xref: /aosp_15_r20/external/libopus/dnn/torch/lpcnet/README.md (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1*a58d3d2aSXin Li# LPCNet
2*a58d3d2aSXin Li
3*a58d3d2aSXin LiIncomplete pytorch implementation of LPCNet
4*a58d3d2aSXin Li
5*a58d3d2aSXin Li## Data preparation
6*a58d3d2aSXin LiFor data preparation use dump_data in github.com/xiph/LPCNet. To turn this into
7*a58d3d2aSXin Lia training dataset, copy data and feature file to a folder and run
8*a58d3d2aSXin Li
9*a58d3d2aSXin Lipython add_dataset_config.py my_dataset_folder
10*a58d3d2aSXin Li
11*a58d3d2aSXin Li
12*a58d3d2aSXin Li## Training
13*a58d3d2aSXin LiTo train a model, create and adjust a setup file, e.g. with
14*a58d3d2aSXin Li
15*a58d3d2aSXin Lipython make_default_setup.py my_setup.yml --path2dataset my_dataset_folder
16*a58d3d2aSXin Li
17*a58d3d2aSXin LiThen simply run
18*a58d3d2aSXin Li
19*a58d3d2aSXin Lipython train_lpcnet.py my_setup.yml my_output
20*a58d3d2aSXin Li
21*a58d3d2aSXin Li## Inference
22*a58d3d2aSXin LiCreate feature file with dump_data from github.com/xiph/LPCNet. Then run e.g.
23*a58d3d2aSXin Li
24*a58d3d2aSXin Lipython test_lpcnet.py features.f32 my_output/checkpoints/checkpoint_ep_10.pth out.wav
25*a58d3d2aSXin Li
26*a58d3d2aSXin LiInference runs on CPU and takes usually between 3 and 20 seconds per generated second of audio,
27*a58d3d2aSXin Lidepending on the CPU.
28