1*a58d3d2aSXin Li#!/usr/bin/python3 2*a58d3d2aSXin Li'''Copyright (c) 2018 Mozilla 3*a58d3d2aSXin Li 4*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without 5*a58d3d2aSXin Li modification, are permitted provided that the following conditions 6*a58d3d2aSXin Li are met: 7*a58d3d2aSXin Li 8*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright 9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer. 10*a58d3d2aSXin Li 11*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright 12*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the 13*a58d3d2aSXin Li documentation and/or other materials provided with the distribution. 14*a58d3d2aSXin Li 15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16*a58d3d2aSXin Li ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17*a58d3d2aSXin Li LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 18*a58d3d2aSXin Li A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR 19*a58d3d2aSXin Li CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 20*a58d3d2aSXin Li EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21*a58d3d2aSXin Li PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 22*a58d3d2aSXin Li PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 23*a58d3d2aSXin Li LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 24*a58d3d2aSXin Li NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 25*a58d3d2aSXin Li SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26*a58d3d2aSXin Li''' 27*a58d3d2aSXin Liimport argparse 28*a58d3d2aSXin Liimport sys 29*a58d3d2aSXin Li 30*a58d3d2aSXin Liimport h5py 31*a58d3d2aSXin Liimport numpy as np 32*a58d3d2aSXin Li 33*a58d3d2aSXin Liimport lpcnet 34*a58d3d2aSXin Lifrom ulaw import ulaw2lin, lin2ulaw 35*a58d3d2aSXin Li 36*a58d3d2aSXin Li 37*a58d3d2aSXin Liparser = argparse.ArgumentParser() 38*a58d3d2aSXin Liparser.add_argument('model-file', type=str, help='model weight h5 file') 39*a58d3d2aSXin Liparser.add_argument('--lpc-gamma', type=float, help='LPC weighting factor. WARNING: giving an inconsistent value here will severely degrade performance', default=1) 40*a58d3d2aSXin Li 41*a58d3d2aSXin Liargs = parser.parse_args() 42*a58d3d2aSXin Li 43*a58d3d2aSXin Lifilename = args.model_file 44*a58d3d2aSXin Liwith h5py.File(filename, "r") as f: 45*a58d3d2aSXin Li units = min(f['model_weights']['gru_a']['gru_a']['recurrent_kernel:0'].shape) 46*a58d3d2aSXin Li units2 = min(f['model_weights']['gru_b']['gru_b']['recurrent_kernel:0'].shape) 47*a58d3d2aSXin Li cond_size = min(f['model_weights']['feature_dense1']['feature_dense1']['kernel:0'].shape) 48*a58d3d2aSXin Li e2e = 'rc2lpc' in f['model_weights'] 49*a58d3d2aSXin Li 50*a58d3d2aSXin Li 51*a58d3d2aSXin Limodel, enc, dec = lpcnet.new_lpcnet_model(training = False, rnn_units1=units, rnn_units2=units2, flag_e2e = e2e, cond_size=cond_size, batch_size=1) 52*a58d3d2aSXin Li 53*a58d3d2aSXin Limodel.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) 54*a58d3d2aSXin Li#model.summary() 55*a58d3d2aSXin Li 56*a58d3d2aSXin Li 57*a58d3d2aSXin Lifeature_file = sys.argv[2] 58*a58d3d2aSXin Liout_file = sys.argv[3] 59*a58d3d2aSXin Liframe_size = model.frame_size 60*a58d3d2aSXin Linb_features = 36 61*a58d3d2aSXin Linb_used_features = model.nb_used_features 62*a58d3d2aSXin Li 63*a58d3d2aSXin Lifeatures = np.fromfile(feature_file, dtype='float32') 64*a58d3d2aSXin Lifeatures = np.resize(features, (-1, nb_features)) 65*a58d3d2aSXin Linb_frames = 1 66*a58d3d2aSXin Lifeature_chunk_size = features.shape[0] 67*a58d3d2aSXin Lipcm_chunk_size = frame_size*feature_chunk_size 68*a58d3d2aSXin Li 69*a58d3d2aSXin Lifeatures = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) 70*a58d3d2aSXin Liperiods = (.1 + 50*features[:,:,18:19]+100).astype('int16') 71*a58d3d2aSXin Li 72*a58d3d2aSXin Li 73*a58d3d2aSXin Li 74*a58d3d2aSXin Limodel.load_weights(filename); 75*a58d3d2aSXin Li 76*a58d3d2aSXin Liorder = 16 77*a58d3d2aSXin Li 78*a58d3d2aSXin Lipcm = np.zeros((nb_frames*pcm_chunk_size, )) 79*a58d3d2aSXin Lifexc = np.zeros((1, 1, 3), dtype='int16')+128 80*a58d3d2aSXin Listate1 = np.zeros((1, model.rnn_units1), dtype='float32') 81*a58d3d2aSXin Listate2 = np.zeros((1, model.rnn_units2), dtype='float32') 82*a58d3d2aSXin Li 83*a58d3d2aSXin Limem = 0 84*a58d3d2aSXin Licoef = 0.85 85*a58d3d2aSXin Li 86*a58d3d2aSXin Lilpc_weights = np.array([args.lpc_gamma ** (i + 1) for i in range(16)]) 87*a58d3d2aSXin Li 88*a58d3d2aSXin Lifout = open(out_file, 'wb') 89*a58d3d2aSXin Li 90*a58d3d2aSXin Liskip = order + 1 91*a58d3d2aSXin Lifor c in range(0, nb_frames): 92*a58d3d2aSXin Li if not e2e: 93*a58d3d2aSXin Li cfeat = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) 94*a58d3d2aSXin Li else: 95*a58d3d2aSXin Li cfeat,lpcs = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) 96*a58d3d2aSXin Li for fr in range(0, feature_chunk_size): 97*a58d3d2aSXin Li f = c*feature_chunk_size + fr 98*a58d3d2aSXin Li if not e2e: 99*a58d3d2aSXin Li a = features[c, fr, nb_features-order:] * lpc_weights 100*a58d3d2aSXin Li else: 101*a58d3d2aSXin Li a = lpcs[c,fr] 102*a58d3d2aSXin Li for i in range(skip, frame_size): 103*a58d3d2aSXin Li pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1]) 104*a58d3d2aSXin Li fexc[0, 0, 1] = lin2ulaw(pred) 105*a58d3d2aSXin Li 106*a58d3d2aSXin Li p, state1, state2 = dec.predict([fexc, cfeat[:, fr:fr+1, :], state1, state2]) 107*a58d3d2aSXin Li #Lower the temperature for voiced frames to reduce noisiness 108*a58d3d2aSXin Li p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 19] - .5)) 109*a58d3d2aSXin Li p = p/(1e-18 + np.sum(p)) 110*a58d3d2aSXin Li #Cut off the tail of the remaining distribution 111*a58d3d2aSXin Li p = np.maximum(p-0.002, 0).astype('float64') 112*a58d3d2aSXin Li p = p/(1e-8 + np.sum(p)) 113*a58d3d2aSXin Li 114*a58d3d2aSXin Li fexc[0, 0, 2] = np.argmax(np.random.multinomial(1, p[0,0,:], 1)) 115*a58d3d2aSXin Li pcm[f*frame_size + i] = pred + ulaw2lin(fexc[0, 0, 2]) 116*a58d3d2aSXin Li fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i]) 117*a58d3d2aSXin Li mem = coef*mem + pcm[f*frame_size + i] 118*a58d3d2aSXin Li #print(mem) 119*a58d3d2aSXin Li np.array([np.round(mem)], dtype='int16').tofile(fout) 120*a58d3d2aSXin Li skip = 0 121