1*da0073e9SAndroid Build Coastguard Worker# flake8: noqa: E266, C417, B950 2*da0073e9SAndroid Build Coastguard Workerfrom dataclasses import dataclass 3*da0073e9SAndroid Build Coastguard Workerfrom typing import Optional 4*da0073e9SAndroid Build Coastguard Worker 5*da0073e9SAndroid Build Coastguard Workerimport torch 6*da0073e9SAndroid Build Coastguard Workerimport torch.nn as nn 7*da0073e9SAndroid Build Coastguard Workerfrom torch import Tensor 8*da0073e9SAndroid Build Coastguard Workerfrom torch.nn import functional as F 9*da0073e9SAndroid Build Coastguard Worker 10*da0073e9SAndroid Build Coastguard Worker 11*da0073e9SAndroid Build Coastguard Workerdef find_multiple(n: int, k: int) -> int: 12*da0073e9SAndroid Build Coastguard Worker if n % k == 0: 13*da0073e9SAndroid Build Coastguard Worker return n 14*da0073e9SAndroid Build Coastguard Worker return n + k - (n % k) 15*da0073e9SAndroid Build Coastguard Worker 16*da0073e9SAndroid Build Coastguard Worker 17*da0073e9SAndroid Build Coastguard Worker@dataclass 18*da0073e9SAndroid Build Coastguard Workerclass ModelArgs: 19*da0073e9SAndroid Build Coastguard Worker block_size: int = 2048 20*da0073e9SAndroid Build Coastguard Worker vocab_size: int = 32000 21*da0073e9SAndroid Build Coastguard Worker n_layer: int = 32 22*da0073e9SAndroid Build Coastguard Worker n_head: int = 32 23*da0073e9SAndroid Build Coastguard Worker dim: int = 4096 24*da0073e9SAndroid Build Coastguard Worker intermediate_size: int = None 25*da0073e9SAndroid Build Coastguard Worker n_local_heads: int = -1 26*da0073e9SAndroid Build Coastguard Worker head_dim: int = 64 27*da0073e9SAndroid Build Coastguard Worker rope_base: float = 10000 28*da0073e9SAndroid Build Coastguard Worker norm_eps: float = 1e-5 29*da0073e9SAndroid Build Coastguard Worker 30*da0073e9SAndroid Build Coastguard Worker def __post_init__(self): 31*da0073e9SAndroid Build Coastguard Worker if self.n_local_heads == -1: 32*da0073e9SAndroid Build Coastguard Worker self.n_local_heads = self.n_head 33*da0073e9SAndroid Build Coastguard Worker if self.intermediate_size is None: 34*da0073e9SAndroid Build Coastguard Worker hidden_dim = 4 * self.dim 35*da0073e9SAndroid Build Coastguard Worker n_hidden = int(2 * hidden_dim / 3) 36*da0073e9SAndroid Build Coastguard Worker self.intermediate_size = find_multiple(n_hidden, 256) 37*da0073e9SAndroid Build Coastguard Worker self.head_dim = self.dim // self.n_head 38*da0073e9SAndroid Build Coastguard Worker 39*da0073e9SAndroid Build Coastguard Worker @classmethod 40*da0073e9SAndroid Build Coastguard Worker def from_name(cls, name: str): 41*da0073e9SAndroid Build Coastguard Worker if name in transformer_configs: 42*da0073e9SAndroid Build Coastguard Worker return cls(**transformer_configs[name]) 43*da0073e9SAndroid Build Coastguard Worker # fuzzy search 44*da0073e9SAndroid Build Coastguard Worker config = [ 45*da0073e9SAndroid Build Coastguard Worker config 46*da0073e9SAndroid Build Coastguard Worker for config in transformer_configs 47*da0073e9SAndroid Build Coastguard Worker if config in str(name).upper() or config in str(name) 48*da0073e9SAndroid Build Coastguard Worker ] 49*da0073e9SAndroid Build Coastguard Worker 50*da0073e9SAndroid Build Coastguard Worker # We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match, 51*da0073e9SAndroid Build Coastguard Worker # take longer name (as it have more symbols matched) 52*da0073e9SAndroid Build Coastguard Worker if len(config) > 1: 53*da0073e9SAndroid Build Coastguard Worker config.sort(key=len, reverse=True) 54*da0073e9SAndroid Build Coastguard Worker assert len(config[0]) != len( 55*da0073e9SAndroid Build Coastguard Worker config[1] 56*da0073e9SAndroid Build Coastguard Worker ), name # make sure only one 'best' match 57*da0073e9SAndroid Build Coastguard Worker 58*da0073e9SAndroid Build Coastguard Worker return cls(**transformer_configs[config[0]]) 59*da0073e9SAndroid Build Coastguard Worker 60*da0073e9SAndroid Build Coastguard Worker 61*da0073e9SAndroid Build Coastguard Workertransformer_configs = { 62*da0073e9SAndroid Build Coastguard Worker "CodeLlama-7b-Python-hf": dict( 63*da0073e9SAndroid Build Coastguard Worker block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000 64*da0073e9SAndroid Build Coastguard Worker ), 65*da0073e9SAndroid Build Coastguard Worker "7B": dict(n_layer=32, n_head=32, dim=4096), 66*da0073e9SAndroid Build Coastguard Worker "13B": dict(n_layer=40, n_head=40, dim=5120), 67*da0073e9SAndroid Build Coastguard Worker "30B": dict(n_layer=60, n_head=52, dim=6656), 68*da0073e9SAndroid Build Coastguard Worker "34B": dict( 69*da0073e9SAndroid Build Coastguard Worker n_layer=48, 70*da0073e9SAndroid Build Coastguard Worker n_head=64, 71*da0073e9SAndroid Build Coastguard Worker dim=8192, 72*da0073e9SAndroid Build Coastguard Worker vocab_size=32000, 73*da0073e9SAndroid Build Coastguard Worker n_local_heads=8, 74*da0073e9SAndroid Build Coastguard Worker intermediate_size=22016, 75*da0073e9SAndroid Build Coastguard Worker rope_base=1000000, 76*da0073e9SAndroid Build Coastguard Worker ), # CodeLlama-34B-Python-hf 77*da0073e9SAndroid Build Coastguard Worker "70B": dict( 78*da0073e9SAndroid Build Coastguard Worker n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672 79*da0073e9SAndroid Build Coastguard Worker ), 80*da0073e9SAndroid Build Coastguard Worker "Mistral-7B": dict( 81*da0073e9SAndroid Build Coastguard Worker n_layer=32, 82*da0073e9SAndroid Build Coastguard Worker n_head=32, 83*da0073e9SAndroid Build Coastguard Worker n_local_heads=8, 84*da0073e9SAndroid Build Coastguard Worker dim=4096, 85*da0073e9SAndroid Build Coastguard Worker intermediate_size=14336, 86*da0073e9SAndroid Build Coastguard Worker vocab_size=32000, 87*da0073e9SAndroid Build Coastguard Worker ), 88*da0073e9SAndroid Build Coastguard Worker} 89*da0073e9SAndroid Build Coastguard Worker 90*da0073e9SAndroid Build Coastguard Worker 91*da0073e9SAndroid Build Coastguard Workerclass KVCache(nn.Module): 92*da0073e9SAndroid Build Coastguard Worker def __init__( 93*da0073e9SAndroid Build Coastguard Worker self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16 94*da0073e9SAndroid Build Coastguard Worker ): 95*da0073e9SAndroid Build Coastguard Worker super().__init__() 96*da0073e9SAndroid Build Coastguard Worker cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) 97*da0073e9SAndroid Build Coastguard Worker self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) 98*da0073e9SAndroid Build Coastguard Worker self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) 99*da0073e9SAndroid Build Coastguard Worker 100*da0073e9SAndroid Build Coastguard Worker def update(self, input_pos, k_val, v_val): 101*da0073e9SAndroid Build Coastguard Worker # input_pos: [S], k_val: [B, H, S, D] 102*da0073e9SAndroid Build Coastguard Worker assert input_pos.shape[0] == k_val.shape[2] 103*da0073e9SAndroid Build Coastguard Worker 104*da0073e9SAndroid Build Coastguard Worker k_out = self.k_cache 105*da0073e9SAndroid Build Coastguard Worker v_out = self.v_cache 106*da0073e9SAndroid Build Coastguard Worker k_out[:, :, input_pos] = k_val 107*da0073e9SAndroid Build Coastguard Worker v_out[:, :, input_pos] = v_val 108*da0073e9SAndroid Build Coastguard Worker 109*da0073e9SAndroid Build Coastguard Worker return k_out, v_out 110*da0073e9SAndroid Build Coastguard Worker 111*da0073e9SAndroid Build Coastguard Worker 112*da0073e9SAndroid Build Coastguard Workerclass Transformer(nn.Module): 113*da0073e9SAndroid Build Coastguard Worker def __init__(self, config: ModelArgs) -> None: 114*da0073e9SAndroid Build Coastguard Worker super().__init__() 115*da0073e9SAndroid Build Coastguard Worker self.config = config 116*da0073e9SAndroid Build Coastguard Worker 117*da0073e9SAndroid Build Coastguard Worker self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) 118*da0073e9SAndroid Build Coastguard Worker self.layers = nn.ModuleList( 119*da0073e9SAndroid Build Coastguard Worker TransformerBlock(config) for _ in range(config.n_layer) 120*da0073e9SAndroid Build Coastguard Worker ) 121*da0073e9SAndroid Build Coastguard Worker self.norm = RMSNorm(config.dim, eps=config.norm_eps) 122*da0073e9SAndroid Build Coastguard Worker self.output = nn.Linear(config.dim, config.vocab_size, bias=False) 123*da0073e9SAndroid Build Coastguard Worker 124*da0073e9SAndroid Build Coastguard Worker self.freqs_cis: Optional[Tensor] = None 125*da0073e9SAndroid Build Coastguard Worker self.mask_cache: Optional[Tensor] = None 126*da0073e9SAndroid Build Coastguard Worker self.max_batch_size = -1 127*da0073e9SAndroid Build Coastguard Worker self.max_seq_length = -1 128*da0073e9SAndroid Build Coastguard Worker 129*da0073e9SAndroid Build Coastguard Worker def setup_caches(self, max_batch_size, max_seq_length): 130*da0073e9SAndroid Build Coastguard Worker if ( 131*da0073e9SAndroid Build Coastguard Worker self.max_seq_length >= max_seq_length 132*da0073e9SAndroid Build Coastguard Worker and self.max_batch_size >= max_batch_size 133*da0073e9SAndroid Build Coastguard Worker ): 134*da0073e9SAndroid Build Coastguard Worker return 135*da0073e9SAndroid Build Coastguard Worker head_dim = self.config.dim // self.config.n_head 136*da0073e9SAndroid Build Coastguard Worker max_seq_length = find_multiple(max_seq_length, 8) 137*da0073e9SAndroid Build Coastguard Worker self.max_seq_length = max_seq_length 138*da0073e9SAndroid Build Coastguard Worker self.max_batch_size = max_batch_size 139*da0073e9SAndroid Build Coastguard Worker for b in self.layers: 140*da0073e9SAndroid Build Coastguard Worker b.attention.kv_cache = KVCache( 141*da0073e9SAndroid Build Coastguard Worker max_batch_size, max_seq_length, self.config.n_local_heads, head_dim 142*da0073e9SAndroid Build Coastguard Worker ) 143*da0073e9SAndroid Build Coastguard Worker 144*da0073e9SAndroid Build Coastguard Worker self.freqs_cis = precompute_freqs_cis( 145*da0073e9SAndroid Build Coastguard Worker self.config.block_size, 146*da0073e9SAndroid Build Coastguard Worker self.config.dim // self.config.n_head, 147*da0073e9SAndroid Build Coastguard Worker self.config.rope_base, 148*da0073e9SAndroid Build Coastguard Worker ) 149*da0073e9SAndroid Build Coastguard Worker self.causal_mask = torch.tril( 150*da0073e9SAndroid Build Coastguard Worker torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool) 151*da0073e9SAndroid Build Coastguard Worker ) 152*da0073e9SAndroid Build Coastguard Worker 153*da0073e9SAndroid Build Coastguard Worker def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: 154*da0073e9SAndroid Build Coastguard Worker assert self.freqs_cis is not None, "Caches must be initialized first" 155*da0073e9SAndroid Build Coastguard Worker mask = self.causal_mask[None, None, input_pos] 156*da0073e9SAndroid Build Coastguard Worker freqs_cis = self.freqs_cis[input_pos] 157*da0073e9SAndroid Build Coastguard Worker x = self.tok_embeddings(idx) 158*da0073e9SAndroid Build Coastguard Worker 159*da0073e9SAndroid Build Coastguard Worker for i, layer in enumerate(self.layers): 160*da0073e9SAndroid Build Coastguard Worker x = layer(x, input_pos, freqs_cis, mask) 161*da0073e9SAndroid Build Coastguard Worker x = self.norm(x) 162*da0073e9SAndroid Build Coastguard Worker logits = self.output(x) 163*da0073e9SAndroid Build Coastguard Worker return logits 164*da0073e9SAndroid Build Coastguard Worker 165*da0073e9SAndroid Build Coastguard Worker @classmethod 166*da0073e9SAndroid Build Coastguard Worker def from_name(cls, name: str): 167*da0073e9SAndroid Build Coastguard Worker return cls(ModelArgs.from_name(name)) 168*da0073e9SAndroid Build Coastguard Worker 169*da0073e9SAndroid Build Coastguard Worker 170*da0073e9SAndroid Build Coastguard Workerclass TransformerBlock(nn.Module): 171*da0073e9SAndroid Build Coastguard Worker def __init__(self, config: ModelArgs) -> None: 172*da0073e9SAndroid Build Coastguard Worker super().__init__() 173*da0073e9SAndroid Build Coastguard Worker self.attention = Attention(config) 174*da0073e9SAndroid Build Coastguard Worker self.feed_forward = FeedForward(config) 175*da0073e9SAndroid Build Coastguard Worker self.ffn_norm = RMSNorm(config.dim, config.norm_eps) 176*da0073e9SAndroid Build Coastguard Worker self.attention_norm = RMSNorm(config.dim, config.norm_eps) 177*da0073e9SAndroid Build Coastguard Worker 178*da0073e9SAndroid Build Coastguard Worker def forward( 179*da0073e9SAndroid Build Coastguard Worker self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor 180*da0073e9SAndroid Build Coastguard Worker ) -> Tensor: 181*da0073e9SAndroid Build Coastguard Worker h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) 182*da0073e9SAndroid Build Coastguard Worker out = h + self.feed_forward(self.ffn_norm(h)) 183*da0073e9SAndroid Build Coastguard Worker return out 184*da0073e9SAndroid Build Coastguard Worker 185*da0073e9SAndroid Build Coastguard Worker 186*da0073e9SAndroid Build Coastguard Workerclass Attention(nn.Module): 187*da0073e9SAndroid Build Coastguard Worker def __init__(self, config: ModelArgs): 188*da0073e9SAndroid Build Coastguard Worker super().__init__() 189*da0073e9SAndroid Build Coastguard Worker assert config.dim % config.n_head == 0 190*da0073e9SAndroid Build Coastguard Worker 191*da0073e9SAndroid Build Coastguard Worker total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim 192*da0073e9SAndroid Build Coastguard Worker # key, query, value projections for all heads, but in a batch 193*da0073e9SAndroid Build Coastguard Worker self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) 194*da0073e9SAndroid Build Coastguard Worker self.wo = nn.Linear(config.dim, config.dim, bias=False) 195*da0073e9SAndroid Build Coastguard Worker self.kv_cache = None 196*da0073e9SAndroid Build Coastguard Worker 197*da0073e9SAndroid Build Coastguard Worker self.n_head = config.n_head 198*da0073e9SAndroid Build Coastguard Worker self.head_dim = config.head_dim 199*da0073e9SAndroid Build Coastguard Worker self.n_local_heads = config.n_local_heads 200*da0073e9SAndroid Build Coastguard Worker self.dim = config.dim 201*da0073e9SAndroid Build Coastguard Worker self._register_load_state_dict_pre_hook(self.load_hook) 202*da0073e9SAndroid Build Coastguard Worker 203*da0073e9SAndroid Build Coastguard Worker def load_hook(self, state_dict, prefix, *args): 204*da0073e9SAndroid Build Coastguard Worker if prefix + "wq.weight" in state_dict: 205*da0073e9SAndroid Build Coastguard Worker wq = state_dict.pop(prefix + "wq.weight") 206*da0073e9SAndroid Build Coastguard Worker wk = state_dict.pop(prefix + "wk.weight") 207*da0073e9SAndroid Build Coastguard Worker wv = state_dict.pop(prefix + "wv.weight") 208*da0073e9SAndroid Build Coastguard Worker state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) 209*da0073e9SAndroid Build Coastguard Worker 210*da0073e9SAndroid Build Coastguard Worker def forward( 211*da0073e9SAndroid Build Coastguard Worker self, 212*da0073e9SAndroid Build Coastguard Worker x: Tensor, 213*da0073e9SAndroid Build Coastguard Worker freqs_cis: Tensor, 214*da0073e9SAndroid Build Coastguard Worker mask: Tensor, 215*da0073e9SAndroid Build Coastguard Worker input_pos: Optional[Tensor] = None, 216*da0073e9SAndroid Build Coastguard Worker ) -> Tensor: 217*da0073e9SAndroid Build Coastguard Worker bsz, seqlen, _ = x.shape 218*da0073e9SAndroid Build Coastguard Worker 219*da0073e9SAndroid Build Coastguard Worker kv_size = self.n_local_heads * self.head_dim 220*da0073e9SAndroid Build Coastguard Worker q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) 221*da0073e9SAndroid Build Coastguard Worker 222*da0073e9SAndroid Build Coastguard Worker q = q.view(bsz, seqlen, self.n_head, self.head_dim) 223*da0073e9SAndroid Build Coastguard Worker k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) 224*da0073e9SAndroid Build Coastguard Worker v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) 225*da0073e9SAndroid Build Coastguard Worker 226*da0073e9SAndroid Build Coastguard Worker q = apply_rotary_emb(q, freqs_cis) 227*da0073e9SAndroid Build Coastguard Worker k = apply_rotary_emb(k, freqs_cis) 228*da0073e9SAndroid Build Coastguard Worker 229*da0073e9SAndroid Build Coastguard Worker q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) 230*da0073e9SAndroid Build Coastguard Worker 231*da0073e9SAndroid Build Coastguard Worker if self.kv_cache is not None: 232*da0073e9SAndroid Build Coastguard Worker k, v = self.kv_cache.update(input_pos, k, v) 233*da0073e9SAndroid Build Coastguard Worker 234*da0073e9SAndroid Build Coastguard Worker k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) 235*da0073e9SAndroid Build Coastguard Worker v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) 236*da0073e9SAndroid Build Coastguard Worker y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) 237*da0073e9SAndroid Build Coastguard Worker 238*da0073e9SAndroid Build Coastguard Worker y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) 239*da0073e9SAndroid Build Coastguard Worker 240*da0073e9SAndroid Build Coastguard Worker y = self.wo(y) 241*da0073e9SAndroid Build Coastguard Worker return y 242*da0073e9SAndroid Build Coastguard Worker 243*da0073e9SAndroid Build Coastguard Worker 244*da0073e9SAndroid Build Coastguard Workerclass FeedForward(nn.Module): 245*da0073e9SAndroid Build Coastguard Worker def __init__(self, config: ModelArgs) -> None: 246*da0073e9SAndroid Build Coastguard Worker super().__init__() 247*da0073e9SAndroid Build Coastguard Worker self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) 248*da0073e9SAndroid Build Coastguard Worker self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) 249*da0073e9SAndroid Build Coastguard Worker self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) 250*da0073e9SAndroid Build Coastguard Worker 251*da0073e9SAndroid Build Coastguard Worker def forward(self, x: Tensor) -> Tensor: 252*da0073e9SAndroid Build Coastguard Worker return self.w2(F.silu(self.w1(x)) * self.w3(x)) 253*da0073e9SAndroid Build Coastguard Worker 254*da0073e9SAndroid Build Coastguard Worker 255*da0073e9SAndroid Build Coastguard Workerclass RMSNorm(nn.Module): 256*da0073e9SAndroid Build Coastguard Worker def __init__(self, dim: int, eps: float = 1e-5): 257*da0073e9SAndroid Build Coastguard Worker super().__init__() 258*da0073e9SAndroid Build Coastguard Worker self.eps = eps 259*da0073e9SAndroid Build Coastguard Worker self.weight = nn.Parameter(torch.ones(dim)) 260*da0073e9SAndroid Build Coastguard Worker 261*da0073e9SAndroid Build Coastguard Worker def _norm(self, x): 262*da0073e9SAndroid Build Coastguard Worker return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) 263*da0073e9SAndroid Build Coastguard Worker 264*da0073e9SAndroid Build Coastguard Worker def forward(self, x: Tensor) -> Tensor: 265*da0073e9SAndroid Build Coastguard Worker output = self._norm(x.float()).type_as(x) 266*da0073e9SAndroid Build Coastguard Worker return output * self.weight 267*da0073e9SAndroid Build Coastguard Worker 268*da0073e9SAndroid Build Coastguard Worker 269*da0073e9SAndroid Build Coastguard Workerdef precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: 270*da0073e9SAndroid Build Coastguard Worker freqs = 1.0 / ( 271*da0073e9SAndroid Build Coastguard Worker base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) 272*da0073e9SAndroid Build Coastguard Worker ) 273*da0073e9SAndroid Build Coastguard Worker t = torch.arange(seq_len, device=freqs.device) 274*da0073e9SAndroid Build Coastguard Worker freqs = torch.outer(t, freqs) 275*da0073e9SAndroid Build Coastguard Worker freqs_cis = torch.polar(torch.ones_like(freqs), freqs) 276*da0073e9SAndroid Build Coastguard Worker cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) 277*da0073e9SAndroid Build Coastguard Worker return cache.to(dtype=torch.bfloat16) 278*da0073e9SAndroid Build Coastguard Worker 279*da0073e9SAndroid Build Coastguard Worker 280*da0073e9SAndroid Build Coastguard Workerdef apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: 281*da0073e9SAndroid Build Coastguard Worker xshaped = x.float().reshape(*x.shape[:-1], -1, 2) 282*da0073e9SAndroid Build Coastguard Worker freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) 283*da0073e9SAndroid Build Coastguard Worker x_out2 = torch.stack( 284*da0073e9SAndroid Build Coastguard Worker [ 285*da0073e9SAndroid Build Coastguard Worker xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], 286*da0073e9SAndroid Build Coastguard Worker xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], 287*da0073e9SAndroid Build Coastguard Worker ], 288*da0073e9SAndroid Build Coastguard Worker -1, 289*da0073e9SAndroid Build Coastguard Worker ) 290*da0073e9SAndroid Build Coastguard Worker 291*da0073e9SAndroid Build Coastguard Worker x_out2 = x_out2.flatten(3) 292*da0073e9SAndroid Build Coastguard Worker return x_out2.type_as(x) 293