xref: /aosp_15_r20/external/llvm-libc/src/math/generic/sincos_eval.h (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Compute sin + cos for small angles ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H
11 
12 #include "src/__support/FPUtil/PolyEval.h"
13 #include "src/__support/FPUtil/double_double.h"
14 #include "src/__support/FPUtil/dyadic_float.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/integer_literals.h"
17 #include "src/__support/macros/config.h"
18 
19 namespace LIBC_NAMESPACE_DECL {
20 
21 namespace generic {
22 
23 using fputil::DoubleDouble;
24 using Float128 = fputil::DyadicFloat<128>;
25 
sincos_eval(const DoubleDouble & u,DoubleDouble & sin_u,DoubleDouble & cos_u)26 LIBC_INLINE double sincos_eval(const DoubleDouble &u, DoubleDouble &sin_u,
27                                DoubleDouble &cos_u) {
28   // Evaluate sin(y) = sin(x - k * (pi/128))
29   // We use the degree-7 Taylor approximation:
30   //   sin(y) ~ y - y^3/3! + y^5/5! - y^7/7!
31   // Then the error is bounded by:
32   //   |sin(y) - (y - y^3/3! + y^5/5! - y^7/7!)| < |y|^9/9! < 2^-54/9! < 2^-72.
33   // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
34   // < ulp(u_hi^3) gives us:
35   //   y - y^3/3! + y^5/5! - y^7/7! = ...
36   // ~ u_hi + u_hi^3 * (-1/6 + u_hi^2 * (1/120 - u_hi^2 * 1/5040)) +
37   //        + u_lo (1 + u_hi^2 * (-1/2 + u_hi^2 / 24))
38   double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
39   // p1 ~ 1/120 + u_hi^2 / 5040.
40   double p1 = fputil::multiply_add(u_hi_sq, -0x1.a01a01a01a01ap-13,
41                                    0x1.1111111111111p-7);
42   // q1 ~ -1/2 + u_hi^2 / 24.
43   double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-5, -0x1.0p-1);
44   double u_hi_3 = u_hi_sq * u.hi;
45   // p2 ~ -1/6 + u_hi^2 (1/120 - u_hi^2 * 1/5040)
46   double p2 = fputil::multiply_add(u_hi_sq, p1, -0x1.5555555555555p-3);
47   // q2 ~ 1 + u_hi^2 (-1/2 + u_hi^2 / 24)
48   double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
49   double sin_lo = fputil::multiply_add(u_hi_3, p2, u.lo * q2);
50   // Overall, |sin(y) - (u_hi + sin_lo)| < 2*ulp(u_hi^3) < 2^-69.
51 
52   // Evaluate cos(y) = cos(x - k * (pi/128))
53   // We use the degree-8 Taylor approximation:
54   //   cos(y) ~ 1 - y^2/2 + y^4/4! - y^6/6! + y^8/8!
55   // Then the error is bounded by:
56   //   |cos(y) - (...)| < |y|^10/10! < 2^-81
57   // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
58   // < ulp(u_hi^3) gives us:
59   //   1 - y^2/2 + y^4/4! - y^6/6! + y^8/8! = ...
60   // ~ 1 - u_hi^2/2 + u_hi^4(1/24 + u_hi^2 (-1/720 + u_hi^2/40320)) +
61   //     + u_hi u_lo (-1 + u_hi^2/6)
62   // We compute 1 - u_hi^2 accurately:
63   //   v_hi + v_lo ~ 1 - u_hi^2/2
64   // with error <= 2^-105.
65   double u_hi_neg_half = (-0.5) * u.hi;
66   DoubleDouble v;
67 
68 #ifdef LIBC_TARGET_CPU_HAS_FMA
69   v.hi = fputil::multiply_add(u.hi, u_hi_neg_half, 1.0);
70   v.lo = 1.0 - v.hi; // Exact
71   v.lo = fputil::multiply_add(u.hi, u_hi_neg_half, v.lo);
72 #else
73   DoubleDouble u_hi_sq_neg_half = fputil::exact_mult(u.hi, u_hi_neg_half);
74   v = fputil::exact_add(1.0, u_hi_sq_neg_half.hi);
75   v.lo += u_hi_sq_neg_half.lo;
76 #endif // LIBC_TARGET_CPU_HAS_FMA
77 
78   // r1 ~ -1/720 + u_hi^2 / 40320
79   double r1 = fputil::multiply_add(u_hi_sq, 0x1.a01a01a01a01ap-16,
80                                    -0x1.6c16c16c16c17p-10);
81   // s1 ~ -1 + u_hi^2 / 6
82   double s1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-3, -1.0);
83   double u_hi_4 = u_hi_sq * u_hi_sq;
84   double u_hi_u_lo = u.hi * u.lo;
85   // r2 ~ 1/24 + u_hi^2 (-1/720 + u_hi^2 / 40320)
86   double r2 = fputil::multiply_add(u_hi_sq, r1, 0x1.5555555555555p-5);
87   // s2 ~ v_lo + u_hi * u_lo * (-1 + u_hi^2 / 6)
88   double s2 = fputil::multiply_add(u_hi_u_lo, s1, v.lo);
89   double cos_lo = fputil::multiply_add(u_hi_4, r2, s2);
90   // Overall, |cos(y) - (v_hi + cos_lo)| < 2*ulp(u_hi^4) < 2^-75.
91 
92   sin_u = fputil::exact_add(u.hi, sin_lo);
93   cos_u = fputil::exact_add(v.hi, cos_lo);
94 
95   return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(),
96                               0x1.0p-51, 0x1.0p-105);
97 }
98 
sincos_eval(const Float128 & u,Float128 & sin_u,Float128 & cos_u)99 LIBC_INLINE void sincos_eval(const Float128 &u, Float128 &sin_u,
100                              Float128 &cos_u) {
101   Float128 u_sq = fputil::quick_mul(u, u);
102 
103   // sin(u) ~ x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13!
104   constexpr Float128 SIN_COEFFS[] = {
105       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
106       {Sign::NEG, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // -1/3!
107       {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/5!
108       {Sign::NEG, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // -1/7!
109       {Sign::POS, -146, 0xb8ef1d2a'b6399c7d'560e4472'800b8ef2_u128}, // 1/9!
110       {Sign::NEG, -153, 0xd7322b3f'aa271c7f'3a3f25c1'bee38f10_u128}, // -1/11!
111       {Sign::POS, -160, 0xb092309d'43684be5'1c198e91'd7b4269e_u128}, // 1/13!
112   };
113 
114   // cos(u) ~ 1 - x^2/2 + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12!
115   constexpr Float128 COS_COEFFS[] = {
116       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
117       {Sign::NEG, -128, 0x80000000'00000000'00000000'00000000_u128}, // 1/2
118       {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/4!
119       {Sign::NEG, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/6!
120       {Sign::POS, -143, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/8!
121       {Sign::NEG, -149, 0x93f27dbb'c4fae397'780b69f5'333c725b_u128}, // 1/10!
122       {Sign::POS, -156, 0x8f76c77f'c6c4bdaa'26d4c3d6'7f425f60_u128}, // 1/12!
123   };
124 
125   sin_u = fputil::quick_mul(u, fputil::polyeval(u_sq, SIN_COEFFS[0],
126                                                 SIN_COEFFS[1], SIN_COEFFS[2],
127                                                 SIN_COEFFS[3], SIN_COEFFS[4],
128                                                 SIN_COEFFS[5], SIN_COEFFS[6]));
129   cos_u = fputil::polyeval(u_sq, COS_COEFFS[0], COS_COEFFS[1], COS_COEFFS[2],
130                            COS_COEFFS[3], COS_COEFFS[4], COS_COEFFS[5],
131                            COS_COEFFS[6]);
132 }
133 
134 } // namespace generic
135 
136 } // namespace LIBC_NAMESPACE_DECL
137 
138 #endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_EVAL_H
139