2abb3134SXin Li m <- dim(X)[1] 47*2abb3134SXin Li n <- dim(X)[2] 48*2abb3134SXin Li 49*2abb3134SXin Li# no slack variables for now 50*2abb3134SXin Li# slack <- Matrix(FALSE, nrow = m, ncol = m, sparse = TRUE) 51*2abb3134SXin Li# colnames(slack) <- 1:m 52*2abb3134SXin Li# diag(slack) <- TRUE 53*2abb3134SXin Li# 54*2abb3134SXin Li# G <- MakeG(n + m) 55*2abb3134SXin Li# H <- MakeH(n + m) 56*2abb3134SXin Li# 57*2abb3134SXin Li# G[n+m+1,n:(n+m)] <- -0.1 58*2abb3134SXin Li# A = cbind2(X, slack) 59*2abb3134SXin Li 60*2abb3134SXin Li w <- as.vector(t(1 / stds)) 61*2abb3134SXin Li w_median <- median(w[!is.infinite(w)]) 62*2abb3134SXin Li if(is.na(w_median)) # all w are infinite 63*2abb3134SXin Li w_median <- 1 64*2abb3134SXin Li w[w > w_median * 2] <- w_median * 2 65*2abb3134SXin Li w <- w / mean(w) 66*2abb3134SXin Li 67*2abb3134SXin Li list(# coerce sparse Boolean matrix X to sparse numeric matrix 68*2abb3134SXin Li A = Diagonal(x = w) %*% (X + 0), 69*2abb3134SXin Li B = as.vector(t(Y)) * w, # transform to vector in the row-first order 70*2abb3134SXin Li G = MakeG(n, X), 71*2abb3134SXin Li H = MakeH(n, Y, stds), 72*2abb3134SXin Li type = 2) # Since there are no equality constraints, lsei defaults to 73*2abb3134SXin Li # solve.QP anyway, but outputs a warning unless type == 2. 74*2abb3134SXin Li} 75*2abb3134SXin Li 76*2abb3134SXin Li# CustomLM(X, Y) 77*2abb3134SXin LiConstrainedLinModel <- function(X,Y) { 78*2abb3134SXin Li model <- MakeLseiModel(X, Y$estimates, Y$stds) 79*2abb3134SXin Li coefs <- do.call(lsei, model)$X 80*2abb3134SXin Li names(coefs) <- colnames(X) 81*2abb3134SXin Li 82*2abb3134SXin Li coefs 83*2abb3134SXin Li}