xref: /aosp_15_r20/external/pytorch/torch/distributions/poisson.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from numbers import Number
3
4import torch
5from torch.distributions import constraints
6from torch.distributions.exp_family import ExponentialFamily
7from torch.distributions.utils import broadcast_all
8
9
10__all__ = ["Poisson"]
11
12
13class Poisson(ExponentialFamily):
14    r"""
15    Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter.
16
17    Samples are nonnegative integers, with a pmf given by
18
19    .. math::
20      \mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!}
21
22    Example::
23
24        >>> # xdoctest: +SKIP("poisson_cpu not implemented for 'Long'")
25        >>> m = Poisson(torch.tensor([4]))
26        >>> m.sample()
27        tensor([ 3.])
28
29    Args:
30        rate (Number, Tensor): the rate parameter
31    """
32    arg_constraints = {"rate": constraints.nonnegative}
33    support = constraints.nonnegative_integer
34
35    @property
36    def mean(self):
37        return self.rate
38
39    @property
40    def mode(self):
41        return self.rate.floor()
42
43    @property
44    def variance(self):
45        return self.rate
46
47    def __init__(self, rate, validate_args=None):
48        (self.rate,) = broadcast_all(rate)
49        if isinstance(rate, Number):
50            batch_shape = torch.Size()
51        else:
52            batch_shape = self.rate.size()
53        super().__init__(batch_shape, validate_args=validate_args)
54
55    def expand(self, batch_shape, _instance=None):
56        new = self._get_checked_instance(Poisson, _instance)
57        batch_shape = torch.Size(batch_shape)
58        new.rate = self.rate.expand(batch_shape)
59        super(Poisson, new).__init__(batch_shape, validate_args=False)
60        new._validate_args = self._validate_args
61        return new
62
63    def sample(self, sample_shape=torch.Size()):
64        shape = self._extended_shape(sample_shape)
65        with torch.no_grad():
66            return torch.poisson(self.rate.expand(shape))
67
68    def log_prob(self, value):
69        if self._validate_args:
70            self._validate_sample(value)
71        rate, value = broadcast_all(self.rate, value)
72        return value.xlogy(rate) - rate - (value + 1).lgamma()
73
74    @property
75    def _natural_params(self):
76        return (torch.log(self.rate),)
77
78    def _log_normalizer(self, x):
79        return torch.exp(x)
80