Name Date Size #Lines LOC

..--

README.mdH A D25-Apr-20251.2 KiB168

__init__.pyH A D25-Apr-202536 32

matmul_bench.pyH A D25-Apr-20255.2 KiB172139

test.shH A D25-Apr-20251.5 KiB2812

utils.pyH A D25-Apr-20257 KiB214188

README.md

1# Sparse benchmarks
2
3These sets of benchmarks are for the sparse matrix functionality using a popular real dataset collection called the Deep Learning Matrix Collection (DLMC), which were used in recent studies [1, 2].
4
5Performance benchmarks scripts for matrix-matrix and matrix-vector ops (dense-sparse, sparse-sparse, and compare to dense-dense) are implemented here.
6
7- `matmul_bench.py` with `--operation sparse@sparse|sparse@dense` is for Sparse matrix-matrix multiplication (SPMM) performance test. It can run in forward and backward mode with `--backward-test`, on CPU or CUDA with `--with-cuda`, using different datasets from the dataset collection DLMC. For more details see `test.sh` file.
8
9- `matmul_bench.py` with `--operation sparse@vector` is for Sparse matrix-vector multiplication (SPMV) performance test.
10
11References:
12
131. Trevor Gale, Matei Zaharia, Cliff Young, Erich Elsen. Sparse GPU Kernels for Deep Learning. Proceedings of the International Conference for High Performance Computing, 2020. https://github.com/google-research/google-research/tree/master/sgk
14
152. Trevor Gale, Erich Elsen, Sara Hooker. The State of Sparsity in Deep Neural Networks. https://github.com/google-research/google-research/tree/master/state_of_sparsity
16