xref: /aosp_15_r20/external/llvm-libc/src/math/generic/cospif.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Single-precision cospi function -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/cospif.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/multiply_add.h"
14 #include "src/__support/common.h"
15 #include "src/__support/macros/config.h"
16 #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
17 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
18 
19 namespace LIBC_NAMESPACE_DECL {
20 
21 LLVM_LIBC_FUNCTION(float, cospif, (float x)) {
22   using FPBits = typename fputil::FPBits<float>;
23 
24   FPBits xbits(x);
25   xbits.set_sign(Sign::POS);
26 
27   uint32_t x_abs = xbits.uintval();
28   double xd = static_cast<double>(xbits.get_val());
29 
30   // Range reduction:
31   // For |x| > 1/32, we perform range reduction as follows:
32   // Find k and y such that:
33   //   x = (k + y) * 1/32
34   //   k is an integer
35   //   |y| < 0.5
36   //
37   // This is done by performing:
38   //   k = round(x * 32)
39   //   y = x * 32 - k
40   //
41   // Once k and y are computed, we then deduce the answer by the cosine of sum
42   // formula:
43   //   cospi(x) = cos((k + y)*pi/32)
44   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
45   // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
46   // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
47   // computed using degree-7 and degree-6 minimax polynomials generated by
48   // Sollya respectively.
49 
50   // The exhautive test passes for smaller values
51   if (LIBC_UNLIKELY(x_abs < 0x38A2'F984U)) {
52 
53 #if defined(LIBC_TARGET_CPU_HAS_FMA)
54     return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
55 #else
56     return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
57 #endif // LIBC_TARGET_CPU_HAS_FMA
58   }
59 
60   // Numbers greater or equal to 2^23 are always integers or NaN
61   if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) {
62 
63     if (LIBC_UNLIKELY(x_abs < 0x4B80'0000)) {
64       return (x_abs & 0x1) ? -1.0f : 1.0f;
65     }
66 
67     // x is inf or nan.
68     if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
69       if (x_abs == 0x7f80'0000U) {
70         fputil::set_errno_if_required(EDOM);
71         fputil::raise_except_if_required(FE_INVALID);
72       }
73       return x + FPBits::quiet_nan().get_val();
74     }
75 
76     return 1.0f;
77   }
78 
79   // Combine the results with the sine of sum formula:
80   //   cos(pi * x) = cos((k + y)*pi/32)
81   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
82   //          = (cosm1_y + 1) * cos_k - sin_y * sin_k
83   //          = (cosm1_y * cos_k + cos_k) - sin_y * sin_k
84   double sin_k, cos_k, sin_y, cosm1_y;
85 
86   sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y);
87 
88   if (LIBC_UNLIKELY(sin_y == 0 && cos_k == 0)) {
89     return 0.0f;
90   }
91 
92   return static_cast<float>(fputil::multiply_add(
93       sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k)));
94 }
95 
96 } // namespace LIBC_NAMESPACE_DECL
97