xref: /aosp_15_r20/external/lmfit/man/lmcurve.html (revision 5ddc57e5d924f146ab5fd87df586563e2270da38)
1*5ddc57e5SXin Li<?xml version="1.0" ?>
2*5ddc57e5SXin Li<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3*5ddc57e5SXin Li<html xmlns="http://www.w3.org/1999/xhtml">
4*5ddc57e5SXin Li<head>
5*5ddc57e5SXin Li<title>lmfit: a self-contained C library for Levenberg-Marquardt least-squares minimization and curve fitting</title>
6*5ddc57e5SXin Li<meta http-equiv="content-type" content="text/html; charset=utf-8" />
7*5ddc57e5SXin Li<link rev="made" href="mailto:root@localhost" />
8*5ddc57e5SXin Li</head>
9*5ddc57e5SXin Li
10*5ddc57e5SXin Li<body>
11*5ddc57e5SXin Li
12*5ddc57e5SXin Li
13*5ddc57e5SXin Li
14*5ddc57e5SXin Li
15*5ddc57e5SXin Li
16*5ddc57e5SXin Li<link rel="stylesheet" href="podstyle.css" type="text/css" />
17*5ddc57e5SXin Li
18*5ddc57e5SXin Li<h1 id="NAME">NAME</h1>
19*5ddc57e5SXin Li
20*5ddc57e5SXin Li<p>lmcurve - Levenberg-Marquardt least-squares fit of a curve (t,y)</p>
21*5ddc57e5SXin Li
22*5ddc57e5SXin Li<h1 id="SYNOPSIS">SYNOPSIS</h1>
23*5ddc57e5SXin Li
24*5ddc57e5SXin Li<p><b>#include &lt;lmcurve.h</b>&gt;</p>
25*5ddc57e5SXin Li
26*5ddc57e5SXin Li<p><b>void lmcurve( const int</b> <i>n_par</i><b>, double *</b><i>par</i><b>, const int</b> <i>m_dat</i><b>, const<span style="white-space: nowrap;"> </span>double *</b><i>t</i><b>, const<span style="white-space: nowrap;"> </span>double *</b><i>y</i><b>, double (*</b><i>f</i><b>)( const double </b><i>ti</i><b>, const double *</b><i>par</i><b> ), const<span style="white-space: nowrap;"> </span>lm_control_struct *</b><i>control</i><b>, lm_status_struct *</b><i>status</i><b>);</b></p>
27*5ddc57e5SXin Li
28*5ddc57e5SXin Li<p><b>void lmcurve_tyd( const int</b> <i>n_par</i><b>, double *</b><i>par</i><b>, const int</b> <i>m_dat</i><b>, const<span style="white-space: nowrap;"> </span>double *</b><i>t</i><b>, const<span style="white-space: nowrap;"> </span>double *</b><i>y</i><b>, const<span style="white-space: nowrap;"> </span>double *</b><i>dy</i><b>, double (*</b><i>f</i><b>)( const double </b><i>ti</i><b>, const double *</b><i>par</i><b> ), const<span style="white-space: nowrap;"> </span>lm_control_struct *</b><i>control</i><b>, lm_status_struct *</b><i>status</i><b>);</b></p>
29*5ddc57e5SXin Li
30*5ddc57e5SXin Li<p><b>extern const lm_control_struct lm_control_double;</b></p>
31*5ddc57e5SXin Li
32*5ddc57e5SXin Li<p><b>extern const lm_control_struct lm_control_float;</b></p>
33*5ddc57e5SXin Li
34*5ddc57e5SXin Li<p><b>extern const char *lm_infmsg[];</b></p>
35*5ddc57e5SXin Li
36*5ddc57e5SXin Li<p><b>extern const char *lm_shortmsg[];</b></p>
37*5ddc57e5SXin Li
38*5ddc57e5SXin Li<h1 id="DESCRIPTION">DESCRIPTION</h1>
39*5ddc57e5SXin Li
40*5ddc57e5SXin Li<p><b>lmcurve()</b> and <b>lmcurve_tyd()</b> wrap the more generic minimization function <b>lmmin()</b>, for use in curve fitting.</p>
41*5ddc57e5SXin Li
42*5ddc57e5SXin Li<p><b>lmcurve()</b> determines a vector <i>par</i> that minimizes the sum of squared elements of a residue vector <i>r</i>[i] := <i>y</i>[i] - <i>f</i>(<i>t</i>[i];<i>par</i>). Typically, <b>lmcurve()</b> is used to approximate a data set <i>t</i>,<i>y</i> by a parametric function <i>f</i>(<i>ti</i>;<i>par</i>). On success, <i>par</i> represents a local minimum, not necessarily a global one; it may depend on its starting value.</p>
43*5ddc57e5SXin Li
44*5ddc57e5SXin Li<p><b>lmcurve_tyd()</b> does the same for a data set <i>t</i>,<i>y</i>,<i>dy</i>, where <i>dy</i> represents the standard deviation of empirical data <i>y</i>. Residues are computed as <i>r</i>[i] := (<i>y</i>[i] - <i>f</i>(<i>t</i>[i];<i>par</i>))/<i>dy</i>[i]. Users must ensure that all <i>dy</i>[i] are positive.</p>
45*5ddc57e5SXin Li
46*5ddc57e5SXin Li<p>Function arguments:</p>
47*5ddc57e5SXin Li
48*5ddc57e5SXin Li<dl>
49*5ddc57e5SXin Li
50*5ddc57e5SXin Li<dt id="n_par"><i>n_par</i></dt>
51*5ddc57e5SXin Li<dd>
52*5ddc57e5SXin Li
53*5ddc57e5SXin Li<p>Number of free variables. Length of parameter vector <i>par</i>.</p>
54*5ddc57e5SXin Li
55*5ddc57e5SXin Li</dd>
56*5ddc57e5SXin Li<dt id="par"><i>par</i></dt>
57*5ddc57e5SXin Li<dd>
58*5ddc57e5SXin Li
59*5ddc57e5SXin Li<p>Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||<i>r</i>||.</p>
60*5ddc57e5SXin Li
61*5ddc57e5SXin Li</dd>
62*5ddc57e5SXin Li<dt id="m_dat"><i>m_dat</i></dt>
63*5ddc57e5SXin Li<dd>
64*5ddc57e5SXin Li
65*5ddc57e5SXin Li<p>Number of data points. Length of vectors <i>t</i> and <i>y</i>. Must statisfy <i>n_par</i> &lt;= <i>m_dat</i>.</p>
66*5ddc57e5SXin Li
67*5ddc57e5SXin Li</dd>
68*5ddc57e5SXin Li<dt id="t"><i>t</i></dt>
69*5ddc57e5SXin Li<dd>
70*5ddc57e5SXin Li
71*5ddc57e5SXin Li<p>Array of length <i>m_dat</i>. Contains the abcissae (time, or &quot;x&quot;) for which function <i>f</i> will be evaluated.</p>
72*5ddc57e5SXin Li
73*5ddc57e5SXin Li</dd>
74*5ddc57e5SXin Li<dt id="y"><i>y</i></dt>
75*5ddc57e5SXin Li<dd>
76*5ddc57e5SXin Li
77*5ddc57e5SXin Li<p>Array of length <i>m_dat</i>. Contains the ordinate values that shall be fitted.</p>
78*5ddc57e5SXin Li
79*5ddc57e5SXin Li</dd>
80*5ddc57e5SXin Li<dt id="dy"><i>dy</i></dt>
81*5ddc57e5SXin Li<dd>
82*5ddc57e5SXin Li
83*5ddc57e5SXin Li<p>Only in <b>lmcurve_tyd()</b>. Array of length <i>m_dat</i>. Contains the standard deviations of the values <i>y</i>.</p>
84*5ddc57e5SXin Li
85*5ddc57e5SXin Li</dd>
86*5ddc57e5SXin Li<dt id="f"><i>f</i></dt>
87*5ddc57e5SXin Li<dd>
88*5ddc57e5SXin Li
89*5ddc57e5SXin Li<p>A user-supplied parametric function <i>f</i>(ti;<i>par</i>).</p>
90*5ddc57e5SXin Li
91*5ddc57e5SXin Li</dd>
92*5ddc57e5SXin Li<dt id="control"><i>control</i></dt>
93*5ddc57e5SXin Li<dd>
94*5ddc57e5SXin Li
95*5ddc57e5SXin Li<p>Parameter collection for tuning the fit procedure. In most cases, the default &amp;<i>lm_control_double</i> is adequate. If <i>f</i> is only computed with single-precision accuracy, <i>&amp;lm_control_float</i> should be used. Parameters are explained in <b>lmmin(3)</b>.</p>
96*5ddc57e5SXin Li
97*5ddc57e5SXin Li</dd>
98*5ddc57e5SXin Li<dt id="status"><i>status</i></dt>
99*5ddc57e5SXin Li<dd>
100*5ddc57e5SXin Li
101*5ddc57e5SXin Li<p>A record used to return information about the minimization process: For details, see <b>lmmin(3)</b>.</p>
102*5ddc57e5SXin Li
103*5ddc57e5SXin Li</dd>
104*5ddc57e5SXin Li</dl>
105*5ddc57e5SXin Li
106*5ddc57e5SXin Li<h1 id="EXAMPLE">EXAMPLE</h1>
107*5ddc57e5SXin Li
108*5ddc57e5SXin Li<p>Fit a data set y(x) by a curve f(x;p):</p>
109*5ddc57e5SXin Li
110*5ddc57e5SXin Li<pre><code>    #include &quot;lmcurve.h&quot;
111*5ddc57e5SXin Li    #include &lt;stdio.h&gt;
112*5ddc57e5SXin Li
113*5ddc57e5SXin Li    /* model function: a parabola */
114*5ddc57e5SXin Li
115*5ddc57e5SXin Li    double f( double t, const double *p )
116*5ddc57e5SXin Li    {
117*5ddc57e5SXin Li        return p[0] + p[1]*t + p[2]*t*t;
118*5ddc57e5SXin Li    }
119*5ddc57e5SXin Li
120*5ddc57e5SXin Li    int main()
121*5ddc57e5SXin Li    {
122*5ddc57e5SXin Li        int n = 3; /* number of parameters in model function f */
123*5ddc57e5SXin Li        double par[3] = { 100, 0, -10 }; /* really bad starting value */
124*5ddc57e5SXin Li
125*5ddc57e5SXin Li        /* data points: a slightly distorted standard parabola */
126*5ddc57e5SXin Li        int m = 9;
127*5ddc57e5SXin Li        int i;
128*5ddc57e5SXin Li        double t[9] = { -4., -3., -2., -1.,  0., 1.,  2.,  3.,  4. };
129*5ddc57e5SXin Li        double y[9] = { 16.6, 9.9, 4.4, 1.1, 0., 1.1, 4.2, 9.3, 16.4 };
130*5ddc57e5SXin Li
131*5ddc57e5SXin Li        lm_control_struct control = lm_control_double;
132*5ddc57e5SXin Li        lm_status_struct status;
133*5ddc57e5SXin Li        control.verbosity = 7;
134*5ddc57e5SXin Li
135*5ddc57e5SXin Li        printf( &quot;Fitting ...\n&quot; );
136*5ddc57e5SXin Li        lmcurve( n, par, m, t, y, f, &amp;control, &amp;status );
137*5ddc57e5SXin Li
138*5ddc57e5SXin Li        printf( &quot;Results:\n&quot; );
139*5ddc57e5SXin Li        printf( &quot;status after %d function evaluations:\n  %s\n&quot;,
140*5ddc57e5SXin Li                status.nfev, lm_infmsg[status.outcome] );
141*5ddc57e5SXin Li
142*5ddc57e5SXin Li        printf(&quot;obtained parameters:\n&quot;);
143*5ddc57e5SXin Li        for ( i = 0; i &lt; n; ++i)
144*5ddc57e5SXin Li            printf(&quot;  par[%i] = %12g\n&quot;, i, par[i]);
145*5ddc57e5SXin Li        printf(&quot;obtained norm:\n  %12g\n&quot;, status.fnorm );
146*5ddc57e5SXin Li
147*5ddc57e5SXin Li        printf(&quot;fitting data as follows:\n&quot;);
148*5ddc57e5SXin Li        for ( i = 0; i &lt; m; ++i)
149*5ddc57e5SXin Li            printf( &quot;  t[%2d]=%4g y=%6g fit=%10g residue=%12g\n&quot;,
150*5ddc57e5SXin Li                    i, t[i], y[i], f(t[i],par), y[i] - f(t[i],par) );
151*5ddc57e5SXin Li
152*5ddc57e5SXin Li        return 0;
153*5ddc57e5SXin Li    }</code></pre>
154*5ddc57e5SXin Li
155*5ddc57e5SXin Li<h1 id="COPYING">COPYING</h1>
156*5ddc57e5SXin Li
157*5ddc57e5SXin Li<p>Copyright (C) 2009-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH</p>
158*5ddc57e5SXin Li
159*5ddc57e5SXin Li<p>Software: FreeBSD License</p>
160*5ddc57e5SXin Li
161*5ddc57e5SXin Li<p>Documentation: Creative Commons Attribution Share Alike</p>
162*5ddc57e5SXin Li
163*5ddc57e5SXin Li<h1 id="SEE-ALSO">SEE ALSO</h1>
164*5ddc57e5SXin Li
165*5ddc57e5SXin Li
166*5ddc57e5SXin Li
167*5ddc57e5SXin Li<a href="http://apps.jcns.fz-juelich.de/man/lmmin.html"><b>lmmin</b>(3)</a>
168*5ddc57e5SXin Li
169*5ddc57e5SXin Li<p>Homepage: http://apps.jcns.fz-juelich.de/lmfit</p>
170*5ddc57e5SXin Li
171*5ddc57e5SXin Li<h1 id="BUGS">BUGS</h1>
172*5ddc57e5SXin Li
173*5ddc57e5SXin Li<p>Please send bug reports and suggestions to the author &lt;[email protected]&gt;.</p>
174*5ddc57e5SXin Li
175*5ddc57e5SXin Li
176*5ddc57e5SXin Li</body>
177*5ddc57e5SXin Li
178*5ddc57e5SXin Li</html>
179*5ddc57e5SXin Li
180*5ddc57e5SXin Li
181