1*a58d3d2aSXin Li /***********************************************************************
2*a58d3d2aSXin Li Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without
4*a58d3d2aSXin Li modification, are permitted provided that the following conditions
5*a58d3d2aSXin Li are met:
6*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright notice,
7*a58d3d2aSXin Li this list of conditions and the following disclaimer.
8*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright
9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the
10*a58d3d2aSXin Li documentation and/or other materials provided with the distribution.
11*a58d3d2aSXin Li - Neither the name of Internet Society, IETF or IETF Trust, nor the
12*a58d3d2aSXin Li names of specific contributors, may be used to endorse or promote
13*a58d3d2aSXin Li products derived from this software without specific prior written
14*a58d3d2aSXin Li permission.
15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16*a58d3d2aSXin Li AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17*a58d3d2aSXin Li IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18*a58d3d2aSXin Li ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19*a58d3d2aSXin Li LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20*a58d3d2aSXin Li CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21*a58d3d2aSXin Li SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22*a58d3d2aSXin Li INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23*a58d3d2aSXin Li CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24*a58d3d2aSXin Li ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25*a58d3d2aSXin Li POSSIBILITY OF SUCH DAMAGE.
26*a58d3d2aSXin Li ***********************************************************************/
27*a58d3d2aSXin Li
28*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
29*a58d3d2aSXin Li #include "config.h"
30*a58d3d2aSXin Li #endif
31*a58d3d2aSXin Li
32*a58d3d2aSXin Li #include <math.h>
33*a58d3d2aSXin Li #include <string.h>
34*a58d3d2aSXin Li #include <assert.h>
35*a58d3d2aSXin Li
36*a58d3d2aSXin Li #include "arch.h"
37*a58d3d2aSXin Li #include "burg.h"
38*a58d3d2aSXin Li
39*a58d3d2aSXin Li #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
40*a58d3d2aSXin Li #define SILK_MAX_ORDER_LPC 16
41*a58d3d2aSXin Li #define FIND_LPC_COND_FAC 1e-5f
42*a58d3d2aSXin Li
43*a58d3d2aSXin Li /* sum of squares of a silk_float array, with result as double */
silk_energy_FLP(const float * data,int dataSize)44*a58d3d2aSXin Li static double silk_energy_FLP(
45*a58d3d2aSXin Li const float *data,
46*a58d3d2aSXin Li int dataSize
47*a58d3d2aSXin Li )
48*a58d3d2aSXin Li {
49*a58d3d2aSXin Li int i;
50*a58d3d2aSXin Li double result;
51*a58d3d2aSXin Li
52*a58d3d2aSXin Li /* 4x unrolled loop */
53*a58d3d2aSXin Li result = 0.0;
54*a58d3d2aSXin Li for( i = 0; i < dataSize - 3; i += 4 ) {
55*a58d3d2aSXin Li result += data[ i + 0 ] * (double)data[ i + 0 ] +
56*a58d3d2aSXin Li data[ i + 1 ] * (double)data[ i + 1 ] +
57*a58d3d2aSXin Li data[ i + 2 ] * (double)data[ i + 2 ] +
58*a58d3d2aSXin Li data[ i + 3 ] * (double)data[ i + 3 ];
59*a58d3d2aSXin Li }
60*a58d3d2aSXin Li
61*a58d3d2aSXin Li /* add any remaining products */
62*a58d3d2aSXin Li for( ; i < dataSize; i++ ) {
63*a58d3d2aSXin Li result += data[ i ] * (double)data[ i ];
64*a58d3d2aSXin Li }
65*a58d3d2aSXin Li
66*a58d3d2aSXin Li assert( result >= 0.0 );
67*a58d3d2aSXin Li return result;
68*a58d3d2aSXin Li }
69*a58d3d2aSXin Li
70*a58d3d2aSXin Li /* inner product of two silk_float arrays, with result as double */
silk_inner_product_FLP(const float * data1,const float * data2,int dataSize)71*a58d3d2aSXin Li static double silk_inner_product_FLP(
72*a58d3d2aSXin Li const float *data1,
73*a58d3d2aSXin Li const float *data2,
74*a58d3d2aSXin Li int dataSize
75*a58d3d2aSXin Li )
76*a58d3d2aSXin Li {
77*a58d3d2aSXin Li int i;
78*a58d3d2aSXin Li double result;
79*a58d3d2aSXin Li
80*a58d3d2aSXin Li /* 4x unrolled loop */
81*a58d3d2aSXin Li result = 0.0;
82*a58d3d2aSXin Li for( i = 0; i < dataSize - 3; i += 4 ) {
83*a58d3d2aSXin Li result += data1[ i + 0 ] * (double)data2[ i + 0 ] +
84*a58d3d2aSXin Li data1[ i + 1 ] * (double)data2[ i + 1 ] +
85*a58d3d2aSXin Li data1[ i + 2 ] * (double)data2[ i + 2 ] +
86*a58d3d2aSXin Li data1[ i + 3 ] * (double)data2[ i + 3 ];
87*a58d3d2aSXin Li }
88*a58d3d2aSXin Li
89*a58d3d2aSXin Li /* add any remaining products */
90*a58d3d2aSXin Li for( ; i < dataSize; i++ ) {
91*a58d3d2aSXin Li result += data1[ i ] * (double)data2[ i ];
92*a58d3d2aSXin Li }
93*a58d3d2aSXin Li
94*a58d3d2aSXin Li return result;
95*a58d3d2aSXin Li }
96*a58d3d2aSXin Li
97*a58d3d2aSXin Li
98*a58d3d2aSXin Li /* Compute reflection coefficients from input signal */
silk_burg_analysis(float A[],const float x[],const float minInvGain,const int subfr_length,const int nb_subfr,const int D)99*a58d3d2aSXin Li float silk_burg_analysis( /* O returns residual energy */
100*a58d3d2aSXin Li float A[], /* O prediction coefficients (length order) */
101*a58d3d2aSXin Li const float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
102*a58d3d2aSXin Li const float minInvGain, /* I minimum inverse prediction gain */
103*a58d3d2aSXin Li const int subfr_length, /* I input signal subframe length (incl. D preceding samples) */
104*a58d3d2aSXin Li const int nb_subfr, /* I number of subframes stacked in x */
105*a58d3d2aSXin Li const int D /* I order */
106*a58d3d2aSXin Li )
107*a58d3d2aSXin Li {
108*a58d3d2aSXin Li int k, n, s, reached_max_gain;
109*a58d3d2aSXin Li double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
110*a58d3d2aSXin Li const float *x_ptr;
111*a58d3d2aSXin Li double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
112*a58d3d2aSXin Li double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
113*a58d3d2aSXin Li double Af[ SILK_MAX_ORDER_LPC ];
114*a58d3d2aSXin Li
115*a58d3d2aSXin Li assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
116*a58d3d2aSXin Li
117*a58d3d2aSXin Li /* Compute autocorrelations, added over subframes */
118*a58d3d2aSXin Li C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
119*a58d3d2aSXin Li memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
120*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
121*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
122*a58d3d2aSXin Li for( n = 1; n < D + 1; n++ ) {
123*a58d3d2aSXin Li C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
124*a58d3d2aSXin Li }
125*a58d3d2aSXin Li }
126*a58d3d2aSXin Li memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
127*a58d3d2aSXin Li
128*a58d3d2aSXin Li /* Initialize */
129*a58d3d2aSXin Li CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
130*a58d3d2aSXin Li invGain = 1.0f;
131*a58d3d2aSXin Li reached_max_gain = 0;
132*a58d3d2aSXin Li for( n = 0; n < D; n++ ) {
133*a58d3d2aSXin Li /* Update first row of correlation matrix (without first element) */
134*a58d3d2aSXin Li /* Update last row of correlation matrix (without last element, stored in reversed order) */
135*a58d3d2aSXin Li /* Update C * Af */
136*a58d3d2aSXin Li /* Update C * flipud(Af) (stored in reversed order) */
137*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
138*a58d3d2aSXin Li x_ptr = x + s * subfr_length;
139*a58d3d2aSXin Li tmp1 = x_ptr[ n ];
140*a58d3d2aSXin Li tmp2 = x_ptr[ subfr_length - n - 1 ];
141*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
142*a58d3d2aSXin Li C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
143*a58d3d2aSXin Li C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
144*a58d3d2aSXin Li Atmp = Af[ k ];
145*a58d3d2aSXin Li tmp1 += x_ptr[ n - k - 1 ] * Atmp;
146*a58d3d2aSXin Li tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
147*a58d3d2aSXin Li }
148*a58d3d2aSXin Li for( k = 0; k <= n; k++ ) {
149*a58d3d2aSXin Li CAf[ k ] -= tmp1 * x_ptr[ n - k ];
150*a58d3d2aSXin Li CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
151*a58d3d2aSXin Li }
152*a58d3d2aSXin Li }
153*a58d3d2aSXin Li tmp1 = C_first_row[ n ];
154*a58d3d2aSXin Li tmp2 = C_last_row[ n ];
155*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
156*a58d3d2aSXin Li Atmp = Af[ k ];
157*a58d3d2aSXin Li tmp1 += C_last_row[ n - k - 1 ] * Atmp;
158*a58d3d2aSXin Li tmp2 += C_first_row[ n - k - 1 ] * Atmp;
159*a58d3d2aSXin Li }
160*a58d3d2aSXin Li CAf[ n + 1 ] = tmp1;
161*a58d3d2aSXin Li CAb[ n + 1 ] = tmp2;
162*a58d3d2aSXin Li
163*a58d3d2aSXin Li /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
164*a58d3d2aSXin Li num = CAb[ n + 1 ];
165*a58d3d2aSXin Li nrg_b = CAb[ 0 ];
166*a58d3d2aSXin Li nrg_f = CAf[ 0 ];
167*a58d3d2aSXin Li for( k = 0; k < n; k++ ) {
168*a58d3d2aSXin Li Atmp = Af[ k ];
169*a58d3d2aSXin Li num += CAb[ n - k ] * Atmp;
170*a58d3d2aSXin Li nrg_b += CAb[ k + 1 ] * Atmp;
171*a58d3d2aSXin Li nrg_f += CAf[ k + 1 ] * Atmp;
172*a58d3d2aSXin Li }
173*a58d3d2aSXin Li assert( nrg_f > 0.0 );
174*a58d3d2aSXin Li assert( nrg_b > 0.0 );
175*a58d3d2aSXin Li
176*a58d3d2aSXin Li /* Calculate the next order reflection (parcor) coefficient */
177*a58d3d2aSXin Li rc = -2.0 * num / ( nrg_f + nrg_b );
178*a58d3d2aSXin Li assert( rc > -1.0 && rc < 1.0 );
179*a58d3d2aSXin Li
180*a58d3d2aSXin Li /* Update inverse prediction gain */
181*a58d3d2aSXin Li tmp1 = invGain * ( 1.0 - rc * rc );
182*a58d3d2aSXin Li if( tmp1 <= minInvGain ) {
183*a58d3d2aSXin Li /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
184*a58d3d2aSXin Li rc = sqrt( 1.0 - minInvGain / invGain );
185*a58d3d2aSXin Li if( num > 0 ) {
186*a58d3d2aSXin Li /* Ensure adjusted reflection coefficients has the original sign */
187*a58d3d2aSXin Li rc = -rc;
188*a58d3d2aSXin Li }
189*a58d3d2aSXin Li invGain = minInvGain;
190*a58d3d2aSXin Li reached_max_gain = 1;
191*a58d3d2aSXin Li } else {
192*a58d3d2aSXin Li invGain = tmp1;
193*a58d3d2aSXin Li }
194*a58d3d2aSXin Li
195*a58d3d2aSXin Li /* Update the AR coefficients */
196*a58d3d2aSXin Li for( k = 0; k < (n + 1) >> 1; k++ ) {
197*a58d3d2aSXin Li tmp1 = Af[ k ];
198*a58d3d2aSXin Li tmp2 = Af[ n - k - 1 ];
199*a58d3d2aSXin Li Af[ k ] = tmp1 + rc * tmp2;
200*a58d3d2aSXin Li Af[ n - k - 1 ] = tmp2 + rc * tmp1;
201*a58d3d2aSXin Li }
202*a58d3d2aSXin Li Af[ n ] = rc;
203*a58d3d2aSXin Li
204*a58d3d2aSXin Li if( reached_max_gain ) {
205*a58d3d2aSXin Li /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
206*a58d3d2aSXin Li for( k = n + 1; k < D; k++ ) {
207*a58d3d2aSXin Li Af[ k ] = 0.0;
208*a58d3d2aSXin Li }
209*a58d3d2aSXin Li break;
210*a58d3d2aSXin Li }
211*a58d3d2aSXin Li
212*a58d3d2aSXin Li /* Update C * Af and C * Ab */
213*a58d3d2aSXin Li for( k = 0; k <= n + 1; k++ ) {
214*a58d3d2aSXin Li tmp1 = CAf[ k ];
215*a58d3d2aSXin Li CAf[ k ] += rc * CAb[ n - k + 1 ];
216*a58d3d2aSXin Li CAb[ n - k + 1 ] += rc * tmp1;
217*a58d3d2aSXin Li }
218*a58d3d2aSXin Li }
219*a58d3d2aSXin Li
220*a58d3d2aSXin Li if( reached_max_gain ) {
221*a58d3d2aSXin Li /* Convert to float */
222*a58d3d2aSXin Li for( k = 0; k < D; k++ ) {
223*a58d3d2aSXin Li A[ k ] = (float)( -Af[ k ] );
224*a58d3d2aSXin Li }
225*a58d3d2aSXin Li /* Subtract energy of preceding samples from C0 */
226*a58d3d2aSXin Li for( s = 0; s < nb_subfr; s++ ) {
227*a58d3d2aSXin Li C0 -= silk_energy_FLP( x + s * subfr_length, D );
228*a58d3d2aSXin Li }
229*a58d3d2aSXin Li /* Approximate residual energy */
230*a58d3d2aSXin Li nrg_f = C0 * invGain;
231*a58d3d2aSXin Li } else {
232*a58d3d2aSXin Li /* Compute residual energy and store coefficients as float */
233*a58d3d2aSXin Li nrg_f = CAf[ 0 ];
234*a58d3d2aSXin Li tmp1 = 1.0;
235*a58d3d2aSXin Li for( k = 0; k < D; k++ ) {
236*a58d3d2aSXin Li Atmp = Af[ k ];
237*a58d3d2aSXin Li nrg_f += CAf[ k + 1 ] * Atmp;
238*a58d3d2aSXin Li tmp1 += Atmp * Atmp;
239*a58d3d2aSXin Li A[ k ] = (float)(-Atmp);
240*a58d3d2aSXin Li }
241*a58d3d2aSXin Li nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
242*a58d3d2aSXin Li }
243*a58d3d2aSXin Li
244*a58d3d2aSXin Li /* Return residual energy */
245*a58d3d2aSXin Li return MAX32(0, (float)nrg_f);
246*a58d3d2aSXin Li }
247