xref: /aosp_15_r20/external/pytorch/torch/optim/radam.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-decorators
2# mypy: allow-untyped-defs
3r"""Implementation for the RAdam algorithm."""
4from typing import cast, List, Optional, Tuple, Union
5
6import torch
7from torch import Tensor
8
9from .optimizer import (
10    _capturable_doc,
11    _default_to_fused_or_foreach,
12    _differentiable_doc,
13    _disable_dynamo_if_unsupported,
14    _foreach_doc,
15    _get_capturable_supported_devices,
16    _get_scalar_dtype,
17    _get_value,
18    _maximize_doc,
19    _use_grad_for_differentiable,
20    _view_as_real,
21    Optimizer,
22    ParamsT,
23)
24
25
26__all__ = ["RAdam", "radam"]
27
28
29class RAdam(Optimizer):  # noqa: D101
30    def __init__(
31        self,
32        params: ParamsT,
33        lr: Union[float, Tensor] = 1e-3,
34        betas: Tuple[float, float] = (0.9, 0.999),
35        eps: float = 1e-8,
36        weight_decay: float = 0,
37        decoupled_weight_decay: bool = False,
38        *,
39        foreach: Optional[bool] = None,
40        maximize: bool = False,
41        capturable: bool = False,
42        differentiable: bool = False,
43    ):  # noqa: D107
44        if isinstance(lr, Tensor) and lr.numel() != 1:
45            raise ValueError("Tensor lr must be 1-element")
46        if not 0.0 <= lr:
47            raise ValueError(f"Invalid learning rate: {lr}")
48        if not 0.0 <= eps:
49            raise ValueError(f"Invalid epsilon value: {eps}")
50        if not 0.0 <= betas[0] < 1.0:
51            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
52        if not 0.0 <= betas[1] < 1.0:
53            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
54        if not 0.0 <= weight_decay:
55            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
56
57        defaults = dict(
58            lr=lr,
59            betas=betas,
60            eps=eps,
61            weight_decay=weight_decay,
62            maximize=maximize,
63            foreach=foreach,
64            capturable=capturable,
65            decoupled_weight_decay=decoupled_weight_decay,
66            differentiable=differentiable,
67        )
68        super().__init__(params, defaults)
69
70    def __setstate__(self, state):  # noqa: D105
71        super().__setstate__(state)
72        for group in self.param_groups:
73            group.setdefault("foreach", None)
74            group.setdefault("maximize", False)
75            group.setdefault("differentiable", False)
76            group.setdefault("decoupled_weight_decay", False)
77            group.setdefault("capturable", False)
78            for p in group["params"]:
79                p_state = self.state.get(p, [])
80                if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
81                    step_val = float(p_state["step"])
82                    p_state["step"] = (
83                        torch.tensor(
84                            step_val, dtype=_get_scalar_dtype(), device=p.device
85                        )
86                        if group["capturable"]
87                        else torch.tensor(step_val, dtype=_get_scalar_dtype())
88                    )
89
90    def _init_group(
91        self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
92    ):
93        has_complex = False
94        for p in group["params"]:
95            if p.grad is not None:
96                has_complex |= torch.is_complex(p)
97                params_with_grad.append(p)
98                if p.grad.is_sparse:
99                    raise RuntimeError("RAdam does not support sparse gradients")
100                grads.append(p.grad)
101
102                state = self.state[p]
103                # Lazy state initialization
104                if len(state) == 0:
105                    state["step"] = (
106                        torch.zeros((), dtype=_get_scalar_dtype(), device=p.device)
107                        if group["capturable"]
108                        else torch.tensor(0.0, dtype=_get_scalar_dtype())
109                    )
110                    # Exponential moving average of gradient values
111                    state["exp_avg"] = torch.zeros_like(
112                        p, memory_format=torch.preserve_format
113                    )
114                    # Exponential moving average of squared gradient values
115                    state["exp_avg_sq"] = torch.zeros_like(
116                        p, memory_format=torch.preserve_format
117                    )
118
119                exp_avgs.append(state["exp_avg"])
120                exp_avg_sqs.append(state["exp_avg_sq"])
121                state_steps.append(state["step"])
122
123        return has_complex
124
125    @_use_grad_for_differentiable
126    def step(self, closure=None):
127        """Perform a single optimization step.
128
129        Args:
130            closure (Callable, optional): A closure that reevaluates the model
131                and returns the loss.
132        """
133        self._cuda_graph_capture_health_check()
134
135        loss = None
136        if closure is not None:
137            with torch.enable_grad():
138                loss = closure()
139
140        for group in self.param_groups:
141            params_with_grad: List[Tensor] = []
142            grads: List[Tensor] = []
143            exp_avgs: List[Tensor] = []
144            exp_avg_sqs: List[Tensor] = []
145            state_steps: List[Tensor] = []
146            beta1, beta2 = cast(Tuple[float, float], group["betas"])
147
148            has_complex = self._init_group(
149                group, params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps
150            )
151
152            radam(
153                params_with_grad,
154                grads,
155                exp_avgs,
156                exp_avg_sqs,
157                state_steps,
158                beta1=beta1,
159                beta2=beta2,
160                lr=group["lr"],
161                weight_decay=group["weight_decay"],
162                eps=group["eps"],
163                maximize=group["maximize"],
164                foreach=group["foreach"],
165                capturable=group["capturable"],
166                differentiable=group["differentiable"],
167                decoupled_weight_decay=group["decoupled_weight_decay"],
168                has_complex=has_complex,
169            )
170
171        return loss
172
173
174RAdam.__doc__ = (
175    r"""Implements RAdam algorithm.
176
177    .. math::
178       \begin{aligned}
179            &\rule{110mm}{0.4pt}                                                                 \\
180            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
181                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
182                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
183            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
184            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
185                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
186            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
187            &\rule{110mm}{0.4pt}  \\
188            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
189            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
190            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
191            &\hspace{6mm}\textbf{else}                                                           \\
192            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
193            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
194            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
195            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
196            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
197            &\hspace{12mm}\textbf{else}                                                          \\
198            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
199            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
200            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
201            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
202            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
203                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
204            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
205            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
206            &\hspace{12mm} r_t \leftarrow
207      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
208            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
209            &\hspace{6mm}\textbf{else}                                                           \\
210            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
211            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
212            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
213            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
214       \end{aligned}
215
216    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.
217
218    This implementation provides an option to use either the original weight_decay implementation as in Adam
219    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
220    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
221    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
222    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
223    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.
224
225    """
226    + rf"""
227    Args:
228        params (iterable): iterable of parameters to optimize or dicts defining
229            parameter groups
230        lr (float, Tensor, optional): learning rate (default: 1e-3)
231        betas (Tuple[float, float], optional): coefficients used for computing
232            running averages of gradient and its square (default: (0.9, 0.999))
233        eps (float, optional): term added to the denominator to improve
234            numerical stability (default: 1e-8)
235        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
236        decoupled_weight_decay (bool, optional): whether to use decoupled weight
237            decay as in AdamW to obtain RAdamW (default: False)
238        {_foreach_doc}
239        {_maximize_doc}
240        {_differentiable_doc}
241        {_capturable_doc}
242
243    .. _On the variance of the adaptive learning rate and beyond:
244        https://arxiv.org/abs/1908.03265
245    .. _author's implementation:
246        https://github.com/LiyuanLucasLiu/RAdam
247    .. _Decoupled Weight Decay Regularization:
248        https://arxiv.org/abs/1711.05101
249
250    """
251)
252
253
254def _single_tensor_radam(
255    params: List[Tensor],
256    grads: List[Tensor],
257    exp_avgs: List[Tensor],
258    exp_avg_sqs: List[Tensor],
259    state_steps: List[Tensor],
260    *,
261    beta1: float,
262    beta2: float,
263    lr: float,
264    weight_decay: float,
265    eps: float,
266    decoupled_weight_decay: bool,
267    differentiable: bool,
268    maximize: bool,
269    capturable: bool,
270    has_complex: bool,
271):
272    for i, param in enumerate(params):
273        grad = grads[i] if not maximize else -grads[i]
274        exp_avg = exp_avgs[i]
275        exp_avg_sq = exp_avg_sqs[i]
276        step_t = state_steps[i]
277
278        # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
279        if not torch._utils.is_compiling() and capturable:
280            capturable_supported_devices = _get_capturable_supported_devices()
281            assert (
282                param.device.type == step_t.device.type
283                and param.device.type in capturable_supported_devices
284            ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
285
286        if torch.is_complex(param):
287            param = torch.view_as_real(param)
288            grad = torch.view_as_real(grad)
289            exp_avg = torch.view_as_real(exp_avg)
290            exp_avg_sq = torch.view_as_real(exp_avg_sq)
291
292        # update step
293        step_t += 1
294        step = step_t if capturable else _get_value(step_t)
295
296        if weight_decay != 0:
297            if decoupled_weight_decay:
298                param.mul_(1 - lr * weight_decay)
299            else:
300                grad = grad.add(param, alpha=weight_decay)
301
302        # Decay the first and second moment running average coefficient
303        exp_avg.lerp_(grad, 1 - beta1)
304        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
305
306        bias_correction1 = 1 - beta1**step
307        bias_correction2 = 1 - beta2**step
308
309        # correcting bias for the first moving moment
310        bias_corrected_exp_avg = exp_avg / bias_correction1
311
312        # maximum length of the approximated SMA
313        rho_inf = 2 / (1 - beta2) - 1
314        # compute the length of the approximated SMA
315        rho_t = rho_inf - 2 * step * (beta2**step) / bias_correction2
316
317        def _compute_rect():
318            return (
319                (rho_t - 4)
320                * (rho_t - 2)
321                * rho_inf
322                / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
323            ) ** 0.5
324
325        def _compute_adaptive_lr():
326            exp_avg_sq_sqrt = exp_avg_sq.sqrt()
327            if differentiable:
328                exp_avg_sq_sqrt = exp_avg_sq_sqrt.add(eps)
329            else:
330                exp_avg_sq_sqrt = exp_avg_sq_sqrt.add_(eps)
331
332            return (bias_correction2**0.5) / exp_avg_sq_sqrt
333
334        # Compute the variance rectification term and update parameters accordingly
335        if capturable:
336            update = torch.where(
337                rho_t > 5.0, _compute_rect() * _compute_adaptive_lr(), 1.0
338            )
339            param.add_(bias_corrected_exp_avg * lr * update, alpha=-1.0)
340        else:
341            if rho_t > 5.0:
342                param.add_(
343                    bias_corrected_exp_avg
344                    * lr
345                    * _compute_adaptive_lr()
346                    * _compute_rect(),
347                    alpha=-1.0,
348                )
349            else:
350                param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)
351
352
353def _multi_tensor_radam(
354    params: List[Tensor],
355    grads: List[Tensor],
356    exp_avgs: List[Tensor],
357    exp_avg_sqs: List[Tensor],
358    state_steps: List[Tensor],
359    *,
360    beta1: float,
361    beta2: float,
362    lr: float,
363    weight_decay: float,
364    eps: float,
365    decoupled_weight_decay: bool,
366    differentiable: bool,
367    maximize: bool,
368    capturable: bool,
369    has_complex: bool,
370):
371    if len(params) == 0:
372        return
373
374    assert not differentiable, "_foreach ops don't support autograd"
375
376    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
377    if not torch._utils.is_compiling() and capturable:
378        capturable_supported_devices = _get_capturable_supported_devices(
379            supports_xla=False
380        )
381        assert all(
382            p.device.type == step.device.type
383            and p.device.type in capturable_supported_devices
384            for p, step in zip(params, state_steps)
385        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."
386
387    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
388        [params, grads, exp_avgs, exp_avg_sqs, state_steps]  # type: ignore[list-item]
389    )
390    for (
391        grouped_params_,
392        grouped_grads_,
393        grouped_exp_avgs_,
394        grouped_exp_avg_sqs_,
395        grouped_state_steps_,
396    ), _ in grouped_tensors.values():
397        grouped_params = cast(List[Tensor], grouped_params_)
398        grouped_grads = cast(List[Tensor], grouped_grads_)
399        grouped_exp_avgs = cast(List[Tensor], grouped_exp_avgs_)
400        grouped_exp_avg_sqs = cast(List[Tensor], grouped_exp_avg_sqs_)
401        grouped_state_steps = cast(List[Tensor], grouped_state_steps_)
402
403        # Update steps
404        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
405        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
406        # wrapped it once now. The alpha is required to assure we go to the right overload.
407        if not torch._utils.is_compiling() and grouped_state_steps[0].is_cpu:
408            torch._foreach_add_(
409                grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
410            )
411        else:
412            torch._foreach_add_(grouped_state_steps, 1)
413
414        if has_complex:
415            _view_as_real(
416                grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs
417            )
418
419        if maximize:
420            grouped_grads = torch._foreach_neg(grouped_grads)  # type: ignore[assignment]
421
422        # maximum length of the approximated SMA
423        rho_inf = 2 / (1 - beta2) - 1
424        # compute the length of the approximated SMA
425        bias_correction1: Union[Tuple[Tensor, ...], List[Tensor]]
426        bias_correction2: Union[Tuple[Tensor, ...], List[Tensor]]
427        rho_t_list: Union[Tuple[Tensor, ...], List[Tensor]]
428        if capturable:
429            bias_correction1 = torch._foreach_pow(beta2, grouped_state_steps)
430            torch._foreach_neg_(bias_correction1)
431            torch._foreach_add_(bias_correction1, 1)
432            bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
433            torch._foreach_mul_(bias_correction2, grouped_state_steps)
434            torch._foreach_mul_(bias_correction2, 2)
435            torch._foreach_div_(bias_correction2, bias_correction1)
436            torch._foreach_neg_(bias_correction2)
437            torch._foreach_add_(bias_correction2, rho_inf)
438            rho_t_list = bias_correction2
439        else:
440            rho_t_list = [
441                rho_inf
442                - 2
443                * _get_value(step)
444                * (beta2 ** _get_value(step))
445                / (1 - beta2 ** _get_value(step))
446                for step in grouped_state_steps
447            ]
448
449        if weight_decay != 0:
450            if decoupled_weight_decay:
451                torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
452            else:
453                # Re-use the intermediate memory (grouped_grads) already allocated for maximize
454                if maximize:
455                    torch._foreach_add_(
456                        grouped_grads, grouped_params, alpha=weight_decay
457                    )
458                else:
459                    grouped_grads = torch._foreach_add(  # type: ignore[assignment]
460                        grouped_grads, grouped_params, alpha=weight_decay
461                    )
462
463        # Decay the first and second moment running average coefficient
464        torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
465
466        torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
467        torch._foreach_addcmul_(
468            grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2
469        )
470
471        # Delete the local intermediate since it won't be used anymore to save on peak memory
472        del grouped_grads
473
474        if capturable:
475            num = torch._foreach_sub(rho_t_list, 4)
476            sub2 = torch._foreach_sub(rho_t_list, 2)
477            torch._foreach_mul_(num, sub2)
478            del sub2
479            torch._foreach_mul_(num, rho_inf)
480            rho_inf = (rho_inf - 4) * (rho_inf - 2)
481            denom = torch._foreach_mul(rho_t_list, rho_inf)
482            torch._foreach_div_(num, denom)
483            del denom
484            torch._foreach_sqrt_(num)
485
486            # TODO(mlazos): we should try and get a foreach_where op https://github.com/pytorch/pytorch/issues/117884
487            rect = [
488                torch.where(rho_t > 5.0, n, 0.0) for n, rho_t in zip(num, rho_t_list)
489            ]
490            del num
491            del rho_t_list
492            unrect_step_size = [torch.where(rect > 0, 0.0, 1.0) for rect in rect]
493            torch._foreach_mul_(unrect_step_size, lr)
494
495            bias_correction1 = torch._foreach_pow(beta1, grouped_state_steps)
496            torch._foreach_neg_(bias_correction1)
497            torch._foreach_add_(bias_correction1, 1)
498
499            torch._foreach_div_(unrect_step_size, bias_correction1)
500            torch._foreach_neg_(unrect_step_size)
501
502            bias_correction2 = torch._foreach_pow(beta2, grouped_state_steps)
503            torch._foreach_neg_(bias_correction2)
504            torch._foreach_add_(bias_correction2, 1)
505            torch._foreach_sqrt_(bias_correction2)
506            torch._foreach_mul_(bias_correction2, lr)
507            torch._foreach_mul_(bias_correction2, rect)
508            del rect
509            torch._foreach_neg_(bias_correction2)
510            torch._foreach_div_(bias_correction2, bias_correction1)
511            del bias_correction1
512        else:
513            rect = [
514                (
515                    (rho_t - 4)  # type: ignore[arg-type]
516                    * (rho_t - 2)
517                    * rho_inf
518                    / ((rho_inf - 4) * (rho_inf - 2) * rho_t)
519                )
520                ** 0.5
521                if rho_t > 5
522                else 0
523                for rho_t in rho_t_list
524            ]
525            unrectified = [0 if rect > 0 else 1.0 for rect in rect]
526
527            bias_correction1 = [
528                1 - beta1 ** _get_value(step) for step in grouped_state_steps
529            ]
530            unrect_step_size = [
531                (lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)
532            ]
533            bias_correction2 = [
534                ((1 - beta2 ** _get_value(step)) ** 0.5) * (lr * rect / bc) * -1
535                for step, rect, bc in zip(grouped_state_steps, rect, bias_correction1)
536            ]
537
538        buffer = torch._foreach_sqrt(grouped_exp_avg_sqs)
539        torch._foreach_add_(buffer, eps)
540        torch._foreach_div_(buffer, bias_correction2)
541        torch._foreach_reciprocal_(buffer)
542        torch._foreach_add_(buffer, unrect_step_size)
543
544        # Here, buffer = sqrt(1 - beta2^t) * rect_step_size / (sqrt(v) + eps) + unrect_step_size
545        torch._foreach_addcmul_(grouped_params, grouped_exp_avgs, buffer)
546
547
548@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_radam)
549def radam(
550    params: List[Tensor],
551    grads: List[Tensor],
552    exp_avgs: List[Tensor],
553    exp_avg_sqs: List[Tensor],
554    state_steps: List[Tensor],
555    # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
556    # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
557    decoupled_weight_decay: bool = False,
558    foreach: Optional[bool] = None,
559    differentiable: bool = False,
560    capturable: bool = False,
561    has_complex: bool = False,
562    maximize: bool = False,
563    *,
564    beta1: float,
565    beta2: float,
566    lr: float,
567    weight_decay: float,
568    eps: float,
569):
570    r"""Functional API that performs RAdam algorithm computation.
571
572    See :class:`~torch.optim.RAdam` for details.
573    """
574    if not all(isinstance(t, torch.Tensor) for t in state_steps):
575        raise RuntimeError(
576            "API has changed, `state_steps` argument must contain a list of singleton tensors"
577        )
578
579    if foreach is None:
580        _, foreach = _default_to_fused_or_foreach(
581            params, differentiable, use_fused=False
582        )
583
584    if foreach and torch.jit.is_scripting():
585        raise RuntimeError("torch.jit.script not supported with foreach optimizers")
586
587    if foreach and not torch.jit.is_scripting():
588        func = _multi_tensor_radam
589    else:
590        func = _single_tensor_radam
591
592    func(
593        params,
594        grads,
595        exp_avgs,
596        exp_avg_sqs,
597        state_steps,
598        beta1=beta1,
599        beta2=beta2,
600        lr=lr,
601        weight_decay=weight_decay,
602        eps=eps,
603        maximize=maximize,
604        decoupled_weight_decay=decoupled_weight_decay,
605        differentiable=differentiable,
606        capturable=capturable,
607        has_complex=has_complex,
608    )
609