|
Name |
|
Date |
Size |
#Lines |
LOC |
| .. | | - | - |
| CMakeLists.txt | H A D | 25-Apr-2025 | 3 KiB | 81 | 75 |
| README.md | H A D | 25-Apr-2025 | 1 KiB | 36 | 24 |
| any.cpp | H A D | 25-Apr-2025 | 13.6 KiB | 458 | 387 |
| autograd.cpp | H A D | 25-Apr-2025 | 51.3 KiB | 1,682 | 1,367 |
| dataloader.cpp | H A D | 25-Apr-2025 | 76.1 KiB | 2,323 | 1,817 |
| dispatch.cpp | H A D | 25-Apr-2025 | 1.8 KiB | 63 | 57 |
| enum.cpp | H A D | 25-Apr-2025 | 3 KiB | 89 | 83 |
| expanding-array.cpp | H A D | 25-Apr-2025 | 1.6 KiB | 61 | 50 |
| fft.cpp | H A D | 25-Apr-2025 | 4.3 KiB | 131 | 102 |
| functional.cpp | H A D | 25-Apr-2025 | 117.3 KiB | 3,294 | 2,883 |
| grad_mode.cpp | H A D | 25-Apr-2025 | 2.4 KiB | 79 | 65 |
| inference_mode.cpp | H A D | 25-Apr-2025 | 21.3 KiB | 658 | 518 |
| init.cpp | H A D | 25-Apr-2025 | 4.2 KiB | 132 | 106 |
| init_baseline.h | H A D | 25-Apr-2025 | 42.6 KiB | 1,622 | 1,612 |
| init_baseline.py | H A D | 25-Apr-2025 | 2 KiB | 76 | 51 |
| integration.cpp | H A D | 25-Apr-2025 | 9.4 KiB | 325 | 260 |
| ivalue.cpp | H A D | 25-Apr-2025 | 2.3 KiB | 64 | 48 |
| jit.cpp | H A D | 25-Apr-2025 | 3.8 KiB | 127 | 100 |
| memory.cpp | H A D | 25-Apr-2025 | 978 | 36 | 27 |
| meta_tensor.cpp | H A D | 25-Apr-2025 | 1.2 KiB | 36 | 26 |
| misc.cpp | H A D | 25-Apr-2025 | 2.4 KiB | 105 | 80 |
| module.cpp | H A D | 25-Apr-2025 | 33.9 KiB | 1,058 | 892 |
| moduledict.cpp | H A D | 25-Apr-2025 | 9.9 KiB | 310 | 262 |
| modulelist.cpp | H A D | 25-Apr-2025 | 8.9 KiB | 309 | 250 |
| modules.cpp | H A D | 25-Apr-2025 | 189 KiB | 5,570 | 4,882 |
| namespace.cpp | H A D | 25-Apr-2025 | 695 | 21 | 7 |
| nested.cpp | H A D | 25-Apr-2025 | 394 | 16 | 10 |
| nested_int.cpp | H A D | 25-Apr-2025 | 3.2 KiB | 106 | 74 |
| nn_utils.cpp | H A D | 25-Apr-2025 | 32.2 KiB | 894 | 746 |
| operations.cpp | H A D | 25-Apr-2025 | 3 KiB | 91 | 73 |
| optim.cpp | H A D | 25-Apr-2025 | 18.5 KiB | 576 | 453 |
| optim_baseline.h | H A D | 25-Apr-2025 | 105.9 KiB | 3,061 | 3,036 |
| optim_baseline.py | H A D | 25-Apr-2025 | 4.5 KiB | 144 | 113 |
| ordered_dict.cpp | H A D | 25-Apr-2025 | 6.8 KiB | 235 | 203 |
| parallel.cpp | H A D | 25-Apr-2025 | 9.3 KiB | 295 | 235 |
| parallel_benchmark.cpp | H A D | 25-Apr-2025 | 2.1 KiB | 89 | 83 |
| parameterdict.cpp | H A D | 25-Apr-2025 | 5.1 KiB | 145 | 131 |
| parameterlist.cpp | H A D | 25-Apr-2025 | 5.7 KiB | 164 | 140 |
| rnn.cpp | H A D | 25-Apr-2025 | 26.7 KiB | 813 | 627 |
| sequential.cpp | H A D | 25-Apr-2025 | 22.7 KiB | 674 | 592 |
| serialize.cpp | H A D | 25-Apr-2025 | 37.1 KiB | 1,095 | 868 |
| special.cpp | H A D | 25-Apr-2025 | 316 | 14 | 8 |
| static.cpp | H A D | 25-Apr-2025 | 2.3 KiB | 92 | 74 |
| support.cpp | H A D | 25-Apr-2025 | 167 | 10 | 6 |
| support.h | H A D | 25-Apr-2025 | 5.6 KiB | 197 | 149 |
| tensor.cpp | H A D | 25-Apr-2025 | 43.2 KiB | 1,261 | 1,092 |
| tensor_cuda.cpp | H A D | 25-Apr-2025 | 5 KiB | 127 | 95 |
| tensor_flatten.cpp | H A D | 25-Apr-2025 | 1.8 KiB | 44 | 30 |
| tensor_indexing.cpp | H A D | 25-Apr-2025 | 35 KiB | 1,004 | 774 |
| tensor_options.cpp | H A D | 25-Apr-2025 | 4.9 KiB | 162 | 122 |
| tensor_options_cuda.cpp | H A D | 25-Apr-2025 | 2.9 KiB | 83 | 59 |
| torch_include.cpp | H A D | 25-Apr-2025 | 401 | 15 | 9 |
| transformer.cpp | H A D | 25-Apr-2025 | 58.9 KiB | 1,524 | 1,355 |
README.md
1# C++ Frontend Tests
2
3In this folder live the tests for PyTorch's C++ Frontend. They use the
4[GoogleTest](https://github.com/google/googletest) test framework.
5
6## CUDA Tests
7
8To make a test runnable only on platforms with CUDA, you should suffix your
9test with `_CUDA`, e.g.
10
11```cpp
12TEST(MyTestSuite, MyTestCase_CUDA) { }
13```
14
15To make it runnable only on platforms with at least two CUDA machines, suffix
16it with `_MultiCUDA` instead of `_CUDA`, e.g.
17
18```cpp
19TEST(MyTestSuite, MyTestCase_MultiCUDA) { }
20```
21
22There is logic in `main.cpp` that detects the availability and number of CUDA
23devices and supplies the appropriate negative filters to GoogleTest.
24
25## Integration Tests
26
27Integration tests use the MNIST dataset. You must download it by running the
28following command from the PyTorch root folder:
29
30```sh
31$ python tools/download_mnist.py -d test/cpp/api/mnist
32```
33
34The required paths will be referenced as `test/cpp/api/mnist/...` in the test
35code, so you *must* run the integration tests from the PyTorch root folder.
36