1*a58d3d2aSXin Li /***********************************************************************
2*a58d3d2aSXin Li Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without
4*a58d3d2aSXin Li modification, are permitted provided that the following conditions
5*a58d3d2aSXin Li are met:
6*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright notice,
7*a58d3d2aSXin Li this list of conditions and the following disclaimer.
8*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright
9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the
10*a58d3d2aSXin Li documentation and/or other materials provided with the distribution.
11*a58d3d2aSXin Li - Neither the name of Internet Society, IETF or IETF Trust, nor the
12*a58d3d2aSXin Li names of specific contributors, may be used to endorse or promote
13*a58d3d2aSXin Li products derived from this software without specific prior written
14*a58d3d2aSXin Li permission.
15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16*a58d3d2aSXin Li AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17*a58d3d2aSXin Li IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18*a58d3d2aSXin Li ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19*a58d3d2aSXin Li LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20*a58d3d2aSXin Li CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21*a58d3d2aSXin Li SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22*a58d3d2aSXin Li INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23*a58d3d2aSXin Li CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24*a58d3d2aSXin Li ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25*a58d3d2aSXin Li POSSIBILITY OF SUCH DAMAGE.
26*a58d3d2aSXin Li ***********************************************************************/
27*a58d3d2aSXin Li
28*a58d3d2aSXin Li /* Conversion between prediction filter coefficients and NLSFs */
29*a58d3d2aSXin Li /* Requires the order to be an even number */
30*a58d3d2aSXin Li /* A piecewise linear approximation maps LSF <-> cos(LSF) */
31*a58d3d2aSXin Li /* Therefore the result is not accurate NLSFs, but the two */
32*a58d3d2aSXin Li /* functions are accurate inverses of each other */
33*a58d3d2aSXin Li
34*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
35*a58d3d2aSXin Li #include "config.h"
36*a58d3d2aSXin Li #endif
37*a58d3d2aSXin Li
38*a58d3d2aSXin Li #include "SigProc_FIX.h"
39*a58d3d2aSXin Li #include "tables.h"
40*a58d3d2aSXin Li
41*a58d3d2aSXin Li /* Number of binary divisions, when not in low complexity mode */
42*a58d3d2aSXin Li #define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
43*a58d3d2aSXin Li #define MAX_ITERATIONS_A2NLSF_FIX 16
44*a58d3d2aSXin Li
45*a58d3d2aSXin Li /* Helper function for A2NLSF(..) */
46*a58d3d2aSXin Li /* Transforms polynomials from cos(n*f) to cos(f)^n */
silk_A2NLSF_trans_poly(opus_int32 * p,const opus_int dd)47*a58d3d2aSXin Li static OPUS_INLINE void silk_A2NLSF_trans_poly(
48*a58d3d2aSXin Li opus_int32 *p, /* I/O Polynomial */
49*a58d3d2aSXin Li const opus_int dd /* I Polynomial order (= filter order / 2 ) */
50*a58d3d2aSXin Li )
51*a58d3d2aSXin Li {
52*a58d3d2aSXin Li opus_int k, n;
53*a58d3d2aSXin Li
54*a58d3d2aSXin Li for( k = 2; k <= dd; k++ ) {
55*a58d3d2aSXin Li for( n = dd; n > k; n-- ) {
56*a58d3d2aSXin Li p[ n - 2 ] -= p[ n ];
57*a58d3d2aSXin Li }
58*a58d3d2aSXin Li p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
59*a58d3d2aSXin Li }
60*a58d3d2aSXin Li }
61*a58d3d2aSXin Li /* Helper function for A2NLSF(..) */
62*a58d3d2aSXin Li /* Polynomial evaluation */
silk_A2NLSF_eval_poly(opus_int32 * p,const opus_int32 x,const opus_int dd)63*a58d3d2aSXin Li static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */
64*a58d3d2aSXin Li opus_int32 *p, /* I Polynomial, Q16 */
65*a58d3d2aSXin Li const opus_int32 x, /* I Evaluation point, Q12 */
66*a58d3d2aSXin Li const opus_int dd /* I Order */
67*a58d3d2aSXin Li )
68*a58d3d2aSXin Li {
69*a58d3d2aSXin Li opus_int n;
70*a58d3d2aSXin Li opus_int32 x_Q16, y32;
71*a58d3d2aSXin Li
72*a58d3d2aSXin Li y32 = p[ dd ]; /* Q16 */
73*a58d3d2aSXin Li x_Q16 = silk_LSHIFT( x, 4 );
74*a58d3d2aSXin Li
75*a58d3d2aSXin Li if ( opus_likely( 8 == dd ) )
76*a58d3d2aSXin Li {
77*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
78*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
79*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
80*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
81*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
82*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
83*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
84*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
85*a58d3d2aSXin Li }
86*a58d3d2aSXin Li else
87*a58d3d2aSXin Li {
88*a58d3d2aSXin Li for( n = dd - 1; n >= 0; n-- ) {
89*a58d3d2aSXin Li y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */
90*a58d3d2aSXin Li }
91*a58d3d2aSXin Li }
92*a58d3d2aSXin Li return y32;
93*a58d3d2aSXin Li }
94*a58d3d2aSXin Li
silk_A2NLSF_init(const opus_int32 * a_Q16,opus_int32 * P,opus_int32 * Q,const opus_int dd)95*a58d3d2aSXin Li static OPUS_INLINE void silk_A2NLSF_init(
96*a58d3d2aSXin Li const opus_int32 *a_Q16,
97*a58d3d2aSXin Li opus_int32 *P,
98*a58d3d2aSXin Li opus_int32 *Q,
99*a58d3d2aSXin Li const opus_int dd
100*a58d3d2aSXin Li )
101*a58d3d2aSXin Li {
102*a58d3d2aSXin Li opus_int k;
103*a58d3d2aSXin Li
104*a58d3d2aSXin Li /* Convert filter coefs to even and odd polynomials */
105*a58d3d2aSXin Li P[dd] = silk_LSHIFT( 1, 16 );
106*a58d3d2aSXin Li Q[dd] = silk_LSHIFT( 1, 16 );
107*a58d3d2aSXin Li for( k = 0; k < dd; k++ ) {
108*a58d3d2aSXin Li P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */
109*a58d3d2aSXin Li Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */
110*a58d3d2aSXin Li }
111*a58d3d2aSXin Li
112*a58d3d2aSXin Li /* Divide out zeros as we have that for even filter orders, */
113*a58d3d2aSXin Li /* z = 1 is always a root in Q, and */
114*a58d3d2aSXin Li /* z = -1 is always a root in P */
115*a58d3d2aSXin Li for( k = dd; k > 0; k-- ) {
116*a58d3d2aSXin Li P[ k - 1 ] -= P[ k ];
117*a58d3d2aSXin Li Q[ k - 1 ] += Q[ k ];
118*a58d3d2aSXin Li }
119*a58d3d2aSXin Li
120*a58d3d2aSXin Li /* Transform polynomials from cos(n*f) to cos(f)^n */
121*a58d3d2aSXin Li silk_A2NLSF_trans_poly( P, dd );
122*a58d3d2aSXin Li silk_A2NLSF_trans_poly( Q, dd );
123*a58d3d2aSXin Li }
124*a58d3d2aSXin Li
125*a58d3d2aSXin Li /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
126*a58d3d2aSXin Li /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
silk_A2NLSF(opus_int16 * NLSF,opus_int32 * a_Q16,const opus_int d)127*a58d3d2aSXin Li void silk_A2NLSF(
128*a58d3d2aSXin Li opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
129*a58d3d2aSXin Li opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
130*a58d3d2aSXin Li const opus_int d /* I Filter order (must be even) */
131*a58d3d2aSXin Li )
132*a58d3d2aSXin Li {
133*a58d3d2aSXin Li opus_int i, k, m, dd, root_ix, ffrac;
134*a58d3d2aSXin Li opus_int32 xlo, xhi, xmid;
135*a58d3d2aSXin Li opus_int32 ylo, yhi, ymid, thr;
136*a58d3d2aSXin Li opus_int32 nom, den;
137*a58d3d2aSXin Li opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
138*a58d3d2aSXin Li opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
139*a58d3d2aSXin Li opus_int32 *PQ[ 2 ];
140*a58d3d2aSXin Li opus_int32 *p;
141*a58d3d2aSXin Li
142*a58d3d2aSXin Li /* Store pointers to array */
143*a58d3d2aSXin Li PQ[ 0 ] = P;
144*a58d3d2aSXin Li PQ[ 1 ] = Q;
145*a58d3d2aSXin Li
146*a58d3d2aSXin Li dd = silk_RSHIFT( d, 1 );
147*a58d3d2aSXin Li
148*a58d3d2aSXin Li silk_A2NLSF_init( a_Q16, P, Q, dd );
149*a58d3d2aSXin Li
150*a58d3d2aSXin Li /* Find roots, alternating between P and Q */
151*a58d3d2aSXin Li p = P; /* Pointer to polynomial */
152*a58d3d2aSXin Li
153*a58d3d2aSXin Li xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
154*a58d3d2aSXin Li ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
155*a58d3d2aSXin Li
156*a58d3d2aSXin Li if( ylo < 0 ) {
157*a58d3d2aSXin Li /* Set the first NLSF to zero and move on to the next */
158*a58d3d2aSXin Li NLSF[ 0 ] = 0;
159*a58d3d2aSXin Li p = Q; /* Pointer to polynomial */
160*a58d3d2aSXin Li ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
161*a58d3d2aSXin Li root_ix = 1; /* Index of current root */
162*a58d3d2aSXin Li } else {
163*a58d3d2aSXin Li root_ix = 0; /* Index of current root */
164*a58d3d2aSXin Li }
165*a58d3d2aSXin Li k = 1; /* Loop counter */
166*a58d3d2aSXin Li i = 0; /* Counter for bandwidth expansions applied */
167*a58d3d2aSXin Li thr = 0;
168*a58d3d2aSXin Li while( 1 ) {
169*a58d3d2aSXin Li /* Evaluate polynomial */
170*a58d3d2aSXin Li xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
171*a58d3d2aSXin Li yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
172*a58d3d2aSXin Li
173*a58d3d2aSXin Li /* Detect zero crossing */
174*a58d3d2aSXin Li if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
175*a58d3d2aSXin Li if( yhi == 0 ) {
176*a58d3d2aSXin Li /* If the root lies exactly at the end of the current */
177*a58d3d2aSXin Li /* interval, look for the next root in the next interval */
178*a58d3d2aSXin Li thr = 1;
179*a58d3d2aSXin Li } else {
180*a58d3d2aSXin Li thr = 0;
181*a58d3d2aSXin Li }
182*a58d3d2aSXin Li /* Binary division */
183*a58d3d2aSXin Li ffrac = -256;
184*a58d3d2aSXin Li for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
185*a58d3d2aSXin Li /* Evaluate polynomial */
186*a58d3d2aSXin Li xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
187*a58d3d2aSXin Li ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
188*a58d3d2aSXin Li
189*a58d3d2aSXin Li /* Detect zero crossing */
190*a58d3d2aSXin Li if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
191*a58d3d2aSXin Li /* Reduce frequency */
192*a58d3d2aSXin Li xhi = xmid;
193*a58d3d2aSXin Li yhi = ymid;
194*a58d3d2aSXin Li } else {
195*a58d3d2aSXin Li /* Increase frequency */
196*a58d3d2aSXin Li xlo = xmid;
197*a58d3d2aSXin Li ylo = ymid;
198*a58d3d2aSXin Li ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
199*a58d3d2aSXin Li }
200*a58d3d2aSXin Li }
201*a58d3d2aSXin Li
202*a58d3d2aSXin Li /* Interpolate */
203*a58d3d2aSXin Li if( silk_abs( ylo ) < 65536 ) {
204*a58d3d2aSXin Li /* Avoid dividing by zero */
205*a58d3d2aSXin Li den = ylo - yhi;
206*a58d3d2aSXin Li nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
207*a58d3d2aSXin Li if( den != 0 ) {
208*a58d3d2aSXin Li ffrac += silk_DIV32( nom, den );
209*a58d3d2aSXin Li }
210*a58d3d2aSXin Li } else {
211*a58d3d2aSXin Li /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
212*a58d3d2aSXin Li ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
213*a58d3d2aSXin Li }
214*a58d3d2aSXin Li NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
215*a58d3d2aSXin Li
216*a58d3d2aSXin Li silk_assert( NLSF[ root_ix ] >= 0 );
217*a58d3d2aSXin Li
218*a58d3d2aSXin Li root_ix++; /* Next root */
219*a58d3d2aSXin Li if( root_ix >= d ) {
220*a58d3d2aSXin Li /* Found all roots */
221*a58d3d2aSXin Li break;
222*a58d3d2aSXin Li }
223*a58d3d2aSXin Li /* Alternate pointer to polynomial */
224*a58d3d2aSXin Li p = PQ[ root_ix & 1 ];
225*a58d3d2aSXin Li
226*a58d3d2aSXin Li /* Evaluate polynomial */
227*a58d3d2aSXin Li xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
228*a58d3d2aSXin Li ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
229*a58d3d2aSXin Li } else {
230*a58d3d2aSXin Li /* Increment loop counter */
231*a58d3d2aSXin Li k++;
232*a58d3d2aSXin Li xlo = xhi;
233*a58d3d2aSXin Li ylo = yhi;
234*a58d3d2aSXin Li thr = 0;
235*a58d3d2aSXin Li
236*a58d3d2aSXin Li if( k > LSF_COS_TAB_SZ_FIX ) {
237*a58d3d2aSXin Li i++;
238*a58d3d2aSXin Li if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
239*a58d3d2aSXin Li /* Set NLSFs to white spectrum and exit */
240*a58d3d2aSXin Li NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
241*a58d3d2aSXin Li for( k = 1; k < d; k++ ) {
242*a58d3d2aSXin Li NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] );
243*a58d3d2aSXin Li }
244*a58d3d2aSXin Li return;
245*a58d3d2aSXin Li }
246*a58d3d2aSXin Li
247*a58d3d2aSXin Li /* Error: Apply progressively more bandwidth expansion and run again */
248*a58d3d2aSXin Li silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) );
249*a58d3d2aSXin Li
250*a58d3d2aSXin Li silk_A2NLSF_init( a_Q16, P, Q, dd );
251*a58d3d2aSXin Li p = P; /* Pointer to polynomial */
252*a58d3d2aSXin Li xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
253*a58d3d2aSXin Li ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
254*a58d3d2aSXin Li if( ylo < 0 ) {
255*a58d3d2aSXin Li /* Set the first NLSF to zero and move on to the next */
256*a58d3d2aSXin Li NLSF[ 0 ] = 0;
257*a58d3d2aSXin Li p = Q; /* Pointer to polynomial */
258*a58d3d2aSXin Li ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
259*a58d3d2aSXin Li root_ix = 1; /* Index of current root */
260*a58d3d2aSXin Li } else {
261*a58d3d2aSXin Li root_ix = 0; /* Index of current root */
262*a58d3d2aSXin Li }
263*a58d3d2aSXin Li k = 1; /* Reset loop counter */
264*a58d3d2aSXin Li }
265*a58d3d2aSXin Li }
266*a58d3d2aSXin Li }
267*a58d3d2aSXin Li }
268