1""" 2Training the neural pitch estimator 3 4""" 5 6import os 7import argparse 8parser = argparse.ArgumentParser() 9 10parser.add_argument('features', type=str, help='.f32 IF Features for training (generated by augmentation script)') 11parser.add_argument('features_pitch', type=str, help='.npy Pitch file for training (generated by augmentation script)') 12parser.add_argument('output_folder', type=str, help='Output directory to store the model weights and config') 13parser.add_argument('data_format', type=str, help='Choice of Input Data',choices=['if','xcorr','both']) 14parser.add_argument('--gpu_index', type=int, help='GPU index to use if multiple GPUs',default = 0,required = False) 15parser.add_argument('--confidence_threshold', type=float, help='Confidence value below which pitch will be neglected during training',default = 0.4,required = False) 16parser.add_argument('--context', type=int, help='Sequence length during training',default = 100,required = False) 17parser.add_argument('--N', type=int, help='STFT window size',default = 320,required = False) 18parser.add_argument('--H', type=int, help='STFT Hop size',default = 160,required = False) 19parser.add_argument('--xcorr_dimension', type=int, help='Dimension of Input cross-correlation',default = 257,required = False) 20parser.add_argument('--freq_keep', type=int, help='Number of Frequencies to keep',default = 30,required = False) 21parser.add_argument('--gru_dim', type=int, help='GRU Dimension',default = 64,required = False) 22parser.add_argument('--output_dim', type=int, help='Output dimension',default = 192,required = False) 23parser.add_argument('--learning_rate', type=float, help='Learning Rate',default = 1.0e-3,required = False) 24parser.add_argument('--epochs', type=int, help='Number of training epochs',default = 50,required = False) 25parser.add_argument('--choice_cel', type=str, help='Choice of Cross Entropy Loss (default or robust)',choices=['default','robust'],default = 'default',required = False) 26parser.add_argument('--prefix', type=str, help="prefix for model export, default: model", default='model') 27parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint to start training from, default: None', default=None) 28 29 30args = parser.parse_args() 31 32# import os 33# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" 34# os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_index) 35 36# Fixing the seeds for reproducability 37import time 38np_seed = int(time.time()) 39torch_seed = int(time.time()) 40 41import torch 42torch.manual_seed(torch_seed) 43import numpy as np 44np.random.seed(np_seed) 45from utils import count_parameters 46import tqdm 47from models import PitchDNN, PitchDNNIF, PitchDNNXcorr, PitchDNNDataloader 48 49device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 50 51 52if args.data_format == 'if': 53 pitch_nn = PitchDNNIF(3 * args.freq_keep - 2, args.gru_dim, args.output_dim) 54elif args.data_format == 'xcorr': 55 pitch_nn = PitchDNNXcorr(args.xcorr_dimension, args.gru_dim, args.output_dim) 56else: 57 pitch_nn = PitchDNN(3 * args.freq_keep - 2, 224, args.gru_dim, args.output_dim) 58 59if type(args.initial_checkpoint) != type(None): 60 checkpoint = torch.load(args.initial_checkpoint, map_location='cpu') 61 pitch_nn.load_state_dict(checkpoint['state_dict'], strict=False) 62 63 64dataset_training = PitchDNNDataloader(args.features,args.features_pitch,args.confidence_threshold,args.context,args.data_format) 65 66def loss_custom(logits,labels,confidence,choice = 'default',nmax = 192,q = 0.7): 67 logits_softmax = torch.nn.Softmax(dim = 1)(logits).permute(0,2,1) 68 labels_one_hot = torch.nn.functional.one_hot(labels.long(),nmax) 69 70 if choice == 'default': 71 # Categorical Cross Entropy 72 CE = -torch.sum(torch.log(logits_softmax*labels_one_hot + 1.0e-6)*labels_one_hot,dim=-1) 73 CE = torch.mean(confidence*CE) 74 75 else: 76 # Robust Cross Entropy 77 CE = (1.0/q)*(1 - torch.sum(torch.pow(logits_softmax*labels_one_hot + 1.0e-7,q),dim=-1) ) 78 CE = torch.sum(confidence*CE) 79 80 return CE 81 82def accuracy(logits,labels,confidence,choice = 'default',nmax = 192,q = 0.7): 83 logits_softmax = torch.nn.Softmax(dim = 1)(logits).permute(0,2,1) 84 pred_pitch = torch.argmax(logits_softmax, 2) 85 accuracy = (pred_pitch != labels.long())*1. 86 return 1.-torch.mean(confidence*accuracy) 87 88train_dataset, test_dataset = torch.utils.data.random_split(dataset_training, [0.95,0.05], generator=torch.Generator().manual_seed(torch_seed)) 89 90batch_size = 256 91train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False) 92test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False) 93 94pitch_nn = pitch_nn.to(device) 95num_params = count_parameters(pitch_nn) 96learning_rate = args.learning_rate 97model_opt = torch.optim.Adam(pitch_nn.parameters(), lr = learning_rate) 98 99num_epochs = args.epochs 100 101for epoch in range(num_epochs): 102 losses = [] 103 accs = [] 104 pitch_nn.train() 105 with tqdm.tqdm(train_dataloader) as train_epoch: 106 for i, (xi, yi, ci) in enumerate(train_epoch): 107 yi, xi, ci = yi.to(device, non_blocking=True), xi.to(device, non_blocking=True), ci.to(device, non_blocking=True) 108 pi = pitch_nn(xi.float()) 109 loss = loss_custom(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim) 110 acc = accuracy(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim) 111 acc = acc.detach() 112 113 model_opt.zero_grad() 114 loss.backward() 115 model_opt.step() 116 117 losses.append(loss.item()) 118 accs.append(acc.item()) 119 avg_loss = np.mean(losses) 120 avg_acc = np.mean(accs) 121 train_epoch.set_postfix({"Train Epoch" : epoch, "Train Loss":avg_loss, "acc" : avg_acc.item()}) 122 123 if epoch % 5 == 0: 124 pitch_nn.eval() 125 losses = [] 126 with tqdm.tqdm(test_dataloader) as test_epoch: 127 for i, (xi, yi, ci) in enumerate(test_epoch): 128 yi, xi, ci = yi.to(device, non_blocking=True), xi.to(device, non_blocking=True), ci.to(device, non_blocking=True) 129 pi = pitch_nn(xi.float()) 130 loss = loss_custom(logits = pi,labels = yi,confidence = ci,choice = args.choice_cel,nmax = args.output_dim) 131 losses.append(loss.item()) 132 avg_loss = np.mean(losses) 133 test_epoch.set_postfix({"Epoch" : epoch, "Test Loss":avg_loss}) 134 135pitch_nn.eval() 136 137config = dict( 138 data_format=args.data_format, 139 epochs=num_epochs, 140 window_size= args.N, 141 hop_factor= args.H, 142 freq_keep=args.freq_keep, 143 batch_size=batch_size, 144 learning_rate=learning_rate, 145 confidence_threshold=args.confidence_threshold, 146 model_parameters=num_params, 147 np_seed=np_seed, 148 torch_seed=torch_seed, 149 xcorr_dim=args.xcorr_dimension, 150 dim_input=3*args.freq_keep - 2, 151 gru_dim=args.gru_dim, 152 output_dim=args.output_dim, 153 choice_cel=args.choice_cel, 154 context=args.context, 155) 156 157model_save_path = os.path.join(args.output_folder, f"{args.prefix}_{args.data_format}.pth") 158checkpoint = { 159 'state_dict': pitch_nn.state_dict(), 160 'config': config 161} 162torch.save(checkpoint, model_save_path) 163