xref: /aosp_15_r20/external/pytorch/torch/distributions/gamma.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1*da0073e9SAndroid Build Coastguard Worker# mypy: allow-untyped-defs
2*da0073e9SAndroid Build Coastguard Workerfrom numbers import Number
3*da0073e9SAndroid Build Coastguard Worker
4*da0073e9SAndroid Build Coastguard Workerimport torch
5*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions import constraints
6*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.exp_family import ExponentialFamily
7*da0073e9SAndroid Build Coastguard Workerfrom torch.distributions.utils import broadcast_all
8*da0073e9SAndroid Build Coastguard Workerfrom torch.types import _size
9*da0073e9SAndroid Build Coastguard Worker
10*da0073e9SAndroid Build Coastguard Worker
11*da0073e9SAndroid Build Coastguard Worker__all__ = ["Gamma"]
12*da0073e9SAndroid Build Coastguard Worker
13*da0073e9SAndroid Build Coastguard Worker
14*da0073e9SAndroid Build Coastguard Workerdef _standard_gamma(concentration):
15*da0073e9SAndroid Build Coastguard Worker    return torch._standard_gamma(concentration)
16*da0073e9SAndroid Build Coastguard Worker
17*da0073e9SAndroid Build Coastguard Worker
18*da0073e9SAndroid Build Coastguard Workerclass Gamma(ExponentialFamily):
19*da0073e9SAndroid Build Coastguard Worker    r"""
20*da0073e9SAndroid Build Coastguard Worker    Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`.
21*da0073e9SAndroid Build Coastguard Worker
22*da0073e9SAndroid Build Coastguard Worker    Example::
23*da0073e9SAndroid Build Coastguard Worker
24*da0073e9SAndroid Build Coastguard Worker        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
25*da0073e9SAndroid Build Coastguard Worker        >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0]))
26*da0073e9SAndroid Build Coastguard Worker        >>> m.sample()  # Gamma distributed with concentration=1 and rate=1
27*da0073e9SAndroid Build Coastguard Worker        tensor([ 0.1046])
28*da0073e9SAndroid Build Coastguard Worker
29*da0073e9SAndroid Build Coastguard Worker    Args:
30*da0073e9SAndroid Build Coastguard Worker        concentration (float or Tensor): shape parameter of the distribution
31*da0073e9SAndroid Build Coastguard Worker            (often referred to as alpha)
32*da0073e9SAndroid Build Coastguard Worker        rate (float or Tensor): rate = 1 / scale of the distribution
33*da0073e9SAndroid Build Coastguard Worker            (often referred to as beta)
34*da0073e9SAndroid Build Coastguard Worker    """
35*da0073e9SAndroid Build Coastguard Worker    arg_constraints = {
36*da0073e9SAndroid Build Coastguard Worker        "concentration": constraints.positive,
37*da0073e9SAndroid Build Coastguard Worker        "rate": constraints.positive,
38*da0073e9SAndroid Build Coastguard Worker    }
39*da0073e9SAndroid Build Coastguard Worker    support = constraints.nonnegative
40*da0073e9SAndroid Build Coastguard Worker    has_rsample = True
41*da0073e9SAndroid Build Coastguard Worker    _mean_carrier_measure = 0
42*da0073e9SAndroid Build Coastguard Worker
43*da0073e9SAndroid Build Coastguard Worker    @property
44*da0073e9SAndroid Build Coastguard Worker    def mean(self):
45*da0073e9SAndroid Build Coastguard Worker        return self.concentration / self.rate
46*da0073e9SAndroid Build Coastguard Worker
47*da0073e9SAndroid Build Coastguard Worker    @property
48*da0073e9SAndroid Build Coastguard Worker    def mode(self):
49*da0073e9SAndroid Build Coastguard Worker        return ((self.concentration - 1) / self.rate).clamp(min=0)
50*da0073e9SAndroid Build Coastguard Worker
51*da0073e9SAndroid Build Coastguard Worker    @property
52*da0073e9SAndroid Build Coastguard Worker    def variance(self):
53*da0073e9SAndroid Build Coastguard Worker        return self.concentration / self.rate.pow(2)
54*da0073e9SAndroid Build Coastguard Worker
55*da0073e9SAndroid Build Coastguard Worker    def __init__(self, concentration, rate, validate_args=None):
56*da0073e9SAndroid Build Coastguard Worker        self.concentration, self.rate = broadcast_all(concentration, rate)
57*da0073e9SAndroid Build Coastguard Worker        if isinstance(concentration, Number) and isinstance(rate, Number):
58*da0073e9SAndroid Build Coastguard Worker            batch_shape = torch.Size()
59*da0073e9SAndroid Build Coastguard Worker        else:
60*da0073e9SAndroid Build Coastguard Worker            batch_shape = self.concentration.size()
61*da0073e9SAndroid Build Coastguard Worker        super().__init__(batch_shape, validate_args=validate_args)
62*da0073e9SAndroid Build Coastguard Worker
63*da0073e9SAndroid Build Coastguard Worker    def expand(self, batch_shape, _instance=None):
64*da0073e9SAndroid Build Coastguard Worker        new = self._get_checked_instance(Gamma, _instance)
65*da0073e9SAndroid Build Coastguard Worker        batch_shape = torch.Size(batch_shape)
66*da0073e9SAndroid Build Coastguard Worker        new.concentration = self.concentration.expand(batch_shape)
67*da0073e9SAndroid Build Coastguard Worker        new.rate = self.rate.expand(batch_shape)
68*da0073e9SAndroid Build Coastguard Worker        super(Gamma, new).__init__(batch_shape, validate_args=False)
69*da0073e9SAndroid Build Coastguard Worker        new._validate_args = self._validate_args
70*da0073e9SAndroid Build Coastguard Worker        return new
71*da0073e9SAndroid Build Coastguard Worker
72*da0073e9SAndroid Build Coastguard Worker    def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor:
73*da0073e9SAndroid Build Coastguard Worker        shape = self._extended_shape(sample_shape)
74*da0073e9SAndroid Build Coastguard Worker        value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand(
75*da0073e9SAndroid Build Coastguard Worker            shape
76*da0073e9SAndroid Build Coastguard Worker        )
77*da0073e9SAndroid Build Coastguard Worker        value.detach().clamp_(
78*da0073e9SAndroid Build Coastguard Worker            min=torch.finfo(value.dtype).tiny
79*da0073e9SAndroid Build Coastguard Worker        )  # do not record in autograd graph
80*da0073e9SAndroid Build Coastguard Worker        return value
81*da0073e9SAndroid Build Coastguard Worker
82*da0073e9SAndroid Build Coastguard Worker    def log_prob(self, value):
83*da0073e9SAndroid Build Coastguard Worker        value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device)
84*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
85*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
86*da0073e9SAndroid Build Coastguard Worker        return (
87*da0073e9SAndroid Build Coastguard Worker            torch.xlogy(self.concentration, self.rate)
88*da0073e9SAndroid Build Coastguard Worker            + torch.xlogy(self.concentration - 1, value)
89*da0073e9SAndroid Build Coastguard Worker            - self.rate * value
90*da0073e9SAndroid Build Coastguard Worker            - torch.lgamma(self.concentration)
91*da0073e9SAndroid Build Coastguard Worker        )
92*da0073e9SAndroid Build Coastguard Worker
93*da0073e9SAndroid Build Coastguard Worker    def entropy(self):
94*da0073e9SAndroid Build Coastguard Worker        return (
95*da0073e9SAndroid Build Coastguard Worker            self.concentration
96*da0073e9SAndroid Build Coastguard Worker            - torch.log(self.rate)
97*da0073e9SAndroid Build Coastguard Worker            + torch.lgamma(self.concentration)
98*da0073e9SAndroid Build Coastguard Worker            + (1.0 - self.concentration) * torch.digamma(self.concentration)
99*da0073e9SAndroid Build Coastguard Worker        )
100*da0073e9SAndroid Build Coastguard Worker
101*da0073e9SAndroid Build Coastguard Worker    @property
102*da0073e9SAndroid Build Coastguard Worker    def _natural_params(self):
103*da0073e9SAndroid Build Coastguard Worker        return (self.concentration - 1, -self.rate)
104*da0073e9SAndroid Build Coastguard Worker
105*da0073e9SAndroid Build Coastguard Worker    def _log_normalizer(self, x, y):
106*da0073e9SAndroid Build Coastguard Worker        return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal())
107*da0073e9SAndroid Build Coastguard Worker
108*da0073e9SAndroid Build Coastguard Worker    def cdf(self, value):
109*da0073e9SAndroid Build Coastguard Worker        if self._validate_args:
110*da0073e9SAndroid Build Coastguard Worker            self._validate_sample(value)
111*da0073e9SAndroid Build Coastguard Worker        return torch.special.gammainc(self.concentration, self.rate * value)
112