xref: /aosp_15_r20/external/libopus/dnn/training_tf2/test_plc.py (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1#!/usr/bin/python3
2'''Copyright (c) 2021-2022 Amazon
3   Copyright (c) 2018-2019 Mozilla
4
5   Redistribution and use in source and binary forms, with or without
6   modification, are permitted provided that the following conditions
7   are met:
8
9   - Redistributions of source code must retain the above copyright
10   notice, this list of conditions and the following disclaimer.
11
12   - Redistributions in binary form must reproduce the above copyright
13   notice, this list of conditions and the following disclaimer in the
14   documentation and/or other materials provided with the distribution.
15
16   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
20   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27'''
28
29# Train an LPCNet model
30
31import argparse
32from plc_loader import PLCLoader
33
34parser = argparse.ArgumentParser(description='Test a PLC model')
35
36parser.add_argument('weights', metavar='<weights file>', help='weights file (.h5)')
37parser.add_argument('features', metavar='<features file>', help='binary features file (float32)')
38parser.add_argument('output', metavar='<output>', help='reconstructed file (float32)')
39parser.add_argument('--model', metavar='<model>', default='lpcnet_plc', help='PLC model python definition (without .py)')
40group1 = parser.add_mutually_exclusive_group()
41
42parser.add_argument('--gru-size', metavar='<units>', default=256, type=int, help='number of units in GRU (default 256)')
43parser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network (default 128)')
44
45
46args = parser.parse_args()
47
48import importlib
49lpcnet = importlib.import_module(args.model)
50
51import sys
52import numpy as np
53from tensorflow.keras.optimizers import Adam
54from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
55import tensorflow.keras.backend as K
56import h5py
57
58import tensorflow as tf
59#gpus = tf.config.experimental.list_physical_devices('GPU')
60#if gpus:
61#  try:
62#    tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
63#  except RuntimeError as e:
64#    print(e)
65
66model = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=1, training=False, quantize=False, cond_size=args.cond_size)
67model.compile()
68
69lpc_order = 16
70
71feature_file = args.features
72nb_features = model.nb_used_features + lpc_order
73nb_used_features = model.nb_used_features
74
75# u for unquantised, load 16 bit PCM samples and convert to mu-law
76
77features = np.loadtxt(feature_file)
78print(features.shape)
79sequence_size = features.shape[0]
80lost = np.reshape(features[:,-1:], (1, sequence_size, 1))
81features = features[:,:nb_used_features]
82features = np.reshape(features, (1, sequence_size, nb_used_features))
83
84
85model.load_weights(args.weights)
86
87features = features*lost
88out = model.predict([features, lost])
89
90out = features + (1-lost)*out
91
92np.savetxt(args.output, out[0,:,:])
93