xref: /aosp_15_r20/external/libopus/celt/rate.c (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1*a58d3d2aSXin Li /* Copyright (c) 2007-2008 CSIRO
2*a58d3d2aSXin Li    Copyright (c) 2007-2009 Xiph.Org Foundation
3*a58d3d2aSXin Li    Written by Jean-Marc Valin */
4*a58d3d2aSXin Li /*
5*a58d3d2aSXin Li    Redistribution and use in source and binary forms, with or without
6*a58d3d2aSXin Li    modification, are permitted provided that the following conditions
7*a58d3d2aSXin Li    are met:
8*a58d3d2aSXin Li 
9*a58d3d2aSXin Li    - Redistributions of source code must retain the above copyright
10*a58d3d2aSXin Li    notice, this list of conditions and the following disclaimer.
11*a58d3d2aSXin Li 
12*a58d3d2aSXin Li    - Redistributions in binary form must reproduce the above copyright
13*a58d3d2aSXin Li    notice, this list of conditions and the following disclaimer in the
14*a58d3d2aSXin Li    documentation and/or other materials provided with the distribution.
15*a58d3d2aSXin Li 
16*a58d3d2aSXin Li    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17*a58d3d2aSXin Li    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18*a58d3d2aSXin Li    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19*a58d3d2aSXin Li    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20*a58d3d2aSXin Li    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21*a58d3d2aSXin Li    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22*a58d3d2aSXin Li    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23*a58d3d2aSXin Li    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24*a58d3d2aSXin Li    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25*a58d3d2aSXin Li    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26*a58d3d2aSXin Li    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27*a58d3d2aSXin Li */
28*a58d3d2aSXin Li 
29*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
30*a58d3d2aSXin Li #include "config.h"
31*a58d3d2aSXin Li #endif
32*a58d3d2aSXin Li 
33*a58d3d2aSXin Li #include <math.h>
34*a58d3d2aSXin Li #include "modes.h"
35*a58d3d2aSXin Li #include "cwrs.h"
36*a58d3d2aSXin Li #include "arch.h"
37*a58d3d2aSXin Li #include "os_support.h"
38*a58d3d2aSXin Li 
39*a58d3d2aSXin Li #include "entcode.h"
40*a58d3d2aSXin Li #include "rate.h"
41*a58d3d2aSXin Li 
42*a58d3d2aSXin Li static const unsigned char LOG2_FRAC_TABLE[24]={
43*a58d3d2aSXin Li    0,
44*a58d3d2aSXin Li    8,13,
45*a58d3d2aSXin Li   16,19,21,23,
46*a58d3d2aSXin Li   24,26,27,28,29,30,31,32,
47*a58d3d2aSXin Li   32,33,34,34,35,36,36,37,37
48*a58d3d2aSXin Li };
49*a58d3d2aSXin Li 
50*a58d3d2aSXin Li #ifdef CUSTOM_MODES
51*a58d3d2aSXin Li 
52*a58d3d2aSXin Li /*Determines if V(N,K) fits in a 32-bit unsigned integer.
53*a58d3d2aSXin Li   N and K are themselves limited to 15 bits.*/
fits_in32(int _n,int _k)54*a58d3d2aSXin Li static int fits_in32(int _n, int _k)
55*a58d3d2aSXin Li {
56*a58d3d2aSXin Li    static const opus_int16 maxN[15] = {
57*a58d3d2aSXin Li       32767, 32767, 32767, 1476, 283, 109,  60,  40,
58*a58d3d2aSXin Li        29,  24,  20,  18,  16,  14,  13};
59*a58d3d2aSXin Li    static const opus_int16 maxK[15] = {
60*a58d3d2aSXin Li       32767, 32767, 32767, 32767, 1172, 238,  95,  53,
61*a58d3d2aSXin Li        36,  27,  22,  18,  16,  15,  13};
62*a58d3d2aSXin Li    if (_n>=14)
63*a58d3d2aSXin Li    {
64*a58d3d2aSXin Li       if (_k>=14)
65*a58d3d2aSXin Li          return 0;
66*a58d3d2aSXin Li       else
67*a58d3d2aSXin Li          return _n <= maxN[_k];
68*a58d3d2aSXin Li    } else {
69*a58d3d2aSXin Li       return _k <= maxK[_n];
70*a58d3d2aSXin Li    }
71*a58d3d2aSXin Li }
72*a58d3d2aSXin Li 
compute_pulse_cache(CELTMode * m,int LM)73*a58d3d2aSXin Li void compute_pulse_cache(CELTMode *m, int LM)
74*a58d3d2aSXin Li {
75*a58d3d2aSXin Li    int C;
76*a58d3d2aSXin Li    int i;
77*a58d3d2aSXin Li    int j;
78*a58d3d2aSXin Li    int curr=0;
79*a58d3d2aSXin Li    int nbEntries=0;
80*a58d3d2aSXin Li    int entryN[100], entryK[100], entryI[100];
81*a58d3d2aSXin Li    const opus_int16 *eBands = m->eBands;
82*a58d3d2aSXin Li    PulseCache *cache = &m->cache;
83*a58d3d2aSXin Li    opus_int16 *cindex;
84*a58d3d2aSXin Li    unsigned char *bits;
85*a58d3d2aSXin Li    unsigned char *cap;
86*a58d3d2aSXin Li 
87*a58d3d2aSXin Li    cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
88*a58d3d2aSXin Li    cache->index = cindex;
89*a58d3d2aSXin Li 
90*a58d3d2aSXin Li    /* Scan for all unique band sizes */
91*a58d3d2aSXin Li    for (i=0;i<=LM+1;i++)
92*a58d3d2aSXin Li    {
93*a58d3d2aSXin Li       for (j=0;j<m->nbEBands;j++)
94*a58d3d2aSXin Li       {
95*a58d3d2aSXin Li          int k;
96*a58d3d2aSXin Li          int N = (eBands[j+1]-eBands[j])<<i>>1;
97*a58d3d2aSXin Li          cindex[i*m->nbEBands+j] = -1;
98*a58d3d2aSXin Li          /* Find other bands that have the same size */
99*a58d3d2aSXin Li          for (k=0;k<=i;k++)
100*a58d3d2aSXin Li          {
101*a58d3d2aSXin Li             int n;
102*a58d3d2aSXin Li             for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
103*a58d3d2aSXin Li             {
104*a58d3d2aSXin Li                if (N == (eBands[n+1]-eBands[n])<<k>>1)
105*a58d3d2aSXin Li                {
106*a58d3d2aSXin Li                   cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
107*a58d3d2aSXin Li                   break;
108*a58d3d2aSXin Li                }
109*a58d3d2aSXin Li             }
110*a58d3d2aSXin Li          }
111*a58d3d2aSXin Li          if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
112*a58d3d2aSXin Li          {
113*a58d3d2aSXin Li             int K;
114*a58d3d2aSXin Li             entryN[nbEntries] = N;
115*a58d3d2aSXin Li             K = 0;
116*a58d3d2aSXin Li             while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
117*a58d3d2aSXin Li                K++;
118*a58d3d2aSXin Li             entryK[nbEntries] = K;
119*a58d3d2aSXin Li             cindex[i*m->nbEBands+j] = curr;
120*a58d3d2aSXin Li             entryI[nbEntries] = curr;
121*a58d3d2aSXin Li 
122*a58d3d2aSXin Li             curr += K+1;
123*a58d3d2aSXin Li             nbEntries++;
124*a58d3d2aSXin Li          }
125*a58d3d2aSXin Li       }
126*a58d3d2aSXin Li    }
127*a58d3d2aSXin Li    bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr);
128*a58d3d2aSXin Li    cache->bits = bits;
129*a58d3d2aSXin Li    cache->size = curr;
130*a58d3d2aSXin Li    /* Compute the cache for all unique sizes */
131*a58d3d2aSXin Li    for (i=0;i<nbEntries;i++)
132*a58d3d2aSXin Li    {
133*a58d3d2aSXin Li       unsigned char *ptr = bits+entryI[i];
134*a58d3d2aSXin Li       opus_int16 tmp[CELT_MAX_PULSES+1];
135*a58d3d2aSXin Li       get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
136*a58d3d2aSXin Li       for (j=1;j<=entryK[i];j++)
137*a58d3d2aSXin Li          ptr[j] = tmp[get_pulses(j)]-1;
138*a58d3d2aSXin Li       ptr[0] = entryK[i];
139*a58d3d2aSXin Li    }
140*a58d3d2aSXin Li 
141*a58d3d2aSXin Li    /* Compute the maximum rate for each band at which we'll reliably use as
142*a58d3d2aSXin Li        many bits as we ask for. */
143*a58d3d2aSXin Li    cache->caps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands);
144*a58d3d2aSXin Li    for (i=0;i<=LM;i++)
145*a58d3d2aSXin Li    {
146*a58d3d2aSXin Li       for (C=1;C<=2;C++)
147*a58d3d2aSXin Li       {
148*a58d3d2aSXin Li          for (j=0;j<m->nbEBands;j++)
149*a58d3d2aSXin Li          {
150*a58d3d2aSXin Li             int N0;
151*a58d3d2aSXin Li             int max_bits;
152*a58d3d2aSXin Li             N0 = m->eBands[j+1]-m->eBands[j];
153*a58d3d2aSXin Li             /* N=1 bands only have a sign bit and fine bits. */
154*a58d3d2aSXin Li             if (N0<<i == 1)
155*a58d3d2aSXin Li                max_bits = C*(1+MAX_FINE_BITS)<<BITRES;
156*a58d3d2aSXin Li             else
157*a58d3d2aSXin Li             {
158*a58d3d2aSXin Li                const unsigned char *pcache;
159*a58d3d2aSXin Li                opus_int32           num;
160*a58d3d2aSXin Li                opus_int32           den;
161*a58d3d2aSXin Li                int                  LM0;
162*a58d3d2aSXin Li                int                  N;
163*a58d3d2aSXin Li                int                  offset;
164*a58d3d2aSXin Li                int                  ndof;
165*a58d3d2aSXin Li                int                  qb;
166*a58d3d2aSXin Li                int                  k;
167*a58d3d2aSXin Li                LM0 = 0;
168*a58d3d2aSXin Li                /* Even-sized bands bigger than N=2 can be split one more time.
169*a58d3d2aSXin Li                   As of commit 44203907 all bands >1 are even, including custom modes.*/
170*a58d3d2aSXin Li                if (N0 > 2)
171*a58d3d2aSXin Li                {
172*a58d3d2aSXin Li                   N0>>=1;
173*a58d3d2aSXin Li                   LM0--;
174*a58d3d2aSXin Li                }
175*a58d3d2aSXin Li                /* N0=1 bands can't be split down to N<2. */
176*a58d3d2aSXin Li                else if (N0 <= 1)
177*a58d3d2aSXin Li                {
178*a58d3d2aSXin Li                   LM0=IMIN(i,1);
179*a58d3d2aSXin Li                   N0<<=LM0;
180*a58d3d2aSXin Li                }
181*a58d3d2aSXin Li                /* Compute the cost for the lowest-level PVQ of a fully split
182*a58d3d2aSXin Li                    band. */
183*a58d3d2aSXin Li                pcache = bits + cindex[(LM0+1)*m->nbEBands+j];
184*a58d3d2aSXin Li                max_bits = pcache[pcache[0]]+1;
185*a58d3d2aSXin Li                /* Add in the cost of coding regular splits. */
186*a58d3d2aSXin Li                N = N0;
187*a58d3d2aSXin Li                for(k=0;k<i-LM0;k++){
188*a58d3d2aSXin Li                   max_bits <<= 1;
189*a58d3d2aSXin Li                   /* Offset the number of qtheta bits by log2(N)/2
190*a58d3d2aSXin Li                       + QTHETA_OFFSET compared to their "fair share" of
191*a58d3d2aSXin Li                       total/N */
192*a58d3d2aSXin Li                   offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET;
193*a58d3d2aSXin Li                   /* The number of qtheta bits we'll allocate if the remainder
194*a58d3d2aSXin Li                       is to be max_bits.
195*a58d3d2aSXin Li                      The average measured cost for theta is 0.89701 times qb,
196*a58d3d2aSXin Li                       approximated here as 459/512. */
197*a58d3d2aSXin Li                   num=459*(opus_int32)((2*N-1)*offset+max_bits);
198*a58d3d2aSXin Li                   den=((opus_int32)(2*N-1)<<9)-459;
199*a58d3d2aSXin Li                   qb = IMIN((num+(den>>1))/den, 57);
200*a58d3d2aSXin Li                   celt_assert(qb >= 0);
201*a58d3d2aSXin Li                   max_bits += qb;
202*a58d3d2aSXin Li                   N <<= 1;
203*a58d3d2aSXin Li                }
204*a58d3d2aSXin Li                /* Add in the cost of a stereo split, if necessary. */
205*a58d3d2aSXin Li                if (C==2)
206*a58d3d2aSXin Li                {
207*a58d3d2aSXin Li                   max_bits <<= 1;
208*a58d3d2aSXin Li                   offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET);
209*a58d3d2aSXin Li                   ndof = 2*N-1-(N==2);
210*a58d3d2aSXin Li                   /* The average measured cost for theta with the step PDF is
211*a58d3d2aSXin Li                       0.95164 times qb, approximated here as 487/512. */
212*a58d3d2aSXin Li                   num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset);
213*a58d3d2aSXin Li                   den = ((opus_int32)ndof<<9)-(N==2?512:487);
214*a58d3d2aSXin Li                   qb = IMIN((num+(den>>1))/den, (N==2?64:61));
215*a58d3d2aSXin Li                   celt_assert(qb >= 0);
216*a58d3d2aSXin Li                   max_bits += qb;
217*a58d3d2aSXin Li                }
218*a58d3d2aSXin Li                /* Add the fine bits we'll use. */
219*a58d3d2aSXin Li                /* Compensate for the extra DoF in stereo */
220*a58d3d2aSXin Li                ndof = C*N + ((C==2 && N>2) ? 1 : 0);
221*a58d3d2aSXin Li                /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET
222*a58d3d2aSXin Li                    compared to their "fair share" of total/N */
223*a58d3d2aSXin Li                offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET;
224*a58d3d2aSXin Li                /* N=2 is the only point that doesn't match the curve */
225*a58d3d2aSXin Li                if (N==2)
226*a58d3d2aSXin Li                   offset += 1<<BITRES>>2;
227*a58d3d2aSXin Li                /* The number of fine bits we'll allocate if the remainder is
228*a58d3d2aSXin Li                    to be max_bits. */
229*a58d3d2aSXin Li                num = max_bits+ndof*offset;
230*a58d3d2aSXin Li                den = (ndof-1)<<BITRES;
231*a58d3d2aSXin Li                qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS);
232*a58d3d2aSXin Li                celt_assert(qb >= 0);
233*a58d3d2aSXin Li                max_bits += C*qb<<BITRES;
234*a58d3d2aSXin Li             }
235*a58d3d2aSXin Li             max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64;
236*a58d3d2aSXin Li             celt_assert(max_bits >= 0);
237*a58d3d2aSXin Li             celt_assert(max_bits < 256);
238*a58d3d2aSXin Li             *cap++ = (unsigned char)max_bits;
239*a58d3d2aSXin Li          }
240*a58d3d2aSXin Li       }
241*a58d3d2aSXin Li    }
242*a58d3d2aSXin Li }
243*a58d3d2aSXin Li 
244*a58d3d2aSXin Li #endif /* CUSTOM_MODES */
245*a58d3d2aSXin Li 
246*a58d3d2aSXin Li #define ALLOC_STEPS 6
247*a58d3d2aSXin Li 
interp_bits2pulses(const CELTMode * m,int start,int end,int skip_start,const int * bits1,const int * bits2,const int * thresh,const int * cap,opus_int32 total,opus_int32 * _balance,int skip_rsv,int * intensity,int intensity_rsv,int * dual_stereo,int dual_stereo_rsv,int * bits,int * ebits,int * fine_priority,int C,int LM,ec_ctx * ec,int encode,int prev,int signalBandwidth)248*a58d3d2aSXin Li static OPUS_INLINE int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
249*a58d3d2aSXin Li       const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance,
250*a58d3d2aSXin Li       int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
251*a58d3d2aSXin Li       int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
252*a58d3d2aSXin Li {
253*a58d3d2aSXin Li    opus_int32 psum;
254*a58d3d2aSXin Li    int lo, hi;
255*a58d3d2aSXin Li    int i, j;
256*a58d3d2aSXin Li    int logM;
257*a58d3d2aSXin Li    int stereo;
258*a58d3d2aSXin Li    int codedBands=-1;
259*a58d3d2aSXin Li    int alloc_floor;
260*a58d3d2aSXin Li    opus_int32 left, percoeff;
261*a58d3d2aSXin Li    int done;
262*a58d3d2aSXin Li    opus_int32 balance;
263*a58d3d2aSXin Li    SAVE_STACK;
264*a58d3d2aSXin Li 
265*a58d3d2aSXin Li    alloc_floor = C<<BITRES;
266*a58d3d2aSXin Li    stereo = C>1;
267*a58d3d2aSXin Li 
268*a58d3d2aSXin Li    logM = LM<<BITRES;
269*a58d3d2aSXin Li    lo = 0;
270*a58d3d2aSXin Li    hi = 1<<ALLOC_STEPS;
271*a58d3d2aSXin Li    for (i=0;i<ALLOC_STEPS;i++)
272*a58d3d2aSXin Li    {
273*a58d3d2aSXin Li       int mid = (lo+hi)>>1;
274*a58d3d2aSXin Li       psum = 0;
275*a58d3d2aSXin Li       done = 0;
276*a58d3d2aSXin Li       for (j=end;j-->start;)
277*a58d3d2aSXin Li       {
278*a58d3d2aSXin Li          int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS);
279*a58d3d2aSXin Li          if (tmp >= thresh[j] || done)
280*a58d3d2aSXin Li          {
281*a58d3d2aSXin Li             done = 1;
282*a58d3d2aSXin Li             /* Don't allocate more than we can actually use */
283*a58d3d2aSXin Li             psum += IMIN(tmp, cap[j]);
284*a58d3d2aSXin Li          } else {
285*a58d3d2aSXin Li             if (tmp >= alloc_floor)
286*a58d3d2aSXin Li                psum += alloc_floor;
287*a58d3d2aSXin Li          }
288*a58d3d2aSXin Li       }
289*a58d3d2aSXin Li       if (psum > total)
290*a58d3d2aSXin Li          hi = mid;
291*a58d3d2aSXin Li       else
292*a58d3d2aSXin Li          lo = mid;
293*a58d3d2aSXin Li    }
294*a58d3d2aSXin Li    psum = 0;
295*a58d3d2aSXin Li    /*printf ("interp bisection gave %d\n", lo);*/
296*a58d3d2aSXin Li    done = 0;
297*a58d3d2aSXin Li    for (j=end;j-->start;)
298*a58d3d2aSXin Li    {
299*a58d3d2aSXin Li       int tmp = bits1[j] + ((opus_int32)lo*bits2[j]>>ALLOC_STEPS);
300*a58d3d2aSXin Li       if (tmp < thresh[j] && !done)
301*a58d3d2aSXin Li       {
302*a58d3d2aSXin Li          if (tmp >= alloc_floor)
303*a58d3d2aSXin Li             tmp = alloc_floor;
304*a58d3d2aSXin Li          else
305*a58d3d2aSXin Li             tmp = 0;
306*a58d3d2aSXin Li       } else
307*a58d3d2aSXin Li          done = 1;
308*a58d3d2aSXin Li       /* Don't allocate more than we can actually use */
309*a58d3d2aSXin Li       tmp = IMIN(tmp, cap[j]);
310*a58d3d2aSXin Li       bits[j] = tmp;
311*a58d3d2aSXin Li       psum += tmp;
312*a58d3d2aSXin Li    }
313*a58d3d2aSXin Li 
314*a58d3d2aSXin Li    /* Decide which bands to skip, working backwards from the end. */
315*a58d3d2aSXin Li    for (codedBands=end;;codedBands--)
316*a58d3d2aSXin Li    {
317*a58d3d2aSXin Li       int band_width;
318*a58d3d2aSXin Li       int band_bits;
319*a58d3d2aSXin Li       int rem;
320*a58d3d2aSXin Li       j = codedBands-1;
321*a58d3d2aSXin Li       /* Never skip the first band, nor a band that has been boosted by
322*a58d3d2aSXin Li           dynalloc.
323*a58d3d2aSXin Li          In the first case, we'd be coding a bit to signal we're going to waste
324*a58d3d2aSXin Li           all the other bits.
325*a58d3d2aSXin Li          In the second case, we'd be coding a bit to redistribute all the bits
326*a58d3d2aSXin Li           we just signaled should be cocentrated in this band. */
327*a58d3d2aSXin Li       if (j<=skip_start)
328*a58d3d2aSXin Li       {
329*a58d3d2aSXin Li          /* Give the bit we reserved to end skipping back. */
330*a58d3d2aSXin Li          total += skip_rsv;
331*a58d3d2aSXin Li          break;
332*a58d3d2aSXin Li       }
333*a58d3d2aSXin Li       /*Figure out how many left-over bits we would be adding to this band.
334*a58d3d2aSXin Li         This can include bits we've stolen back from higher, skipped bands.*/
335*a58d3d2aSXin Li       left = total-psum;
336*a58d3d2aSXin Li       percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
337*a58d3d2aSXin Li       left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
338*a58d3d2aSXin Li       rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
339*a58d3d2aSXin Li       band_width = m->eBands[codedBands]-m->eBands[j];
340*a58d3d2aSXin Li       band_bits = (int)(bits[j] + percoeff*band_width + rem);
341*a58d3d2aSXin Li       /*Only code a skip decision if we're above the threshold for this band.
342*a58d3d2aSXin Li         Otherwise it is force-skipped.
343*a58d3d2aSXin Li         This ensures that we have enough bits to code the skip flag.*/
344*a58d3d2aSXin Li       if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
345*a58d3d2aSXin Li       {
346*a58d3d2aSXin Li          if (encode)
347*a58d3d2aSXin Li          {
348*a58d3d2aSXin Li             /*This if() block is the only part of the allocation function that
349*a58d3d2aSXin Li                is not a mandatory part of the bitstream: any bands we choose to
350*a58d3d2aSXin Li                skip here must be explicitly signaled.*/
351*a58d3d2aSXin Li             int depth_threshold;
352*a58d3d2aSXin Li             /*We choose a threshold with some hysteresis to keep bands from
353*a58d3d2aSXin Li                fluctuating in and out, but we try not to fold below a certain point. */
354*a58d3d2aSXin Li             if (codedBands > 17)
355*a58d3d2aSXin Li                depth_threshold = j<prev ? 7 : 9;
356*a58d3d2aSXin Li             else
357*a58d3d2aSXin Li                depth_threshold = 0;
358*a58d3d2aSXin Li #ifdef FUZZING
359*a58d3d2aSXin Li             (void)signalBandwidth;
360*a58d3d2aSXin Li             (void)depth_threshold;
361*a58d3d2aSXin Li             if ((rand()&0x1) == 0)
362*a58d3d2aSXin Li #else
363*a58d3d2aSXin Li             if (codedBands<=start+2 || (band_bits > (depth_threshold*band_width<<LM<<BITRES)>>4 && j<=signalBandwidth))
364*a58d3d2aSXin Li #endif
365*a58d3d2aSXin Li             {
366*a58d3d2aSXin Li                ec_enc_bit_logp(ec, 1, 1);
367*a58d3d2aSXin Li                break;
368*a58d3d2aSXin Li             }
369*a58d3d2aSXin Li             ec_enc_bit_logp(ec, 0, 1);
370*a58d3d2aSXin Li          } else if (ec_dec_bit_logp(ec, 1)) {
371*a58d3d2aSXin Li             break;
372*a58d3d2aSXin Li          }
373*a58d3d2aSXin Li          /*We used a bit to skip this band.*/
374*a58d3d2aSXin Li          psum += 1<<BITRES;
375*a58d3d2aSXin Li          band_bits -= 1<<BITRES;
376*a58d3d2aSXin Li       }
377*a58d3d2aSXin Li       /*Reclaim the bits originally allocated to this band.*/
378*a58d3d2aSXin Li       psum -= bits[j]+intensity_rsv;
379*a58d3d2aSXin Li       if (intensity_rsv > 0)
380*a58d3d2aSXin Li          intensity_rsv = LOG2_FRAC_TABLE[j-start];
381*a58d3d2aSXin Li       psum += intensity_rsv;
382*a58d3d2aSXin Li       if (band_bits >= alloc_floor)
383*a58d3d2aSXin Li       {
384*a58d3d2aSXin Li          /*If we have enough for a fine energy bit per channel, use it.*/
385*a58d3d2aSXin Li          psum += alloc_floor;
386*a58d3d2aSXin Li          bits[j] = alloc_floor;
387*a58d3d2aSXin Li       } else {
388*a58d3d2aSXin Li          /*Otherwise this band gets nothing at all.*/
389*a58d3d2aSXin Li          bits[j] = 0;
390*a58d3d2aSXin Li       }
391*a58d3d2aSXin Li    }
392*a58d3d2aSXin Li 
393*a58d3d2aSXin Li    celt_assert(codedBands > start);
394*a58d3d2aSXin Li    /* Code the intensity and dual stereo parameters. */
395*a58d3d2aSXin Li    if (intensity_rsv > 0)
396*a58d3d2aSXin Li    {
397*a58d3d2aSXin Li       if (encode)
398*a58d3d2aSXin Li       {
399*a58d3d2aSXin Li          *intensity = IMIN(*intensity, codedBands);
400*a58d3d2aSXin Li          ec_enc_uint(ec, *intensity-start, codedBands+1-start);
401*a58d3d2aSXin Li       }
402*a58d3d2aSXin Li       else
403*a58d3d2aSXin Li          *intensity = start+ec_dec_uint(ec, codedBands+1-start);
404*a58d3d2aSXin Li    }
405*a58d3d2aSXin Li    else
406*a58d3d2aSXin Li       *intensity = 0;
407*a58d3d2aSXin Li    if (*intensity <= start)
408*a58d3d2aSXin Li    {
409*a58d3d2aSXin Li       total += dual_stereo_rsv;
410*a58d3d2aSXin Li       dual_stereo_rsv = 0;
411*a58d3d2aSXin Li    }
412*a58d3d2aSXin Li    if (dual_stereo_rsv > 0)
413*a58d3d2aSXin Li    {
414*a58d3d2aSXin Li       if (encode)
415*a58d3d2aSXin Li          ec_enc_bit_logp(ec, *dual_stereo, 1);
416*a58d3d2aSXin Li       else
417*a58d3d2aSXin Li          *dual_stereo = ec_dec_bit_logp(ec, 1);
418*a58d3d2aSXin Li    }
419*a58d3d2aSXin Li    else
420*a58d3d2aSXin Li       *dual_stereo = 0;
421*a58d3d2aSXin Li 
422*a58d3d2aSXin Li    /* Allocate the remaining bits */
423*a58d3d2aSXin Li    left = total-psum;
424*a58d3d2aSXin Li    percoeff = celt_udiv(left, m->eBands[codedBands]-m->eBands[start]);
425*a58d3d2aSXin Li    left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
426*a58d3d2aSXin Li    for (j=start;j<codedBands;j++)
427*a58d3d2aSXin Li       bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j]));
428*a58d3d2aSXin Li    for (j=start;j<codedBands;j++)
429*a58d3d2aSXin Li    {
430*a58d3d2aSXin Li       int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]);
431*a58d3d2aSXin Li       bits[j] += tmp;
432*a58d3d2aSXin Li       left -= tmp;
433*a58d3d2aSXin Li    }
434*a58d3d2aSXin Li    /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
435*a58d3d2aSXin Li 
436*a58d3d2aSXin Li    balance = 0;
437*a58d3d2aSXin Li    for (j=start;j<codedBands;j++)
438*a58d3d2aSXin Li    {
439*a58d3d2aSXin Li       int N0, N, den;
440*a58d3d2aSXin Li       int offset;
441*a58d3d2aSXin Li       int NClogN;
442*a58d3d2aSXin Li       opus_int32 excess, bit;
443*a58d3d2aSXin Li 
444*a58d3d2aSXin Li       celt_assert(bits[j] >= 0);
445*a58d3d2aSXin Li       N0 = m->eBands[j+1]-m->eBands[j];
446*a58d3d2aSXin Li       N=N0<<LM;
447*a58d3d2aSXin Li       bit = (opus_int32)bits[j]+balance;
448*a58d3d2aSXin Li 
449*a58d3d2aSXin Li       if (N>1)
450*a58d3d2aSXin Li       {
451*a58d3d2aSXin Li          excess = MAX32(bit-cap[j],0);
452*a58d3d2aSXin Li          bits[j] = bit-excess;
453*a58d3d2aSXin Li 
454*a58d3d2aSXin Li          /* Compensate for the extra DoF in stereo */
455*a58d3d2aSXin Li          den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0));
456*a58d3d2aSXin Li 
457*a58d3d2aSXin Li          NClogN = den*(m->logN[j] + logM);
458*a58d3d2aSXin Li 
459*a58d3d2aSXin Li          /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
460*a58d3d2aSXin Li             compared to their "fair share" of total/N */
461*a58d3d2aSXin Li          offset = (NClogN>>1)-den*FINE_OFFSET;
462*a58d3d2aSXin Li 
463*a58d3d2aSXin Li          /* N=2 is the only point that doesn't match the curve */
464*a58d3d2aSXin Li          if (N==2)
465*a58d3d2aSXin Li             offset += den<<BITRES>>2;
466*a58d3d2aSXin Li 
467*a58d3d2aSXin Li          /* Changing the offset for allocating the second and third
468*a58d3d2aSXin Li              fine energy bit */
469*a58d3d2aSXin Li          if (bits[j] + offset < den*2<<BITRES)
470*a58d3d2aSXin Li             offset += NClogN>>2;
471*a58d3d2aSXin Li          else if (bits[j] + offset < den*3<<BITRES)
472*a58d3d2aSXin Li             offset += NClogN>>3;
473*a58d3d2aSXin Li 
474*a58d3d2aSXin Li          /* Divide with rounding */
475*a58d3d2aSXin Li          ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))));
476*a58d3d2aSXin Li          ebits[j] = celt_udiv(ebits[j], den)>>BITRES;
477*a58d3d2aSXin Li 
478*a58d3d2aSXin Li          /* Make sure not to bust */
479*a58d3d2aSXin Li          if (C*ebits[j] > (bits[j]>>BITRES))
480*a58d3d2aSXin Li             ebits[j] = bits[j] >> stereo >> BITRES;
481*a58d3d2aSXin Li 
482*a58d3d2aSXin Li          /* More than that is useless because that's about as far as PVQ can go */
483*a58d3d2aSXin Li          ebits[j] = IMIN(ebits[j], MAX_FINE_BITS);
484*a58d3d2aSXin Li 
485*a58d3d2aSXin Li          /* If we rounded down or capped this band, make it a candidate for the
486*a58d3d2aSXin Li              final fine energy pass */
487*a58d3d2aSXin Li          fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
488*a58d3d2aSXin Li 
489*a58d3d2aSXin Li          /* Remove the allocated fine bits; the rest are assigned to PVQ */
490*a58d3d2aSXin Li          bits[j] -= C*ebits[j]<<BITRES;
491*a58d3d2aSXin Li 
492*a58d3d2aSXin Li       } else {
493*a58d3d2aSXin Li          /* For N=1, all bits go to fine energy except for a single sign bit */
494*a58d3d2aSXin Li          excess = MAX32(0,bit-(C<<BITRES));
495*a58d3d2aSXin Li          bits[j] = bit-excess;
496*a58d3d2aSXin Li          ebits[j] = 0;
497*a58d3d2aSXin Li          fine_priority[j] = 1;
498*a58d3d2aSXin Li       }
499*a58d3d2aSXin Li 
500*a58d3d2aSXin Li       /* Fine energy can't take advantage of the re-balancing in
501*a58d3d2aSXin Li           quant_all_bands().
502*a58d3d2aSXin Li          Instead, do the re-balancing here.*/
503*a58d3d2aSXin Li       if(excess > 0)
504*a58d3d2aSXin Li       {
505*a58d3d2aSXin Li          int extra_fine;
506*a58d3d2aSXin Li          int extra_bits;
507*a58d3d2aSXin Li          extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]);
508*a58d3d2aSXin Li          ebits[j] += extra_fine;
509*a58d3d2aSXin Li          extra_bits = extra_fine*C<<BITRES;
510*a58d3d2aSXin Li          fine_priority[j] = extra_bits >= excess-balance;
511*a58d3d2aSXin Li          excess -= extra_bits;
512*a58d3d2aSXin Li       }
513*a58d3d2aSXin Li       balance = excess;
514*a58d3d2aSXin Li 
515*a58d3d2aSXin Li       celt_assert(bits[j] >= 0);
516*a58d3d2aSXin Li       celt_assert(ebits[j] >= 0);
517*a58d3d2aSXin Li    }
518*a58d3d2aSXin Li    /* Save any remaining bits over the cap for the rebalancing in
519*a58d3d2aSXin Li        quant_all_bands(). */
520*a58d3d2aSXin Li    *_balance = balance;
521*a58d3d2aSXin Li 
522*a58d3d2aSXin Li    /* The skipped bands use all their bits for fine energy. */
523*a58d3d2aSXin Li    for (;j<end;j++)
524*a58d3d2aSXin Li    {
525*a58d3d2aSXin Li       ebits[j] = bits[j] >> stereo >> BITRES;
526*a58d3d2aSXin Li       celt_assert(C*ebits[j]<<BITRES == bits[j]);
527*a58d3d2aSXin Li       bits[j] = 0;
528*a58d3d2aSXin Li       fine_priority[j] = ebits[j]<1;
529*a58d3d2aSXin Li    }
530*a58d3d2aSXin Li    RESTORE_STACK;
531*a58d3d2aSXin Li    return codedBands;
532*a58d3d2aSXin Li }
533*a58d3d2aSXin Li 
clt_compute_allocation(const CELTMode * m,int start,int end,const int * offsets,const int * cap,int alloc_trim,int * intensity,int * dual_stereo,opus_int32 total,opus_int32 * balance,int * pulses,int * ebits,int * fine_priority,int C,int LM,ec_ctx * ec,int encode,int prev,int signalBandwidth)534*a58d3d2aSXin Li int clt_compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo,
535*a58d3d2aSXin Li       opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev, int signalBandwidth)
536*a58d3d2aSXin Li {
537*a58d3d2aSXin Li    int lo, hi, len, j;
538*a58d3d2aSXin Li    int codedBands;
539*a58d3d2aSXin Li    int skip_start;
540*a58d3d2aSXin Li    int skip_rsv;
541*a58d3d2aSXin Li    int intensity_rsv;
542*a58d3d2aSXin Li    int dual_stereo_rsv;
543*a58d3d2aSXin Li    VARDECL(int, bits1);
544*a58d3d2aSXin Li    VARDECL(int, bits2);
545*a58d3d2aSXin Li    VARDECL(int, thresh);
546*a58d3d2aSXin Li    VARDECL(int, trim_offset);
547*a58d3d2aSXin Li    SAVE_STACK;
548*a58d3d2aSXin Li 
549*a58d3d2aSXin Li    total = IMAX(total, 0);
550*a58d3d2aSXin Li    len = m->nbEBands;
551*a58d3d2aSXin Li    skip_start = start;
552*a58d3d2aSXin Li    /* Reserve a bit to signal the end of manually skipped bands. */
553*a58d3d2aSXin Li    skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
554*a58d3d2aSXin Li    total -= skip_rsv;
555*a58d3d2aSXin Li    /* Reserve bits for the intensity and dual stereo parameters. */
556*a58d3d2aSXin Li    intensity_rsv = dual_stereo_rsv = 0;
557*a58d3d2aSXin Li    if (C==2)
558*a58d3d2aSXin Li    {
559*a58d3d2aSXin Li       intensity_rsv = LOG2_FRAC_TABLE[end-start];
560*a58d3d2aSXin Li       if (intensity_rsv>total)
561*a58d3d2aSXin Li          intensity_rsv = 0;
562*a58d3d2aSXin Li       else
563*a58d3d2aSXin Li       {
564*a58d3d2aSXin Li          total -= intensity_rsv;
565*a58d3d2aSXin Li          dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
566*a58d3d2aSXin Li          total -= dual_stereo_rsv;
567*a58d3d2aSXin Li       }
568*a58d3d2aSXin Li    }
569*a58d3d2aSXin Li    ALLOC(bits1, len, int);
570*a58d3d2aSXin Li    ALLOC(bits2, len, int);
571*a58d3d2aSXin Li    ALLOC(thresh, len, int);
572*a58d3d2aSXin Li    ALLOC(trim_offset, len, int);
573*a58d3d2aSXin Li 
574*a58d3d2aSXin Li    for (j=start;j<end;j++)
575*a58d3d2aSXin Li    {
576*a58d3d2aSXin Li       /* Below this threshold, we're sure not to allocate any PVQ bits */
577*a58d3d2aSXin Li       thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
578*a58d3d2aSXin Li       /* Tilt of the allocation curve */
579*a58d3d2aSXin Li       trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1)
580*a58d3d2aSXin Li             *(1<<(LM+BITRES))>>6;
581*a58d3d2aSXin Li       /* Giving less resolution to single-coefficient bands because they get
582*a58d3d2aSXin Li          more benefit from having one coarse value per coefficient*/
583*a58d3d2aSXin Li       if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
584*a58d3d2aSXin Li          trim_offset[j] -= C<<BITRES;
585*a58d3d2aSXin Li    }
586*a58d3d2aSXin Li    lo = 1;
587*a58d3d2aSXin Li    hi = m->nbAllocVectors - 1;
588*a58d3d2aSXin Li    do
589*a58d3d2aSXin Li    {
590*a58d3d2aSXin Li       int done = 0;
591*a58d3d2aSXin Li       int psum = 0;
592*a58d3d2aSXin Li       int mid = (lo+hi) >> 1;
593*a58d3d2aSXin Li       for (j=end;j-->start;)
594*a58d3d2aSXin Li       {
595*a58d3d2aSXin Li          int bitsj;
596*a58d3d2aSXin Li          int N = m->eBands[j+1]-m->eBands[j];
597*a58d3d2aSXin Li          bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2;
598*a58d3d2aSXin Li          if (bitsj > 0)
599*a58d3d2aSXin Li             bitsj = IMAX(0, bitsj + trim_offset[j]);
600*a58d3d2aSXin Li          bitsj += offsets[j];
601*a58d3d2aSXin Li          if (bitsj >= thresh[j] || done)
602*a58d3d2aSXin Li          {
603*a58d3d2aSXin Li             done = 1;
604*a58d3d2aSXin Li             /* Don't allocate more than we can actually use */
605*a58d3d2aSXin Li             psum += IMIN(bitsj, cap[j]);
606*a58d3d2aSXin Li          } else {
607*a58d3d2aSXin Li             if (bitsj >= C<<BITRES)
608*a58d3d2aSXin Li                psum += C<<BITRES;
609*a58d3d2aSXin Li          }
610*a58d3d2aSXin Li       }
611*a58d3d2aSXin Li       if (psum > total)
612*a58d3d2aSXin Li          hi = mid - 1;
613*a58d3d2aSXin Li       else
614*a58d3d2aSXin Li          lo = mid + 1;
615*a58d3d2aSXin Li       /*printf ("lo = %d, hi = %d\n", lo, hi);*/
616*a58d3d2aSXin Li    }
617*a58d3d2aSXin Li    while (lo <= hi);
618*a58d3d2aSXin Li    hi = lo--;
619*a58d3d2aSXin Li    /*printf ("interp between %d and %d\n", lo, hi);*/
620*a58d3d2aSXin Li    for (j=start;j<end;j++)
621*a58d3d2aSXin Li    {
622*a58d3d2aSXin Li       int bits1j, bits2j;
623*a58d3d2aSXin Li       int N = m->eBands[j+1]-m->eBands[j];
624*a58d3d2aSXin Li       bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2;
625*a58d3d2aSXin Li       bits2j = hi>=m->nbAllocVectors ?
626*a58d3d2aSXin Li             cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2;
627*a58d3d2aSXin Li       if (bits1j > 0)
628*a58d3d2aSXin Li          bits1j = IMAX(0, bits1j + trim_offset[j]);
629*a58d3d2aSXin Li       if (bits2j > 0)
630*a58d3d2aSXin Li          bits2j = IMAX(0, bits2j + trim_offset[j]);
631*a58d3d2aSXin Li       if (lo > 0)
632*a58d3d2aSXin Li          bits1j += offsets[j];
633*a58d3d2aSXin Li       bits2j += offsets[j];
634*a58d3d2aSXin Li       if (offsets[j]>0)
635*a58d3d2aSXin Li          skip_start = j;
636*a58d3d2aSXin Li       bits2j = IMAX(0,bits2j-bits1j);
637*a58d3d2aSXin Li       bits1[j] = bits1j;
638*a58d3d2aSXin Li       bits2[j] = bits2j;
639*a58d3d2aSXin Li    }
640*a58d3d2aSXin Li    codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap,
641*a58d3d2aSXin Li          total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
642*a58d3d2aSXin Li          pulses, ebits, fine_priority, C, LM, ec, encode, prev, signalBandwidth);
643*a58d3d2aSXin Li    RESTORE_STACK;
644*a58d3d2aSXin Li    return codedBands;
645*a58d3d2aSXin Li }
646*a58d3d2aSXin Li 
647