xref: /aosp_15_r20/external/libopus/dnn/torch/neural-pitch/training.py (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1"""
2Training the neural pitch estimator
3
4"""
5
6import os
7import argparse
8parser = argparse.ArgumentParser()
9
10parser.add_argument('features', type=str, help='.f32 IF Features for training (generated by augmentation script)')
11parser.add_argument('features_pitch', type=str, help='.npy Pitch file for training (generated by augmentation script)')
12parser.add_argument('output_folder', type=str, help='Output directory to store the model weights and config')
13parser.add_argument('data_format', type=str, help='Choice of Input Data',choices=['if','xcorr','both'])
14parser.add_argument('--gpu_index', type=int, help='GPU index to use if multiple GPUs',default = 0,required = False)
15parser.add_argument('--confidence_threshold', type=float, help='Confidence value below which pitch will be neglected during training',default = 0.4,required = False)
16parser.add_argument('--context', type=int, help='Sequence length during training',default = 100,required = False)
17parser.add_argument('--N', type=int, help='STFT window size',default = 320,required = False)
18parser.add_argument('--H', type=int, help='STFT Hop size',default = 160,required = False)
19parser.add_argument('--xcorr_dimension', type=int, help='Dimension of Input cross-correlation',default = 257,required = False)
20parser.add_argument('--freq_keep', type=int, help='Number of Frequencies to keep',default = 30,required = False)
21parser.add_argument('--gru_dim', type=int, help='GRU Dimension',default = 64,required = False)
22parser.add_argument('--output_dim', type=int, help='Output dimension',default = 192,required = False)
23parser.add_argument('--learning_rate', type=float, help='Learning Rate',default = 1.0e-3,required = False)
24parser.add_argument('--epochs', type=int, help='Number of training epochs',default = 50,required = False)
25parser.add_argument('--choice_cel', type=str, help='Choice of Cross Entropy Loss (default or robust)',choices=['default','robust'],default = 'default',required = False)
26parser.add_argument('--prefix', type=str, help="prefix for model export, default: model", default='model')
27parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint to start training from, default: None', default=None)
28
29
30args = parser.parse_args()
31
32# import os
33# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
34# os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_index)
35
36# Fixing the seeds for reproducability
37import time
38np_seed = int(time.time())
39torch_seed = int(time.time())
40
41import torch
42torch.manual_seed(torch_seed)
43import numpy as np
44np.random.seed(np_seed)
45from utils import count_parameters
46import tqdm
47from models import PitchDNN, PitchDNNIF, PitchDNNXcorr, PitchDNNDataloader
48
49device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
50
51
52if args.data_format == 'if':
53    pitch_nn = PitchDNNIF(3 * args.freq_keep - 2, args.gru_dim, args.output_dim)
54elif args.data_format == 'xcorr':
55    pitch_nn = PitchDNNXcorr(args.xcorr_dimension, args.gru_dim, args.output_dim)
56else:
57    pitch_nn = PitchDNN(3 * args.freq_keep - 2, 224, args.gru_dim, args.output_dim)
58
59if type(args.initial_checkpoint) != type(None):
60    checkpoint = torch.load(args.initial_checkpoint, map_location='cpu')
61    pitch_nn.load_state_dict(checkpoint['state_dict'], strict=False)
62
63
64dataset_training = PitchDNNDataloader(args.features,args.features_pitch,args.confidence_threshold,args.context,args.data_format)
65
66def loss_custom(logits,labels,confidence,choice = 'default',nmax = 192,q = 0.7):
67    logits_softmax = torch.nn.Softmax(dim = 1)(logits).permute(0,2,1)
68    labels_one_hot = torch.nn.functional.one_hot(labels.long(),nmax)
69
70    if choice == 'default':
71        # Categorical Cross Entropy
72        CE = -torch.sum(torch.log(logits_softmax*labels_one_hot + 1.0e-6)*labels_one_hot,dim=-1)
73        CE = torch.mean(confidence*CE)
74
75    else:
76        # Robust Cross Entropy
77        CE = (1.0/q)*(1 - torch.sum(torch.pow(logits_softmax*labels_one_hot + 1.0e-7,q),dim=-1) )
78        CE = torch.sum(confidence*CE)
79
80    return CE
81
82def accuracy(logits,labels,confidence,choice = 'default',nmax = 192,q = 0.7):
83    logits_softmax = torch.nn.Softmax(dim = 1)(logits).permute(0,2,1)
84    pred_pitch = torch.argmax(logits_softmax, 2)
85    accuracy = (pred_pitch != labels.long())*1.
86    return 1.-torch.mean(confidence*accuracy)
87
88train_dataset, test_dataset = torch.utils.data.random_split(dataset_training, [0.95,0.05], generator=torch.Generator().manual_seed(torch_seed))
89
90batch_size = 256
91train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False)
92test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False)
93
94pitch_nn = pitch_nn.to(device)
95num_params = count_parameters(pitch_nn)
96learning_rate = args.learning_rate
97model_opt = torch.optim.Adam(pitch_nn.parameters(), lr = learning_rate)
98
99num_epochs = args.epochs
100
101for epoch in range(num_epochs):
102    losses = []
103    accs = []
104    pitch_nn.train()
105    with tqdm.tqdm(train_dataloader) as train_epoch:
106        for i, (xi, yi, ci) in enumerate(train_epoch):
107            yi, xi, ci = yi.to(device, non_blocking=True), xi.to(device, non_blocking=True), ci.to(device, non_blocking=True)
108            pi = pitch_nn(xi.float())
109            loss = loss_custom(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim)
110            acc = accuracy(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim)
111            acc = acc.detach()
112
113            model_opt.zero_grad()
114            loss.backward()
115            model_opt.step()
116
117            losses.append(loss.item())
118            accs.append(acc.item())
119            avg_loss = np.mean(losses)
120            avg_acc = np.mean(accs)
121            train_epoch.set_postfix({"Train Epoch" : epoch, "Train Loss":avg_loss, "acc" : avg_acc.item()})
122
123    if epoch % 5 == 0:
124        pitch_nn.eval()
125        losses = []
126        with tqdm.tqdm(test_dataloader) as test_epoch:
127            for i, (xi, yi, ci) in enumerate(test_epoch):
128                yi, xi, ci = yi.to(device, non_blocking=True), xi.to(device, non_blocking=True), ci.to(device, non_blocking=True)
129                pi = pitch_nn(xi.float())
130                loss = loss_custom(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim)
131                losses.append(loss.item())
132                avg_loss = np.mean(losses)
133                test_epoch.set_postfix({"Epoch" : epoch, "Test Loss":avg_loss})
134
135pitch_nn.eval()
136
137config = dict(
138    data_format=args.data_format,
139    epochs=num_epochs,
140    window_size= args.N,
141    hop_factor= args.H,
142    freq_keep=args.freq_keep,
143    batch_size=batch_size,
144    learning_rate=learning_rate,
145    confidence_threshold=args.confidence_threshold,
146    model_parameters=num_params,
147    np_seed=np_seed,
148    torch_seed=torch_seed,
149    xcorr_dim=args.xcorr_dimension,
150    dim_input=3*args.freq_keep - 2,
151    gru_dim=args.gru_dim,
152    output_dim=args.output_dim,
153    choice_cel=args.choice_cel,
154    context=args.context,
155)
156
157model_save_path = os.path.join(args.output_folder, f"{args.prefix}_{args.data_format}.pth")
158checkpoint = {
159    'state_dict': pitch_nn.state_dict(),
160    'config': config
161}
162torch.save(checkpoint, model_save_path)
163