1*a58d3d2aSXin Li /***********************************************************************
2*a58d3d2aSXin Li Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without
4*a58d3d2aSXin Li modification, are permitted provided that the following conditions
5*a58d3d2aSXin Li are met:
6*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright notice,
7*a58d3d2aSXin Li this list of conditions and the following disclaimer.
8*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright
9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the
10*a58d3d2aSXin Li documentation and/or other materials provided with the distribution.
11*a58d3d2aSXin Li - Neither the name of Internet Society, IETF or IETF Trust, nor the
12*a58d3d2aSXin Li names of specific contributors, may be used to endorse or promote
13*a58d3d2aSXin Li products derived from this software without specific prior written
14*a58d3d2aSXin Li permission.
15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16*a58d3d2aSXin Li AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17*a58d3d2aSXin Li IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18*a58d3d2aSXin Li ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19*a58d3d2aSXin Li LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20*a58d3d2aSXin Li CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21*a58d3d2aSXin Li SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22*a58d3d2aSXin Li INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23*a58d3d2aSXin Li CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24*a58d3d2aSXin Li ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25*a58d3d2aSXin Li POSSIBILITY OF SUCH DAMAGE.
26*a58d3d2aSXin Li ***********************************************************************/
27*a58d3d2aSXin Li
28*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
29*a58d3d2aSXin Li #include "config.h"
30*a58d3d2aSXin Li #endif
31*a58d3d2aSXin Li
32*a58d3d2aSXin Li #include "SigProc_FIX.h"
33*a58d3d2aSXin Li #include "define.h"
34*a58d3d2aSXin Li #include "tuning_parameters.h"
35*a58d3d2aSXin Li #include "pitch.h"
36*a58d3d2aSXin Li
37*a58d3d2aSXin Li #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
38*a58d3d2aSXin Li
39*a58d3d2aSXin Li #define QA 25
40*a58d3d2aSXin Li #define N_BITS_HEAD_ROOM 3
41*a58d3d2aSXin Li #define MIN_RSHIFTS -16
42*a58d3d2aSXin Li #define MAX_RSHIFTS (32 - QA)
43*a58d3d2aSXin Li
44*a58d3d2aSXin Li /* Compute reflection coefficients from input signal */
silk_burg_modified_c(opus_int32 * res_nrg,opus_int * res_nrg_Q,opus_int32 A_Q16[],const opus_int16 x[],const opus_int32 minInvGain_Q30,const opus_int subfr_length,const opus_int nb_subfr,const opus_int D,int arch)45*a58d3d2aSXin Li void silk_burg_modified_c(
46*a58d3d2aSXin Li opus_int32 *res_nrg, /* O Residual energy */
47*a58d3d2aSXin Li opus_int *res_nrg_Q, /* O Residual energy Q value */
48*a58d3d2aSXin Li opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
49*a58d3d2aSXin Li const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
50*a58d3d2aSXin Li const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
51*a58d3d2aSXin Li const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
52*a58d3d2aSXin Li const opus_int nb_subfr, /* I Number of subframes stacked in x */
53*a58d3d2aSXin Li const opus_int D, /* I Order */
54*a58d3d2aSXin Li int arch /* I Run-time architecture */
55*a58d3d2aSXin Li )
56*a58d3d2aSXin Li {
57*a58d3d2aSXin Li opus_int k, n, s, lz, rshifts, reached_max_gain;
58*a58d3d2aSXin Li opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
59*a58d3d2aSXin Li const opus_int16 *x_ptr;
60*a58d3d2aSXin Li opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
61*a58d3d2aSXin Li opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
62*a58d3d2aSXin Li opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
63*a58d3d2aSXin Li opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
64*a58d3d2aSXin Li opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
65*a58d3d2aSXin Li opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
66*a58d3d2aSXin Li opus_int64 C0_64;
67*a58d3d2aSXin Li
68*a58d3d2aSXin Li celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
69*a58d3d2aSXin Li
70*a58d3d2aSXin Li /* Compute autocorrelations, added over subframes */
71*a58d3d2aSXin Li C0_64 = silk_inner_prod16( x, x, subfr_length*nb_subfr, arch );
72*a58d3d2aSXin Li lz = silk_CLZ64(C0_64);
73*a58d3d2aSXin Li rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
74*a58d3d2aSXin Li if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
75*a58d3d2aSXin Li if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
76*a58d3d2aSXin Li
77*a58d3d2aSXin Li if (rshifts > 0) {
78*a58d3d2aSXin Li C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
79*a58d3d2aSXin Li } else {
80*a58d3d2aSXin Li C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
81*a58d3d2aSXin Li }
82*a58d3d2aSXin Li
83*a58d3d2aSXin Li CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
84*a58d3d2aSXin Li silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
85*a58d3d2aSXin Li if( rshifts > 0 ) {
86*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
87*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
88*a58d3d2aSXin Li for( n = 1; n < D + 1; n++ ) {
89*a58d3d2aSXin Li C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
90*a58d3d2aSXin Li silk_inner_prod16( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
91*a58d3d2aSXin Li }
92*a58d3d2aSXin Li }
93*a58d3d2aSXin Li } else {
94*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
95*a58d3d2aSXin Li int i;
96*a58d3d2aSXin Li opus_int32 d;
97*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
98*a58d3d2aSXin Li celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
99*a58d3d2aSXin Li for( n = 1; n < D + 1; n++ ) {
100*a58d3d2aSXin Li for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
101*a58d3d2aSXin Li d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
102*a58d3d2aSXin Li xcorr[ n - 1 ] += d;
103*a58d3d2aSXin Li }
104*a58d3d2aSXin Li for( n = 1; n < D + 1; n++ ) {
105*a58d3d2aSXin Li C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
106*a58d3d2aSXin Li }
107*a58d3d2aSXin Li }
108*a58d3d2aSXin Li }
109*a58d3d2aSXin Li silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
110*a58d3d2aSXin Li
111*a58d3d2aSXin Li /* Initialize */
112*a58d3d2aSXin Li CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
113*a58d3d2aSXin Li
114*a58d3d2aSXin Li invGain_Q30 = (opus_int32)1 << 30;
115*a58d3d2aSXin Li reached_max_gain = 0;
116*a58d3d2aSXin Li for( n = 0; n < D; n++ ) {
117*a58d3d2aSXin Li /* Update first row of correlation matrix (without first element) */
118*a58d3d2aSXin Li /* Update last row of correlation matrix (without last element, stored in reversed order) */
119*a58d3d2aSXin Li /* Update C * Af */
120*a58d3d2aSXin Li /* Update C * flipud(Af) (stored in reversed order) */
121*a58d3d2aSXin Li if( rshifts > -2 ) {
122*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
123*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
124*a58d3d2aSXin Li x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
125*a58d3d2aSXin Li x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
126*a58d3d2aSXin Li tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
127*a58d3d2aSXin Li tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
128*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
129*a58d3d2aSXin Li C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
130*a58d3d2aSXin Li C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
131*a58d3d2aSXin Li Atmp_QA = Af_QA[ k ];
132*a58d3d2aSXin Li tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
133*a58d3d2aSXin Li tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
134*a58d3d2aSXin Li }
135*a58d3d2aSXin Li tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
136*a58d3d2aSXin Li tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
137*a58d3d2aSXin Li for( k = 0; k <= n; k++ ) {
138*a58d3d2aSXin Li CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
139*a58d3d2aSXin Li CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
140*a58d3d2aSXin Li }
141*a58d3d2aSXin Li }
142*a58d3d2aSXin Li } else {
143*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
144*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
145*a58d3d2aSXin Li x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
146*a58d3d2aSXin Li x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
147*a58d3d2aSXin Li tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
148*a58d3d2aSXin Li tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
149*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
150*a58d3d2aSXin Li C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
151*a58d3d2aSXin Li C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
152*a58d3d2aSXin Li Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
153*a58d3d2aSXin Li /* We sometimes get overflows in the multiplications (even beyond +/- 2^32),
154*a58d3d2aSXin Li but they cancel each other and the real result seems to always fit in a 32-bit
155*a58d3d2aSXin Li signed integer. This was determined experimentally, not theoretically (unfortunately). */
156*a58d3d2aSXin Li tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
157*a58d3d2aSXin Li tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
158*a58d3d2aSXin Li }
159*a58d3d2aSXin Li tmp1 = -tmp1; /* Q17 */
160*a58d3d2aSXin Li tmp2 = -tmp2; /* Q17 */
161*a58d3d2aSXin Li for( k = 0; k <= n; k++ ) {
162*a58d3d2aSXin Li CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
163*a58d3d2aSXin Li silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
164*a58d3d2aSXin Li CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
165*a58d3d2aSXin Li silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
166*a58d3d2aSXin Li }
167*a58d3d2aSXin Li }
168*a58d3d2aSXin Li }
169*a58d3d2aSXin Li
170*a58d3d2aSXin Li /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
171*a58d3d2aSXin Li tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
172*a58d3d2aSXin Li tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
173*a58d3d2aSXin Li num = 0; /* Q( -rshifts ) */
174*a58d3d2aSXin Li nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
175*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
176*a58d3d2aSXin Li Atmp_QA = Af_QA[ k ];
177*a58d3d2aSXin Li lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
178*a58d3d2aSXin Li lz = silk_min( 32 - QA, lz );
179*a58d3d2aSXin Li Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
180*a58d3d2aSXin Li
181*a58d3d2aSXin Li tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
182*a58d3d2aSXin Li tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
183*a58d3d2aSXin Li num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
184*a58d3d2aSXin Li nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
185*a58d3d2aSXin Li Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
186*a58d3d2aSXin Li }
187*a58d3d2aSXin Li CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
188*a58d3d2aSXin Li CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
189*a58d3d2aSXin Li num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
190*a58d3d2aSXin Li num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
191*a58d3d2aSXin Li
192*a58d3d2aSXin Li /* Calculate the next order reflection (parcor) coefficient */
193*a58d3d2aSXin Li if( silk_abs( num ) < nrg ) {
194*a58d3d2aSXin Li rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
195*a58d3d2aSXin Li } else {
196*a58d3d2aSXin Li rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
197*a58d3d2aSXin Li }
198*a58d3d2aSXin Li
199*a58d3d2aSXin Li /* Update inverse prediction gain */
200*a58d3d2aSXin Li tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
201*a58d3d2aSXin Li tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
202*a58d3d2aSXin Li if( tmp1 <= minInvGain_Q30 ) {
203*a58d3d2aSXin Li /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
204*a58d3d2aSXin Li tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
205*a58d3d2aSXin Li rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
206*a58d3d2aSXin Li if( rc_Q31 > 0 ) {
207*a58d3d2aSXin Li /* Newton-Raphson iteration */
208*a58d3d2aSXin Li rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
209*a58d3d2aSXin Li rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
210*a58d3d2aSXin Li if( num < 0 ) {
211*a58d3d2aSXin Li /* Ensure adjusted reflection coefficients has the original sign */
212*a58d3d2aSXin Li rc_Q31 = -rc_Q31;
213*a58d3d2aSXin Li }
214*a58d3d2aSXin Li }
215*a58d3d2aSXin Li invGain_Q30 = minInvGain_Q30;
216*a58d3d2aSXin Li reached_max_gain = 1;
217*a58d3d2aSXin Li } else {
218*a58d3d2aSXin Li invGain_Q30 = tmp1;
219*a58d3d2aSXin Li }
220*a58d3d2aSXin Li
221*a58d3d2aSXin Li /* Update the AR coefficients */
222*a58d3d2aSXin Li for( k = 0; k < (n + 1) >> 1; k++ ) {
223*a58d3d2aSXin Li tmp1 = Af_QA[ k ]; /* QA */
224*a58d3d2aSXin Li tmp2 = Af_QA[ n - k - 1 ]; /* QA */
225*a58d3d2aSXin Li Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
226*a58d3d2aSXin Li Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
227*a58d3d2aSXin Li }
228*a58d3d2aSXin Li Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
229*a58d3d2aSXin Li
230*a58d3d2aSXin Li if( reached_max_gain ) {
231*a58d3d2aSXin Li /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
232*a58d3d2aSXin Li for( k = n + 1; k < D; k++ ) {
233*a58d3d2aSXin Li Af_QA[ k ] = 0;
234*a58d3d2aSXin Li }
235*a58d3d2aSXin Li break;
236*a58d3d2aSXin Li }
237*a58d3d2aSXin Li
238*a58d3d2aSXin Li /* Update C * Af and C * Ab */
239*a58d3d2aSXin Li for( k = 0; k <= n + 1; k++ ) {
240*a58d3d2aSXin Li tmp1 = CAf[ k ]; /* Q( -rshifts ) */
241*a58d3d2aSXin Li tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
242*a58d3d2aSXin Li CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
243*a58d3d2aSXin Li CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
244*a58d3d2aSXin Li }
245*a58d3d2aSXin Li }
246*a58d3d2aSXin Li
247*a58d3d2aSXin Li if( reached_max_gain ) {
248*a58d3d2aSXin Li for( k = 0; k < D; k++ ) {
249*a58d3d2aSXin Li /* Scale coefficients */
250*a58d3d2aSXin Li A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
251*a58d3d2aSXin Li }
252*a58d3d2aSXin Li /* Subtract energy of preceding samples from C0 */
253*a58d3d2aSXin Li if( rshifts > 0 ) {
254*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
255*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
256*a58d3d2aSXin Li C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16( x_ptr, x_ptr, D, arch ), rshifts );
257*a58d3d2aSXin Li }
258*a58d3d2aSXin Li } else {
259*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
260*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
261*a58d3d2aSXin Li C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
262*a58d3d2aSXin Li }
263*a58d3d2aSXin Li }
264*a58d3d2aSXin Li /* Approximate residual energy */
265*a58d3d2aSXin Li *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
266*a58d3d2aSXin Li *res_nrg_Q = -rshifts;
267*a58d3d2aSXin Li } else {
268*a58d3d2aSXin Li /* Return residual energy */
269*a58d3d2aSXin Li nrg = CAf[ 0 ]; /* Q( -rshifts ) */
270*a58d3d2aSXin Li tmp1 = (opus_int32)1 << 16; /* Q16 */
271*a58d3d2aSXin Li for( k = 0; k < D; k++ ) {
272*a58d3d2aSXin Li Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
273*a58d3d2aSXin Li nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
274*a58d3d2aSXin Li tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
275*a58d3d2aSXin Li A_Q16[ k ] = -Atmp1;
276*a58d3d2aSXin Li }
277*a58d3d2aSXin Li *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
278*a58d3d2aSXin Li *res_nrg_Q = -rshifts;
279*a58d3d2aSXin Li }
280*a58d3d2aSXin Li }
281