xref: /aosp_15_r20/external/libopus/celt/mdct.c (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1*a58d3d2aSXin Li /* Copyright (c) 2007-2008 CSIRO
2*a58d3d2aSXin Li    Copyright (c) 2007-2008 Xiph.Org Foundation
3*a58d3d2aSXin Li    Written by Jean-Marc Valin */
4*a58d3d2aSXin Li /*
5*a58d3d2aSXin Li    Redistribution and use in source and binary forms, with or without
6*a58d3d2aSXin Li    modification, are permitted provided that the following conditions
7*a58d3d2aSXin Li    are met:
8*a58d3d2aSXin Li 
9*a58d3d2aSXin Li    - Redistributions of source code must retain the above copyright
10*a58d3d2aSXin Li    notice, this list of conditions and the following disclaimer.
11*a58d3d2aSXin Li 
12*a58d3d2aSXin Li    - Redistributions in binary form must reproduce the above copyright
13*a58d3d2aSXin Li    notice, this list of conditions and the following disclaimer in the
14*a58d3d2aSXin Li    documentation and/or other materials provided with the distribution.
15*a58d3d2aSXin Li 
16*a58d3d2aSXin Li    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17*a58d3d2aSXin Li    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18*a58d3d2aSXin Li    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19*a58d3d2aSXin Li    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
20*a58d3d2aSXin Li    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21*a58d3d2aSXin Li    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22*a58d3d2aSXin Li    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23*a58d3d2aSXin Li    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24*a58d3d2aSXin Li    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25*a58d3d2aSXin Li    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26*a58d3d2aSXin Li    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27*a58d3d2aSXin Li */
28*a58d3d2aSXin Li 
29*a58d3d2aSXin Li /* This is a simple MDCT implementation that uses a N/4 complex FFT
30*a58d3d2aSXin Li    to do most of the work. It should be relatively straightforward to
31*a58d3d2aSXin Li    plug in pretty much and FFT here.
32*a58d3d2aSXin Li 
33*a58d3d2aSXin Li    This replaces the Vorbis FFT (and uses the exact same API), which
34*a58d3d2aSXin Li    was a bit too messy and that was ending up duplicating code
35*a58d3d2aSXin Li    (might as well use the same FFT everywhere).
36*a58d3d2aSXin Li 
37*a58d3d2aSXin Li    The algorithm is similar to (and inspired from) Fabrice Bellard's
38*a58d3d2aSXin Li    MDCT implementation in FFMPEG, but has differences in signs, ordering
39*a58d3d2aSXin Li    and scaling in many places.
40*a58d3d2aSXin Li */
41*a58d3d2aSXin Li 
42*a58d3d2aSXin Li #ifndef SKIP_CONFIG_H
43*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
44*a58d3d2aSXin Li #include "config.h"
45*a58d3d2aSXin Li #endif
46*a58d3d2aSXin Li #endif
47*a58d3d2aSXin Li 
48*a58d3d2aSXin Li #include "mdct.h"
49*a58d3d2aSXin Li #include "kiss_fft.h"
50*a58d3d2aSXin Li #include "_kiss_fft_guts.h"
51*a58d3d2aSXin Li #include <math.h>
52*a58d3d2aSXin Li #include "os_support.h"
53*a58d3d2aSXin Li #include "mathops.h"
54*a58d3d2aSXin Li #include "stack_alloc.h"
55*a58d3d2aSXin Li 
56*a58d3d2aSXin Li #if defined(MIPSr1_ASM)
57*a58d3d2aSXin Li #include "mips/mdct_mipsr1.h"
58*a58d3d2aSXin Li #endif
59*a58d3d2aSXin Li 
60*a58d3d2aSXin Li 
61*a58d3d2aSXin Li #ifdef CUSTOM_MODES
62*a58d3d2aSXin Li 
clt_mdct_init(mdct_lookup * l,int N,int maxshift,int arch)63*a58d3d2aSXin Li int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch)
64*a58d3d2aSXin Li {
65*a58d3d2aSXin Li    int i;
66*a58d3d2aSXin Li    kiss_twiddle_scalar *trig;
67*a58d3d2aSXin Li    int shift;
68*a58d3d2aSXin Li    int N2=N>>1;
69*a58d3d2aSXin Li    l->n = N;
70*a58d3d2aSXin Li    l->maxshift = maxshift;
71*a58d3d2aSXin Li    for (i=0;i<=maxshift;i++)
72*a58d3d2aSXin Li    {
73*a58d3d2aSXin Li       if (i==0)
74*a58d3d2aSXin Li          l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch);
75*a58d3d2aSXin Li       else
76*a58d3d2aSXin Li          l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch);
77*a58d3d2aSXin Li #ifndef ENABLE_TI_DSPLIB55
78*a58d3d2aSXin Li       if (l->kfft[i]==NULL)
79*a58d3d2aSXin Li          return 0;
80*a58d3d2aSXin Li #endif
81*a58d3d2aSXin Li    }
82*a58d3d2aSXin Li    l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar));
83*a58d3d2aSXin Li    if (l->trig==NULL)
84*a58d3d2aSXin Li      return 0;
85*a58d3d2aSXin Li    for (shift=0;shift<=maxshift;shift++)
86*a58d3d2aSXin Li    {
87*a58d3d2aSXin Li       /* We have enough points that sine isn't necessary */
88*a58d3d2aSXin Li #if defined(FIXED_POINT)
89*a58d3d2aSXin Li #if 1
90*a58d3d2aSXin Li       for (i=0;i<N2;i++)
91*a58d3d2aSXin Li          trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N));
92*a58d3d2aSXin Li #else
93*a58d3d2aSXin Li       for (i=0;i<N2;i++)
94*a58d3d2aSXin Li          trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N))));
95*a58d3d2aSXin Li #endif
96*a58d3d2aSXin Li #else
97*a58d3d2aSXin Li       for (i=0;i<N2;i++)
98*a58d3d2aSXin Li          trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N);
99*a58d3d2aSXin Li #endif
100*a58d3d2aSXin Li       trig += N2;
101*a58d3d2aSXin Li       N2 >>= 1;
102*a58d3d2aSXin Li       N >>= 1;
103*a58d3d2aSXin Li    }
104*a58d3d2aSXin Li    return 1;
105*a58d3d2aSXin Li }
106*a58d3d2aSXin Li 
clt_mdct_clear(mdct_lookup * l,int arch)107*a58d3d2aSXin Li void clt_mdct_clear(mdct_lookup *l, int arch)
108*a58d3d2aSXin Li {
109*a58d3d2aSXin Li    int i;
110*a58d3d2aSXin Li    for (i=0;i<=l->maxshift;i++)
111*a58d3d2aSXin Li       opus_fft_free(l->kfft[i], arch);
112*a58d3d2aSXin Li    opus_free((kiss_twiddle_scalar*)l->trig);
113*a58d3d2aSXin Li }
114*a58d3d2aSXin Li 
115*a58d3d2aSXin Li #endif /* CUSTOM_MODES */
116*a58d3d2aSXin Li 
117*a58d3d2aSXin Li /* Forward MDCT trashes the input array */
118*a58d3d2aSXin Li #ifndef OVERRIDE_clt_mdct_forward
clt_mdct_forward_c(const mdct_lookup * l,kiss_fft_scalar * in,kiss_fft_scalar * OPUS_RESTRICT out,const opus_val16 * window,int overlap,int shift,int stride,int arch)119*a58d3d2aSXin Li void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
120*a58d3d2aSXin Li       const opus_val16 *window, int overlap, int shift, int stride, int arch)
121*a58d3d2aSXin Li {
122*a58d3d2aSXin Li    int i;
123*a58d3d2aSXin Li    int N, N2, N4;
124*a58d3d2aSXin Li    VARDECL(kiss_fft_scalar, f);
125*a58d3d2aSXin Li    VARDECL(kiss_fft_cpx, f2);
126*a58d3d2aSXin Li    const kiss_fft_state *st = l->kfft[shift];
127*a58d3d2aSXin Li    const kiss_twiddle_scalar *trig;
128*a58d3d2aSXin Li    opus_val16 scale;
129*a58d3d2aSXin Li #ifdef FIXED_POINT
130*a58d3d2aSXin Li    /* Allows us to scale with MULT16_32_Q16(), which is faster than
131*a58d3d2aSXin Li       MULT16_32_Q15() on ARM. */
132*a58d3d2aSXin Li    int scale_shift = st->scale_shift-1;
133*a58d3d2aSXin Li #endif
134*a58d3d2aSXin Li    SAVE_STACK;
135*a58d3d2aSXin Li    (void)arch;
136*a58d3d2aSXin Li    scale = st->scale;
137*a58d3d2aSXin Li 
138*a58d3d2aSXin Li    N = l->n;
139*a58d3d2aSXin Li    trig = l->trig;
140*a58d3d2aSXin Li    for (i=0;i<shift;i++)
141*a58d3d2aSXin Li    {
142*a58d3d2aSXin Li       N >>= 1;
143*a58d3d2aSXin Li       trig += N;
144*a58d3d2aSXin Li    }
145*a58d3d2aSXin Li    N2 = N>>1;
146*a58d3d2aSXin Li    N4 = N>>2;
147*a58d3d2aSXin Li 
148*a58d3d2aSXin Li    ALLOC(f, N2, kiss_fft_scalar);
149*a58d3d2aSXin Li    ALLOC(f2, N4, kiss_fft_cpx);
150*a58d3d2aSXin Li 
151*a58d3d2aSXin Li    /* Consider the input to be composed of four blocks: [a, b, c, d] */
152*a58d3d2aSXin Li    /* Window, shuffle, fold */
153*a58d3d2aSXin Li    {
154*a58d3d2aSXin Li       /* Temp pointers to make it really clear to the compiler what we're doing */
155*a58d3d2aSXin Li       const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
156*a58d3d2aSXin Li       const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
157*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp = f;
158*a58d3d2aSXin Li       const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
159*a58d3d2aSXin Li       const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
160*a58d3d2aSXin Li       for(i=0;i<((overlap+3)>>2);i++)
161*a58d3d2aSXin Li       {
162*a58d3d2aSXin Li          /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
163*a58d3d2aSXin Li          *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
164*a58d3d2aSXin Li          *yp++ = MULT16_32_Q15(*wp1, *xp1)    - MULT16_32_Q15(*wp2, xp2[-N2]);
165*a58d3d2aSXin Li          xp1+=2;
166*a58d3d2aSXin Li          xp2-=2;
167*a58d3d2aSXin Li          wp1+=2;
168*a58d3d2aSXin Li          wp2-=2;
169*a58d3d2aSXin Li       }
170*a58d3d2aSXin Li       wp1 = window;
171*a58d3d2aSXin Li       wp2 = window+overlap-1;
172*a58d3d2aSXin Li       for(;i<N4-((overlap+3)>>2);i++)
173*a58d3d2aSXin Li       {
174*a58d3d2aSXin Li          /* Real part arranged as a-bR, Imag part arranged as -c-dR */
175*a58d3d2aSXin Li          *yp++ = *xp2;
176*a58d3d2aSXin Li          *yp++ = *xp1;
177*a58d3d2aSXin Li          xp1+=2;
178*a58d3d2aSXin Li          xp2-=2;
179*a58d3d2aSXin Li       }
180*a58d3d2aSXin Li       for(;i<N4;i++)
181*a58d3d2aSXin Li       {
182*a58d3d2aSXin Li          /* Real part arranged as a-bR, Imag part arranged as -c-dR */
183*a58d3d2aSXin Li          *yp++ =  -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
184*a58d3d2aSXin Li          *yp++ = MULT16_32_Q15(*wp2, *xp1)     + MULT16_32_Q15(*wp1, xp2[N2]);
185*a58d3d2aSXin Li          xp1+=2;
186*a58d3d2aSXin Li          xp2-=2;
187*a58d3d2aSXin Li          wp1+=2;
188*a58d3d2aSXin Li          wp2-=2;
189*a58d3d2aSXin Li       }
190*a58d3d2aSXin Li    }
191*a58d3d2aSXin Li    /* Pre-rotation */
192*a58d3d2aSXin Li    {
193*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp = f;
194*a58d3d2aSXin Li       const kiss_twiddle_scalar *t = &trig[0];
195*a58d3d2aSXin Li       for(i=0;i<N4;i++)
196*a58d3d2aSXin Li       {
197*a58d3d2aSXin Li          kiss_fft_cpx yc;
198*a58d3d2aSXin Li          kiss_twiddle_scalar t0, t1;
199*a58d3d2aSXin Li          kiss_fft_scalar re, im, yr, yi;
200*a58d3d2aSXin Li          t0 = t[i];
201*a58d3d2aSXin Li          t1 = t[N4+i];
202*a58d3d2aSXin Li          re = *yp++;
203*a58d3d2aSXin Li          im = *yp++;
204*a58d3d2aSXin Li          yr = S_MUL(re,t0)  -  S_MUL(im,t1);
205*a58d3d2aSXin Li          yi = S_MUL(im,t0)  +  S_MUL(re,t1);
206*a58d3d2aSXin Li          yc.r = yr;
207*a58d3d2aSXin Li          yc.i = yi;
208*a58d3d2aSXin Li          yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift);
209*a58d3d2aSXin Li          yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift);
210*a58d3d2aSXin Li          f2[st->bitrev[i]] = yc;
211*a58d3d2aSXin Li       }
212*a58d3d2aSXin Li    }
213*a58d3d2aSXin Li 
214*a58d3d2aSXin Li    /* N/4 complex FFT, does not downscale anymore */
215*a58d3d2aSXin Li    opus_fft_impl(st, f2);
216*a58d3d2aSXin Li 
217*a58d3d2aSXin Li    /* Post-rotate */
218*a58d3d2aSXin Li    {
219*a58d3d2aSXin Li       /* Temp pointers to make it really clear to the compiler what we're doing */
220*a58d3d2aSXin Li       const kiss_fft_cpx * OPUS_RESTRICT fp = f2;
221*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
222*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
223*a58d3d2aSXin Li       const kiss_twiddle_scalar *t = &trig[0];
224*a58d3d2aSXin Li       /* Temp pointers to make it really clear to the compiler what we're doing */
225*a58d3d2aSXin Li       for(i=0;i<N4;i++)
226*a58d3d2aSXin Li       {
227*a58d3d2aSXin Li          kiss_fft_scalar yr, yi;
228*a58d3d2aSXin Li          yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]);
229*a58d3d2aSXin Li          yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]);
230*a58d3d2aSXin Li          *yp1 = yr;
231*a58d3d2aSXin Li          *yp2 = yi;
232*a58d3d2aSXin Li          fp++;
233*a58d3d2aSXin Li          yp1 += 2*stride;
234*a58d3d2aSXin Li          yp2 -= 2*stride;
235*a58d3d2aSXin Li       }
236*a58d3d2aSXin Li    }
237*a58d3d2aSXin Li    RESTORE_STACK;
238*a58d3d2aSXin Li }
239*a58d3d2aSXin Li #endif /* OVERRIDE_clt_mdct_forward */
240*a58d3d2aSXin Li 
241*a58d3d2aSXin Li #ifndef OVERRIDE_clt_mdct_backward
clt_mdct_backward_c(const mdct_lookup * l,kiss_fft_scalar * in,kiss_fft_scalar * OPUS_RESTRICT out,const opus_val16 * OPUS_RESTRICT window,int overlap,int shift,int stride,int arch)242*a58d3d2aSXin Li void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
243*a58d3d2aSXin Li       const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch)
244*a58d3d2aSXin Li {
245*a58d3d2aSXin Li    int i;
246*a58d3d2aSXin Li    int N, N2, N4;
247*a58d3d2aSXin Li    const kiss_twiddle_scalar *trig;
248*a58d3d2aSXin Li    (void) arch;
249*a58d3d2aSXin Li 
250*a58d3d2aSXin Li    N = l->n;
251*a58d3d2aSXin Li    trig = l->trig;
252*a58d3d2aSXin Li    for (i=0;i<shift;i++)
253*a58d3d2aSXin Li    {
254*a58d3d2aSXin Li       N >>= 1;
255*a58d3d2aSXin Li       trig += N;
256*a58d3d2aSXin Li    }
257*a58d3d2aSXin Li    N2 = N>>1;
258*a58d3d2aSXin Li    N4 = N>>2;
259*a58d3d2aSXin Li 
260*a58d3d2aSXin Li    /* Pre-rotate */
261*a58d3d2aSXin Li    {
262*a58d3d2aSXin Li       /* Temp pointers to make it really clear to the compiler what we're doing */
263*a58d3d2aSXin Li       const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
264*a58d3d2aSXin Li       const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
265*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1);
266*a58d3d2aSXin Li       const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0];
267*a58d3d2aSXin Li       const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev;
268*a58d3d2aSXin Li       for(i=0;i<N4;i++)
269*a58d3d2aSXin Li       {
270*a58d3d2aSXin Li          int rev;
271*a58d3d2aSXin Li          kiss_fft_scalar yr, yi;
272*a58d3d2aSXin Li          rev = *bitrev++;
273*a58d3d2aSXin Li          yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i]));
274*a58d3d2aSXin Li          yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i]));
275*a58d3d2aSXin Li          /* We swap real and imag because we use an FFT instead of an IFFT. */
276*a58d3d2aSXin Li          yp[2*rev+1] = yr;
277*a58d3d2aSXin Li          yp[2*rev] = yi;
278*a58d3d2aSXin Li          /* Storing the pre-rotation directly in the bitrev order. */
279*a58d3d2aSXin Li          xp1+=2*stride;
280*a58d3d2aSXin Li          xp2-=2*stride;
281*a58d3d2aSXin Li       }
282*a58d3d2aSXin Li    }
283*a58d3d2aSXin Li 
284*a58d3d2aSXin Li    opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1)));
285*a58d3d2aSXin Li 
286*a58d3d2aSXin Li    /* Post-rotate and de-shuffle from both ends of the buffer at once to make
287*a58d3d2aSXin Li       it in-place. */
288*a58d3d2aSXin Li    {
289*a58d3d2aSXin Li       kiss_fft_scalar * yp0 = out+(overlap>>1);
290*a58d3d2aSXin Li       kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2;
291*a58d3d2aSXin Li       const kiss_twiddle_scalar *t = &trig[0];
292*a58d3d2aSXin Li       /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the
293*a58d3d2aSXin Li          middle pair will be computed twice. */
294*a58d3d2aSXin Li       for(i=0;i<(N4+1)>>1;i++)
295*a58d3d2aSXin Li       {
296*a58d3d2aSXin Li          kiss_fft_scalar re, im, yr, yi;
297*a58d3d2aSXin Li          kiss_twiddle_scalar t0, t1;
298*a58d3d2aSXin Li          /* We swap real and imag because we're using an FFT instead of an IFFT. */
299*a58d3d2aSXin Li          re = yp0[1];
300*a58d3d2aSXin Li          im = yp0[0];
301*a58d3d2aSXin Li          t0 = t[i];
302*a58d3d2aSXin Li          t1 = t[N4+i];
303*a58d3d2aSXin Li          /* We'd scale up by 2 here, but instead it's done when mixing the windows */
304*a58d3d2aSXin Li          yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
305*a58d3d2aSXin Li          yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
306*a58d3d2aSXin Li          /* We swap real and imag because we're using an FFT instead of an IFFT. */
307*a58d3d2aSXin Li          re = yp1[1];
308*a58d3d2aSXin Li          im = yp1[0];
309*a58d3d2aSXin Li          yp0[0] = yr;
310*a58d3d2aSXin Li          yp1[1] = yi;
311*a58d3d2aSXin Li 
312*a58d3d2aSXin Li          t0 = t[(N4-i-1)];
313*a58d3d2aSXin Li          t1 = t[(N2-i-1)];
314*a58d3d2aSXin Li          /* We'd scale up by 2 here, but instead it's done when mixing the windows */
315*a58d3d2aSXin Li          yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
316*a58d3d2aSXin Li          yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
317*a58d3d2aSXin Li          yp1[0] = yr;
318*a58d3d2aSXin Li          yp0[1] = yi;
319*a58d3d2aSXin Li          yp0 += 2;
320*a58d3d2aSXin Li          yp1 -= 2;
321*a58d3d2aSXin Li       }
322*a58d3d2aSXin Li    }
323*a58d3d2aSXin Li 
324*a58d3d2aSXin Li    /* Mirror on both sides for TDAC */
325*a58d3d2aSXin Li    {
326*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1;
327*a58d3d2aSXin Li       kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
328*a58d3d2aSXin Li       const opus_val16 * OPUS_RESTRICT wp1 = window;
329*a58d3d2aSXin Li       const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
330*a58d3d2aSXin Li 
331*a58d3d2aSXin Li       for(i = 0; i < overlap/2; i++)
332*a58d3d2aSXin Li       {
333*a58d3d2aSXin Li          kiss_fft_scalar x1, x2;
334*a58d3d2aSXin Li          x1 = *xp1;
335*a58d3d2aSXin Li          x2 = *yp1;
336*a58d3d2aSXin Li          *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1));
337*a58d3d2aSXin Li          *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1));
338*a58d3d2aSXin Li          wp1++;
339*a58d3d2aSXin Li          wp2--;
340*a58d3d2aSXin Li       }
341*a58d3d2aSXin Li    }
342*a58d3d2aSXin Li }
343*a58d3d2aSXin Li #endif /* OVERRIDE_clt_mdct_backward */
344