xref: /aosp_15_r20/external/llvm-libc/src/math/generic/exp2.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Double-precision 2^x function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/exp2.h"
10 #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
11 #include "explogxf.h"         // ziv_test_denorm.
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/optional.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/PolyEval.h"
17 #include "src/__support/FPUtil/double_double.h"
18 #include "src/__support/FPUtil/dyadic_float.h"
19 #include "src/__support/FPUtil/multiply_add.h"
20 #include "src/__support/FPUtil/nearest_integer.h"
21 #include "src/__support/FPUtil/rounding_mode.h"
22 #include "src/__support/FPUtil/triple_double.h"
23 #include "src/__support/common.h"
24 #include "src/__support/integer_literals.h"
25 #include "src/__support/macros/config.h"
26 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
27 
28 namespace LIBC_NAMESPACE_DECL {
29 
30 using fputil::DoubleDouble;
31 using fputil::TripleDouble;
32 using Float128 = typename fputil::DyadicFloat<128>;
33 
34 using LIBC_NAMESPACE::operator""_u128;
35 
36 // Error bounds:
37 // Errors when using double precision.
38 #ifdef LIBC_TARGET_CPU_HAS_FMA
39 constexpr double ERR_D = 0x1.0p-63;
40 #else
41 constexpr double ERR_D = 0x1.8p-63;
42 #endif // LIBC_TARGET_CPU_HAS_FMA
43 
44 // Errors when using double-double precision.
45 constexpr double ERR_DD = 0x1.0p-100;
46 
47 namespace {
48 
49 // Polynomial approximations with double precision.  Generated by Sollya with:
50 // > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
51 // > P;
52 // Error bounds:
53 //   | output - (2^dx - 1) / dx | < 1.5 * 2^-52.
poly_approx_d(double dx)54 LIBC_INLINE double poly_approx_d(double dx) {
55   // dx^2
56   double dx2 = dx * dx;
57   double c0 =
58       fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1);
59   double c1 =
60       fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5);
61   double p = fputil::multiply_add(dx2, c1, c0);
62   return p;
63 }
64 
65 // Polynomial approximation with double-double precision.  Generated by Solya
66 // with:
67 // > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
68 // Error bounds:
69 //   | output - 2^(dx) | < 2^-101
poly_approx_dd(const DoubleDouble & dx)70 DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
71   // Taylor polynomial.
72   constexpr DoubleDouble COEFFS[] = {
73       {0, 0x1p0},
74       {0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1},
75       {-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3},
76       {-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5},
77       {0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7},
78       {-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10},
79       {0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13},
80   };
81 
82   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
83                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
84   return p;
85 }
86 
87 // Polynomial approximation with 128-bit precision:
88 // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
89 // For |dx| < 2^-13 + 2^-30:
90 //   | output - exp(dx) | < 2^-126.
poly_approx_f128(const Float128 & dx)91 Float128 poly_approx_f128(const Float128 &dx) {
92   constexpr Float128 COEFFS_128[]{
93       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
94       {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128},
95       {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128},
96       {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128},
97       {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128},
98       {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128},
99       {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128},
100       {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128},
101   };
102 
103   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
104                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
105                                 COEFFS_128[6], COEFFS_128[7]);
106   return p;
107 }
108 
109 // Compute 2^(x) using 128-bit precision.
110 // TODO(lntue): investigate triple-double precision implementation for this
111 // step.
exp2_f128(double x,int hi,int idx1,int idx2)112 Float128 exp2_f128(double x, int hi, int idx1, int idx2) {
113   Float128 dx = Float128(x);
114 
115   // TODO: Skip recalculating exp_mid1 and exp_mid2.
116   Float128 exp_mid1 =
117       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
118                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
119                                           Float128(EXP2_MID1[idx1].lo)));
120 
121   Float128 exp_mid2 =
122       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
123                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
124                                           Float128(EXP2_MID2[idx2].lo)));
125 
126   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
127 
128   Float128 p = poly_approx_f128(dx);
129 
130   Float128 r = fputil::quick_mul(exp_mid, p);
131 
132   r.exponent += hi;
133 
134   return r;
135 }
136 
137 // Compute 2^x with double-double precision.
exp2_double_double(double x,const DoubleDouble & exp_mid)138 DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) {
139   DoubleDouble dx({0, x});
140 
141   // Degree-6 polynomial approximation in double-double precision.
142   // | p - 2^x | < 2^-103.
143   DoubleDouble p = poly_approx_dd(dx);
144 
145   // Error bounds: 2^-102.
146   DoubleDouble r = fputil::quick_mult(exp_mid, p);
147 
148   return r;
149 }
150 
151 // When output is denormal.
exp2_denorm(double x)152 double exp2_denorm(double x) {
153   // Range reduction.
154   int k =
155       static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
156   double kd = static_cast<double>(k);
157 
158   uint32_t idx1 = (k >> 6) & 0x3f;
159   uint32_t idx2 = k & 0x3f;
160 
161   int hi = k >> 12;
162 
163   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
164   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
165   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
166 
167   // |dx| < 2^-13 + 2^-30.
168   double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
169 
170   double mid_lo = dx * exp_mid.hi;
171 
172   // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
173   double p = poly_approx_d(dx);
174 
175   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
176 
177   if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
178       LIBC_LIKELY(r.has_value()))
179     return r.value();
180 
181   // Use double-double
182   DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
183 
184   if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
185       LIBC_LIKELY(r.has_value()))
186     return r.value();
187 
188   // Use 128-bit precision
189   Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
190 
191   return static_cast<double>(r_f128);
192 }
193 
194 // Check for exceptional cases when:
195 //  * log2(1 - 2^-54) < x < log2(1 + 2^-53)
196 //  * x >= 1024
197 //  * x <= -1022
198 //  * x is inf or nan
set_exceptional(double x)199 double set_exceptional(double x) {
200   using FPBits = typename fputil::FPBits<double>;
201   FPBits xbits(x);
202 
203   uint64_t x_u = xbits.uintval();
204   uint64_t x_abs = xbits.abs().uintval();
205 
206   // |x| < log2(1 + 2^-53)
207   if (x_abs <= 0x3ca71547652b82fd) {
208     // 2^(x) ~ 1 + x/2
209     return fputil::multiply_add(x, 0.5, 1.0);
210   }
211 
212   // x <= -1022 || x >= 1024 or inf/nan.
213   if (x_u > 0xc08ff00000000000) {
214     // x <= -1075 or -inf/nan
215     if (x_u >= 0xc090cc0000000000) {
216       // exp(-Inf) = 0
217       if (xbits.is_inf())
218         return 0.0;
219 
220       // exp(nan) = nan
221       if (xbits.is_nan())
222         return x;
223 
224       if (fputil::quick_get_round() == FE_UPWARD)
225         return FPBits::min_subnormal().get_val();
226       fputil::set_errno_if_required(ERANGE);
227       fputil::raise_except_if_required(FE_UNDERFLOW);
228       return 0.0;
229     }
230 
231     return exp2_denorm(x);
232   }
233 
234   // x >= 1024 or +inf/nan
235   // x is finite
236   if (x_u < 0x7ff0'0000'0000'0000ULL) {
237     int rounding = fputil::quick_get_round();
238     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
239       return FPBits::max_normal().get_val();
240 
241     fputil::set_errno_if_required(ERANGE);
242     fputil::raise_except_if_required(FE_OVERFLOW);
243   }
244   // x is +inf or nan
245   return x + FPBits::inf().get_val();
246 }
247 
248 } // namespace
249 
250 LLVM_LIBC_FUNCTION(double, exp2, (double x)) {
251   using FPBits = typename fputil::FPBits<double>;
252   FPBits xbits(x);
253 
254   uint64_t x_u = xbits.uintval();
255 
256   // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53).
257   if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 ||
258                     (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) ||
259                     x_u <= 0x3ca71547652b82fd)) {
260     return set_exceptional(x);
261   }
262 
263   // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024
264 
265   // Range reduction:
266   // Let x = (hi + mid1 + mid2) + lo
267   // in which:
268   //   hi is an integer
269   //   mid1 * 2^6 is an integer
270   //   mid2 * 2^12 is an integer
271   // then:
272   //   2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo).
273   // With this formula:
274   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
275   //     field.
276   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
277   //   - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
278   //
279   // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12.
280   // Since |x| < |-1075)| < 2^11,
281   //   |x * 2^12| < 2^11 * 2^12 < 2^23,
282   // So we can fit the rounded result round(x * 2^12) in int32_t.
283   // Thus, the goal is to be able to use an additional addition and fixed width
284   // shift to get an int32_t representing round(x * 2^12).
285   //
286   // Assuming int32_t using 2-complement representation, since the mantissa part
287   // of a double precision is unsigned with the leading bit hidden, if we add an
288   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
289   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
290   // considered as a proper 2-complement representations of x*2^12.
291   //
292   // One small problem with this approach is that the sum (x*2^12 + C) in
293   // double precision is rounded to the least significant bit of the dorminant
294   // factor C.  In order to minimize the rounding errors from this addition, we
295   // want to minimize e1.  Another constraint that we want is that after
296   // shifting the mantissa so that the least significant bit of int32_t
297   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
298   // any adjustment.  So combining these 2 requirements, we can choose
299   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
300   // after right shifting the mantissa, the resulting int32_t has correct sign.
301   // With this choice of C, the number of mantissa bits we need to shift to the
302   // right is: 52 - 33 = 19.
303   //
304   // Moreover, since the integer right shifts are equivalent to rounding down,
305   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
306   // +infinity.  So in particular, we can compute:
307   //   hmm = x * 2^12 + C,
308   // where C = 2^33 + 2^32 + 2^-1, then if
309   //   k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
310   // the reduced argument:
311   //   lo = x - 2^-12 * k is bounded by:
312   //   |lo| <= 2^-13 + 2^-12*2^-19
313   //         = 2^-13 + 2^-31.
314   //
315   // Finally, notice that k only uses the mantissa of x * 2^12, so the
316   // exponent 2^12 is not needed.  So we can simply define
317   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
318   //   k = int32_t(lower 51 bits of double(x + C) >> 19).
319 
320   // Rounding errors <= 2^-31.
321   int k =
322       static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
323   double kd = static_cast<double>(k);
324 
325   uint32_t idx1 = (k >> 6) & 0x3f;
326   uint32_t idx2 = k & 0x3f;
327 
328   int hi = k >> 12;
329 
330   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
331   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
332   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
333 
334   // |dx| < 2^-13 + 2^-30.
335   double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
336 
337   // We use the degree-4 polynomial to approximate 2^(lo):
338   //   2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo)
339   // So that the errors are bounded by:
340   //   |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
341   // Let P_ be an evaluation of P where all intermediate computations are in
342   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
343   // errors can be bounded by:
344   //      |P_(lo) - P(lo)| < 2^-51
345   //   => |lo * P_(lo) - (2^lo - 1) | < 2^-64
346   //   => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63.
347   // Since we approximate
348   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
349   // We use the expression:
350   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
351   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
352   // with errors bounded by 2^-63.
353 
354   double mid_lo = dx * exp_mid.hi;
355 
356   // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
357   double p = poly_approx_d(dx);
358 
359   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
360 
361   double upper = exp_mid.hi + (lo + ERR_D);
362   double lower = exp_mid.hi + (lo - ERR_D);
363 
364   if (LIBC_LIKELY(upper == lower)) {
365     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
366     // field.
367     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
368     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
369     return r;
370   }
371 
372   // Use double-double
373   DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
374 
375   double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
376   double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
377 
378   if (LIBC_LIKELY(upper_dd == lower_dd)) {
379     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
380     // field.
381     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
382     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
383     return r;
384   }
385 
386   // Use 128-bit precision
387   Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
388 
389   return static_cast<double>(r_f128);
390 }
391 
392 } // namespace LIBC_NAMESPACE_DECL
393