xref: /aosp_15_r20/external/lmfit/man/lmcurve.pod (revision 5ddc57e5d924f146ab5fd87df586563e2270da38)
1*5ddc57e5SXin Li=pod
2*5ddc57e5SXin Li
3*5ddc57e5SXin Li=begin html
4*5ddc57e5SXin Li
5*5ddc57e5SXin Li<link rel="stylesheet" href="podstyle.css" type="text/css" />
6*5ddc57e5SXin Li
7*5ddc57e5SXin Li=end html
8*5ddc57e5SXin Li
9*5ddc57e5SXin Li=head1 NAME
10*5ddc57e5SXin Li
11*5ddc57e5SXin Lilmcurve - Levenberg-Marquardt least-squares fit of a curve (t,y)
12*5ddc57e5SXin Li
13*5ddc57e5SXin Li
14*5ddc57e5SXin Li=head1 SYNOPSIS
15*5ddc57e5SXin Li
16*5ddc57e5SXin LiB<#include <lmcurve.h>>
17*5ddc57e5SXin Li
18*5ddc57e5SXin LiB<void lmcurve( const int> I<n_par>B<, double *>I<par>B<, const int> I<m_dat>B<,
19*5ddc57e5SXin Li              constS< >double *>I<t>B<, constS< >double *>I<y>B<,
20*5ddc57e5SXin Li              double (*>I<f>B<)( const double >I<ti>B<, const double *>I<par>B< ),
21*5ddc57e5SXin Li              constS< >lm_control_struct *>I<control>B<,
22*5ddc57e5SXin Li              lm_status_struct *>I<status>B<);>
23*5ddc57e5SXin Li
24*5ddc57e5SXin LiB<void lmcurve_tyd(
25*5ddc57e5SXin Li              const int> I<n_par>B<, double *>I<par>B<, const int> I<m_dat>B<,
26*5ddc57e5SXin Li              constS< >double *>I<t>B<, constS< >double *>I<y>B<, constS< >double *>I<dy>B<,
27*5ddc57e5SXin Li              double (*>I<f>B<)( const double >I<ti>B<, const double *>I<par>B< ),
28*5ddc57e5SXin Li              constS< >lm_control_struct *>I<control>B<,
29*5ddc57e5SXin Li              lm_status_struct *>I<status>B<);>
30*5ddc57e5SXin Li
31*5ddc57e5SXin LiB<extern const lm_control_struct lm_control_double;>
32*5ddc57e5SXin Li
33*5ddc57e5SXin LiB<extern const lm_control_struct lm_control_float;>
34*5ddc57e5SXin Li
35*5ddc57e5SXin LiB<extern const char *lm_infmsg[];>
36*5ddc57e5SXin Li
37*5ddc57e5SXin LiB<extern const char *lm_shortmsg[];>
38*5ddc57e5SXin Li
39*5ddc57e5SXin Li=head1 DESCRIPTION
40*5ddc57e5SXin Li
41*5ddc57e5SXin LiB<lmcurve()> and B<lmcurve_tyd()> wrap the more generic minimization function B<lmmin()>, for use in curve fitting.
42*5ddc57e5SXin Li
43*5ddc57e5SXin LiB<lmcurve()> determines a vector I<par> that minimizes the sum of squared elements of a residue vector I<r>[i] := I<y>[i] - I<f>(I<t>[i];I<par>). Typically, B<lmcurve()> is used to approximate a data set I<t>,I<y> by a parametric function I<f>(I<ti>;I<par>). On success, I<par> represents a local minimum, not necessarily a global one; it may depend on its starting value.
44*5ddc57e5SXin Li
45*5ddc57e5SXin LiB<lmcurve_tyd()> does the same for a data set I<t>,I<y>,I<dy>, where I<dy> represents the standard deviation of empirical data I<y>. Residues are computed as I<r>[i] := (I<y>[i] - I<f>(I<t>[i];I<par>))/I<dy>[i]. Users must ensure that all I<dy>[i] are positive.
46*5ddc57e5SXin Li
47*5ddc57e5SXin Li
48*5ddc57e5SXin LiFunction arguments:
49*5ddc57e5SXin Li
50*5ddc57e5SXin Li=over
51*5ddc57e5SXin Li
52*5ddc57e5SXin Li=item I<n_par>
53*5ddc57e5SXin Li
54*5ddc57e5SXin LiNumber of free variables.
55*5ddc57e5SXin LiLength of parameter vector I<par>.
56*5ddc57e5SXin Li
57*5ddc57e5SXin Li=item I<par>
58*5ddc57e5SXin Li
59*5ddc57e5SXin LiParameter vector.
60*5ddc57e5SXin LiOn input, it must contain a reasonable guess.
61*5ddc57e5SXin LiOn output, it contains the solution found to minimize ||I<r>||.
62*5ddc57e5SXin Li
63*5ddc57e5SXin Li=item I<m_dat>
64*5ddc57e5SXin Li
65*5ddc57e5SXin LiNumber of data points.
66*5ddc57e5SXin LiLength of vectors I<t> and I<y>.
67*5ddc57e5SXin LiMust statisfy I<n_par> <= I<m_dat>.
68*5ddc57e5SXin Li
69*5ddc57e5SXin Li=item I<t>
70*5ddc57e5SXin Li
71*5ddc57e5SXin LiArray of length I<m_dat>.
72*5ddc57e5SXin LiContains the abcissae (time, or "x") for which function I<f> will be evaluated.
73*5ddc57e5SXin Li
74*5ddc57e5SXin Li=item I<y>
75*5ddc57e5SXin Li
76*5ddc57e5SXin LiArray of length I<m_dat>.
77*5ddc57e5SXin LiContains the ordinate values that shall be fitted.
78*5ddc57e5SXin Li
79*5ddc57e5SXin Li=item I<dy>
80*5ddc57e5SXin Li
81*5ddc57e5SXin LiOnly in B<lmcurve_tyd()>.
82*5ddc57e5SXin LiArray of length I<m_dat>.
83*5ddc57e5SXin LiContains the standard deviations of the values I<y>.
84*5ddc57e5SXin Li
85*5ddc57e5SXin Li=item I<f>
86*5ddc57e5SXin Li
87*5ddc57e5SXin LiA user-supplied parametric function I<f>(ti;I<par>).
88*5ddc57e5SXin Li
89*5ddc57e5SXin Li=item I<control>
90*5ddc57e5SXin Li
91*5ddc57e5SXin LiParameter collection for tuning the fit procedure.
92*5ddc57e5SXin LiIn most cases, the default &I<lm_control_double> is adequate.
93*5ddc57e5SXin LiIf I<f> is only computed with single-precision accuracy,
94*5ddc57e5SXin LiI<&lm_control_float> should be used.
95*5ddc57e5SXin LiParameters are explained in B<lmmin(3)>.
96*5ddc57e5SXin Li
97*5ddc57e5SXin Li=item I<status>
98*5ddc57e5SXin Li
99*5ddc57e5SXin LiA record used to return information about the minimization process:
100*5ddc57e5SXin LiFor details, see B<lmmin(3)>.
101*5ddc57e5SXin Li
102*5ddc57e5SXin Li=back
103*5ddc57e5SXin Li
104*5ddc57e5SXin Li=head1 EXAMPLE
105*5ddc57e5SXin Li
106*5ddc57e5SXin LiFit a data set y(x) by a curve f(x;p):
107*5ddc57e5SXin Li
108*5ddc57e5SXin Li    #include "lmcurve.h"
109*5ddc57e5SXin Li    #include <stdio.h>
110*5ddc57e5SXin Li
111*5ddc57e5SXin Li    /* model function: a parabola */
112*5ddc57e5SXin Li
113*5ddc57e5SXin Li    double f( double t, const double *p )
114*5ddc57e5SXin Li    {
115*5ddc57e5SXin Li        return p[0] + p[1]*t + p[2]*t*t;
116*5ddc57e5SXin Li    }
117*5ddc57e5SXin Li
118*5ddc57e5SXin Li    int main()
119*5ddc57e5SXin Li    {
120*5ddc57e5SXin Li        int n = 3; /* number of parameters in model function f */
121*5ddc57e5SXin Li        double par[3] = { 100, 0, -10 }; /* really bad starting value */
122*5ddc57e5SXin Li
123*5ddc57e5SXin Li        /* data points: a slightly distorted standard parabola */
124*5ddc57e5SXin Li        int m = 9;
125*5ddc57e5SXin Li        int i;
126*5ddc57e5SXin Li        double t[9] = { -4., -3., -2., -1.,  0., 1.,  2.,  3.,  4. };
127*5ddc57e5SXin Li        double y[9] = { 16.6, 9.9, 4.4, 1.1, 0., 1.1, 4.2, 9.3, 16.4 };
128*5ddc57e5SXin Li
129*5ddc57e5SXin Li        lm_control_struct control = lm_control_double;
130*5ddc57e5SXin Li        lm_status_struct status;
131*5ddc57e5SXin Li        control.verbosity = 7;
132*5ddc57e5SXin Li
133*5ddc57e5SXin Li        printf( "Fitting ...\n" );
134*5ddc57e5SXin Li        lmcurve( n, par, m, t, y, f, &control, &status );
135*5ddc57e5SXin Li
136*5ddc57e5SXin Li        printf( "Results:\n" );
137*5ddc57e5SXin Li        printf( "status after %d function evaluations:\n  %s\n",
138*5ddc57e5SXin Li                status.nfev, lm_infmsg[status.outcome] );
139*5ddc57e5SXin Li
140*5ddc57e5SXin Li        printf("obtained parameters:\n");
141*5ddc57e5SXin Li        for ( i = 0; i < n; ++i)
142*5ddc57e5SXin Li            printf("  par[%i] = %12g\n", i, par[i]);
143*5ddc57e5SXin Li        printf("obtained norm:\n  %12g\n", status.fnorm );
144*5ddc57e5SXin Li
145*5ddc57e5SXin Li        printf("fitting data as follows:\n");
146*5ddc57e5SXin Li        for ( i = 0; i < m; ++i)
147*5ddc57e5SXin Li            printf( "  t[%2d]=%4g y=%6g fit=%10g residue=%12g\n",
148*5ddc57e5SXin Li                    i, t[i], y[i], f(t[i],par), y[i] - f(t[i],par) );
149*5ddc57e5SXin Li
150*5ddc57e5SXin Li        return 0;
151*5ddc57e5SXin Li    }
152*5ddc57e5SXin Li
153*5ddc57e5SXin Li=head1 COPYING
154*5ddc57e5SXin Li
155*5ddc57e5SXin LiCopyright (C) 2009-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH
156*5ddc57e5SXin Li
157*5ddc57e5SXin LiSoftware: FreeBSD License
158*5ddc57e5SXin Li
159*5ddc57e5SXin LiDocumentation: Creative Commons Attribution Share Alike
160*5ddc57e5SXin Li
161*5ddc57e5SXin Li
162*5ddc57e5SXin Li=head1 SEE ALSO
163*5ddc57e5SXin Li
164*5ddc57e5SXin Li=begin html
165*5ddc57e5SXin Li
166*5ddc57e5SXin Li<a href="http://apps.jcns.fz-juelich.de/man/lmmin.html"><b>lmmin</b>(3)</a>
167*5ddc57e5SXin Li
168*5ddc57e5SXin Li=end html
169*5ddc57e5SXin Li
170*5ddc57e5SXin Li=begin man
171*5ddc57e5SXin Li
172*5ddc57e5SXin Li\fBlmmin\fR(3)
173*5ddc57e5SXin Li.PP
174*5ddc57e5SXin Li
175*5ddc57e5SXin Li=end man
176*5ddc57e5SXin Li
177*5ddc57e5SXin LiHomepage: http://apps.jcns.fz-juelich.de/lmfit
178*5ddc57e5SXin Li
179*5ddc57e5SXin Li=head1 BUGS
180*5ddc57e5SXin Li
181*5ddc57e5SXin LiPlease send bug reports and suggestions to the author <[email protected]>.
182