1*a58d3d2aSXin Li /* Copyright (c) 2007-2008 CSIRO
2*a58d3d2aSXin Li Copyright (c) 2007-2009 Xiph.Org Foundation
3*a58d3d2aSXin Li Copyright (c) 2007-2009 Timothy B. Terriberry
4*a58d3d2aSXin Li Written by Timothy B. Terriberry and Jean-Marc Valin */
5*a58d3d2aSXin Li /*
6*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without
7*a58d3d2aSXin Li modification, are permitted provided that the following conditions
8*a58d3d2aSXin Li are met:
9*a58d3d2aSXin Li
10*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright
11*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer.
12*a58d3d2aSXin Li
13*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright
14*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the
15*a58d3d2aSXin Li documentation and/or other materials provided with the distribution.
16*a58d3d2aSXin Li
17*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18*a58d3d2aSXin Li ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19*a58d3d2aSXin Li LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20*a58d3d2aSXin Li A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
21*a58d3d2aSXin Li OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22*a58d3d2aSXin Li EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23*a58d3d2aSXin Li PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24*a58d3d2aSXin Li PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25*a58d3d2aSXin Li LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26*a58d3d2aSXin Li NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27*a58d3d2aSXin Li SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28*a58d3d2aSXin Li */
29*a58d3d2aSXin Li
30*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
31*a58d3d2aSXin Li #include "config.h"
32*a58d3d2aSXin Li #endif
33*a58d3d2aSXin Li
34*a58d3d2aSXin Li #include "os_support.h"
35*a58d3d2aSXin Li #include "cwrs.h"
36*a58d3d2aSXin Li #include "mathops.h"
37*a58d3d2aSXin Li #include "arch.h"
38*a58d3d2aSXin Li
39*a58d3d2aSXin Li #ifdef CUSTOM_MODES
40*a58d3d2aSXin Li
41*a58d3d2aSXin Li /*Guaranteed to return a conservatively large estimate of the binary logarithm
42*a58d3d2aSXin Li with frac bits of fractional precision.
43*a58d3d2aSXin Li Tested for all possible 32-bit inputs with frac=4, where the maximum
44*a58d3d2aSXin Li overestimation is 0.06254243 bits.*/
log2_frac(opus_uint32 val,int frac)45*a58d3d2aSXin Li int log2_frac(opus_uint32 val, int frac)
46*a58d3d2aSXin Li {
47*a58d3d2aSXin Li int l;
48*a58d3d2aSXin Li l=EC_ILOG(val);
49*a58d3d2aSXin Li if(val&(val-1)){
50*a58d3d2aSXin Li /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
51*a58d3d2aSXin Li before the shift would cause overflow (e.g., for 0xFFFFxxxx).
52*a58d3d2aSXin Li Doesn't work for val=0, but that case fails the test above.*/
53*a58d3d2aSXin Li if(l>16)val=((val-1)>>(l-16))+1;
54*a58d3d2aSXin Li else val<<=16-l;
55*a58d3d2aSXin Li l=(l-1)<<frac;
56*a58d3d2aSXin Li /*Note that we always need one iteration, since the rounding up above means
57*a58d3d2aSXin Li that we might need to adjust the integer part of the logarithm.*/
58*a58d3d2aSXin Li do{
59*a58d3d2aSXin Li int b;
60*a58d3d2aSXin Li b=(int)(val>>16);
61*a58d3d2aSXin Li l+=b<<frac;
62*a58d3d2aSXin Li val=(val+b)>>b;
63*a58d3d2aSXin Li val=(val*val+0x7FFF)>>15;
64*a58d3d2aSXin Li }
65*a58d3d2aSXin Li while(frac-->0);
66*a58d3d2aSXin Li /*If val is not exactly 0x8000, then we have to round up the remainder.*/
67*a58d3d2aSXin Li return l+(val>0x8000);
68*a58d3d2aSXin Li }
69*a58d3d2aSXin Li /*Exact powers of two require no rounding.*/
70*a58d3d2aSXin Li else return (l-1)<<frac;
71*a58d3d2aSXin Li }
72*a58d3d2aSXin Li #endif
73*a58d3d2aSXin Li
74*a58d3d2aSXin Li /*Although derived separately, the pulse vector coding scheme is equivalent to
75*a58d3d2aSXin Li a Pyramid Vector Quantizer \cite{Fis86}.
76*a58d3d2aSXin Li Some additional notes about an early version appear at
77*a58d3d2aSXin Li https://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
78*a58d3d2aSXin Li and the definitions of some terms have evolved since that was written.
79*a58d3d2aSXin Li
80*a58d3d2aSXin Li The conversion from a pulse vector to an integer index (encoding) and back
81*a58d3d2aSXin Li (decoding) is governed by two related functions, V(N,K) and U(N,K).
82*a58d3d2aSXin Li
83*a58d3d2aSXin Li V(N,K) = the number of combinations, with replacement, of N items, taken K
84*a58d3d2aSXin Li at a time, when a sign bit is added to each item taken at least once (i.e.,
85*a58d3d2aSXin Li the number of N-dimensional unit pulse vectors with K pulses).
86*a58d3d2aSXin Li One way to compute this is via
87*a58d3d2aSXin Li V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
88*a58d3d2aSXin Li where choose() is the binomial function.
89*a58d3d2aSXin Li A table of values for N<10 and K<10 looks like:
90*a58d3d2aSXin Li V[10][10] = {
91*a58d3d2aSXin Li {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
92*a58d3d2aSXin Li {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
93*a58d3d2aSXin Li {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
94*a58d3d2aSXin Li {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
95*a58d3d2aSXin Li {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
96*a58d3d2aSXin Li {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
97*a58d3d2aSXin Li {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
98*a58d3d2aSXin Li {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
99*a58d3d2aSXin Li {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
100*a58d3d2aSXin Li {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
101*a58d3d2aSXin Li };
102*a58d3d2aSXin Li
103*a58d3d2aSXin Li U(N,K) = the number of such combinations wherein N-1 objects are taken at
104*a58d3d2aSXin Li most K-1 at a time.
105*a58d3d2aSXin Li This is given by
106*a58d3d2aSXin Li U(N,K) = sum(k=0...K-1,V(N-1,k))
107*a58d3d2aSXin Li = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
108*a58d3d2aSXin Li The latter expression also makes clear that U(N,K) is half the number of such
109*a58d3d2aSXin Li combinations wherein the first object is taken at least once.
110*a58d3d2aSXin Li Although it may not be clear from either of these definitions, U(N,K) is the
111*a58d3d2aSXin Li natural function to work with when enumerating the pulse vector codebooks,
112*a58d3d2aSXin Li not V(N,K).
113*a58d3d2aSXin Li U(N,K) is not well-defined for N=0, but with the extension
114*a58d3d2aSXin Li U(0,K) = K>0 ? 0 : 1,
115*a58d3d2aSXin Li the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
116*a58d3d2aSXin Li U[10][10] = {
117*a58d3d2aSXin Li {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
118*a58d3d2aSXin Li {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
119*a58d3d2aSXin Li {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
120*a58d3d2aSXin Li {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
121*a58d3d2aSXin Li {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
122*a58d3d2aSXin Li {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
123*a58d3d2aSXin Li {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
124*a58d3d2aSXin Li {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
125*a58d3d2aSXin Li {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
126*a58d3d2aSXin Li {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
127*a58d3d2aSXin Li };
128*a58d3d2aSXin Li
129*a58d3d2aSXin Li With this extension, V(N,K) may be written in terms of U(N,K):
130*a58d3d2aSXin Li V(N,K) = U(N,K) + U(N,K+1)
131*a58d3d2aSXin Li for all N>=0, K>=0.
132*a58d3d2aSXin Li Thus U(N,K+1) represents the number of combinations where the first element
133*a58d3d2aSXin Li is positive or zero, and U(N,K) represents the number of combinations where
134*a58d3d2aSXin Li it is negative.
135*a58d3d2aSXin Li With a large enough table of U(N,K) values, we could write O(N) encoding
136*a58d3d2aSXin Li and O(min(N*log(K),N+K)) decoding routines, but such a table would be
137*a58d3d2aSXin Li prohibitively large for small embedded devices (K may be as large as 32767
138*a58d3d2aSXin Li for small N, and N may be as large as 200).
139*a58d3d2aSXin Li
140*a58d3d2aSXin Li Both functions obey the same recurrence relation:
141*a58d3d2aSXin Li V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
142*a58d3d2aSXin Li U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
143*a58d3d2aSXin Li for all N>0, K>0, with different initial conditions at N=0 or K=0.
144*a58d3d2aSXin Li This allows us to construct a row of one of the tables above given the
145*a58d3d2aSXin Li previous row or the next row.
146*a58d3d2aSXin Li Thus we can derive O(NK) encoding and decoding routines with O(K) memory
147*a58d3d2aSXin Li using only addition and subtraction.
148*a58d3d2aSXin Li
149*a58d3d2aSXin Li When encoding, we build up from the U(2,K) row and work our way forwards.
150*a58d3d2aSXin Li When decoding, we need to start at the U(N,K) row and work our way backwards,
151*a58d3d2aSXin Li which requires a means of computing U(N,K).
152*a58d3d2aSXin Li U(N,K) may be computed from two previous values with the same N:
153*a58d3d2aSXin Li U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
154*a58d3d2aSXin Li for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
155*a58d3d2aSXin Li previous values with the same K:
156*a58d3d2aSXin Li U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
157*a58d3d2aSXin Li for all K>1.
158*a58d3d2aSXin Li This allows us to construct an arbitrary row of the U(N,K) table by starting
159*a58d3d2aSXin Li with the first two values, which are constants.
160*a58d3d2aSXin Li This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
161*a58d3d2aSXin Li multiplications.
162*a58d3d2aSXin Li Similar relations can be derived for V(N,K), but are not used here.
163*a58d3d2aSXin Li
164*a58d3d2aSXin Li For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
165*a58d3d2aSXin Li polynomial for fixed N.
166*a58d3d2aSXin Li The first few are
167*a58d3d2aSXin Li U(1,K) = 1,
168*a58d3d2aSXin Li U(2,K) = 2*K-1,
169*a58d3d2aSXin Li U(3,K) = (2*K-2)*K+1,
170*a58d3d2aSXin Li U(4,K) = (((4*K-6)*K+8)*K-3)/3,
171*a58d3d2aSXin Li U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
172*a58d3d2aSXin Li and
173*a58d3d2aSXin Li V(1,K) = 2,
174*a58d3d2aSXin Li V(2,K) = 4*K,
175*a58d3d2aSXin Li V(3,K) = 4*K*K+2,
176*a58d3d2aSXin Li V(4,K) = 8*(K*K+2)*K/3,
177*a58d3d2aSXin Li V(5,K) = ((4*K*K+20)*K*K+6)/3,
178*a58d3d2aSXin Li for all K>0.
179*a58d3d2aSXin Li This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
180*a58d3d2aSXin Li small N (and indeed decoding is also O(N) for N<3).
181*a58d3d2aSXin Li
182*a58d3d2aSXin Li @ARTICLE{Fis86,
183*a58d3d2aSXin Li author="Thomas R. Fischer",
184*a58d3d2aSXin Li title="A Pyramid Vector Quantizer",
185*a58d3d2aSXin Li journal="IEEE Transactions on Information Theory",
186*a58d3d2aSXin Li volume="IT-32",
187*a58d3d2aSXin Li number=4,
188*a58d3d2aSXin Li pages="568--583",
189*a58d3d2aSXin Li month=Jul,
190*a58d3d2aSXin Li year=1986
191*a58d3d2aSXin Li }*/
192*a58d3d2aSXin Li
193*a58d3d2aSXin Li #if !defined(SMALL_FOOTPRINT)
194*a58d3d2aSXin Li
195*a58d3d2aSXin Li /*U(N,K) = U(K,N) := N>0?K>0?U(N-1,K)+U(N,K-1)+U(N-1,K-1):0:K>0?1:0*/
196*a58d3d2aSXin Li # define CELT_PVQ_U(_n,_k) (CELT_PVQ_U_ROW[IMIN(_n,_k)][IMAX(_n,_k)])
197*a58d3d2aSXin Li /*V(N,K) := U(N,K)+U(N,K+1) = the number of PVQ codewords for a band of size N
198*a58d3d2aSXin Li with K pulses allocated to it.*/
199*a58d3d2aSXin Li # define CELT_PVQ_V(_n,_k) (CELT_PVQ_U(_n,_k)+CELT_PVQ_U(_n,(_k)+1))
200*a58d3d2aSXin Li
201*a58d3d2aSXin Li /*For each V(N,K) supported, we will access element U(min(N,K+1),max(N,K+1)).
202*a58d3d2aSXin Li Thus, the number of entries in row I is the larger of the maximum number of
203*a58d3d2aSXin Li pulses we will ever allocate for a given N=I (K=128, or however many fit in
204*a58d3d2aSXin Li 32 bits, whichever is smaller), plus one, and the maximum N for which
205*a58d3d2aSXin Li K=I-1 pulses fit in 32 bits.
206*a58d3d2aSXin Li The largest band size in an Opus Custom mode is 208.
207*a58d3d2aSXin Li Otherwise, we can limit things to the set of N which can be achieved by
208*a58d3d2aSXin Li splitting a band from a standard Opus mode: 176, 144, 96, 88, 72, 64, 48,
209*a58d3d2aSXin Li 44, 36, 32, 24, 22, 18, 16, 8, 4, 2).*/
210*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
211*a58d3d2aSXin Li static const opus_uint32 CELT_PVQ_U_DATA[1488]={
212*a58d3d2aSXin Li #else
213*a58d3d2aSXin Li static const opus_uint32 CELT_PVQ_U_DATA[1272]={
214*a58d3d2aSXin Li #endif
215*a58d3d2aSXin Li /*N=0, K=0...176:*/
216*a58d3d2aSXin Li 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
217*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
218*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
219*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
220*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
221*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
222*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
223*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
224*a58d3d2aSXin Li /*...208:*/
225*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
226*a58d3d2aSXin Li 0, 0, 0, 0, 0, 0,
227*a58d3d2aSXin Li #endif
228*a58d3d2aSXin Li /*N=1, K=1...176:*/
229*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
230*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
231*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
232*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
233*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
234*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
235*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
236*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
237*a58d3d2aSXin Li /*...208:*/
238*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
239*a58d3d2aSXin Li 1, 1, 1, 1, 1, 1,
240*a58d3d2aSXin Li #endif
241*a58d3d2aSXin Li /*N=2, K=2...176:*/
242*a58d3d2aSXin Li 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
243*a58d3d2aSXin Li 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
244*a58d3d2aSXin Li 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
245*a58d3d2aSXin Li 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
246*a58d3d2aSXin Li 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
247*a58d3d2aSXin Li 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
248*a58d3d2aSXin Li 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
249*a58d3d2aSXin Li 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
250*a58d3d2aSXin Li 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
251*a58d3d2aSXin Li 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
252*a58d3d2aSXin Li 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
253*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
254*a58d3d2aSXin Li /*...208:*/
255*a58d3d2aSXin Li 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381,
256*a58d3d2aSXin Li 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411,
257*a58d3d2aSXin Li 413, 415,
258*a58d3d2aSXin Li #endif
259*a58d3d2aSXin Li /*N=3, K=3...176:*/
260*a58d3d2aSXin Li 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
261*a58d3d2aSXin Li 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
262*a58d3d2aSXin Li 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
263*a58d3d2aSXin Li 3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
264*a58d3d2aSXin Li 6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
265*a58d3d2aSXin Li 9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
266*a58d3d2aSXin Li 13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
267*a58d3d2aSXin Li 17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
268*a58d3d2aSXin Li 21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
269*a58d3d2aSXin Li 26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
270*a58d3d2aSXin Li 31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
271*a58d3d2aSXin Li 37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
272*a58d3d2aSXin Li 43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
273*a58d3d2aSXin Li 50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
274*a58d3d2aSXin Li 57461, 58141, 58825, 59513, 60205, 60901, 61601,
275*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
276*a58d3d2aSXin Li /*...208:*/
277*a58d3d2aSXin Li 62305, 63013, 63725, 64441, 65161, 65885, 66613, 67345, 68081, 68821, 69565,
278*a58d3d2aSXin Li 70313, 71065, 71821, 72581, 73345, 74113, 74885, 75661, 76441, 77225, 78013,
279*a58d3d2aSXin Li 78805, 79601, 80401, 81205, 82013, 82825, 83641, 84461, 85285, 86113,
280*a58d3d2aSXin Li #endif
281*a58d3d2aSXin Li /*N=4, K=4...176:*/
282*a58d3d2aSXin Li 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
283*a58d3d2aSXin Li 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
284*a58d3d2aSXin Li 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
285*a58d3d2aSXin Li 82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
286*a58d3d2aSXin Li 161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
287*a58d3d2aSXin Li 267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
288*a58d3d2aSXin Li 410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
289*a58d3d2aSXin Li 597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
290*a58d3d2aSXin Li 833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
291*a58d3d2aSXin Li 1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
292*a58d3d2aSXin Li 1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
293*a58d3d2aSXin Li 1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
294*a58d3d2aSXin Li 2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
295*a58d3d2aSXin Li 2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
296*a58d3d2aSXin Li 3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
297*a58d3d2aSXin Li 3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
298*a58d3d2aSXin Li 4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
299*a58d3d2aSXin Li 5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
300*a58d3d2aSXin Li 6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
301*a58d3d2aSXin Li 7085049, 7207551,
302*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
303*a58d3d2aSXin Li /*...208:*/
304*a58d3d2aSXin Li 7331457, 7456775, 7583513, 7711679, 7841281, 7972327, 8104825, 8238783,
305*a58d3d2aSXin Li 8374209, 8511111, 8649497, 8789375, 8930753, 9073639, 9218041, 9363967,
306*a58d3d2aSXin Li 9511425, 9660423, 9810969, 9963071, 10116737, 10271975, 10428793, 10587199,
307*a58d3d2aSXin Li 10747201, 10908807, 11072025, 11236863, 11403329, 11571431, 11741177,
308*a58d3d2aSXin Li 11912575,
309*a58d3d2aSXin Li #endif
310*a58d3d2aSXin Li /*N=5, K=5...176:*/
311*a58d3d2aSXin Li 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
312*a58d3d2aSXin Li 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
313*a58d3d2aSXin Li 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
314*a58d3d2aSXin Li 1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
315*a58d3d2aSXin Li 2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
316*a58d3d2aSXin Li 4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
317*a58d3d2aSXin Li 8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
318*a58d3d2aSXin Li 13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
319*a58d3d2aSXin Li 20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
320*a58d3d2aSXin Li 29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
321*a58d3d2aSXin Li 40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
322*a58d3d2aSXin Li 55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
323*a58d3d2aSXin Li 73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
324*a58d3d2aSXin Li 95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
325*a58d3d2aSXin Li 122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
326*a58d3d2aSXin Li 155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
327*a58d3d2aSXin Li 193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
328*a58d3d2aSXin Li 238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
329*a58d3d2aSXin Li 290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
330*a58d3d2aSXin Li 351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
331*a58d3d2aSXin Li 420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
332*a58d3d2aSXin Li 500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
333*a58d3d2aSXin Li 590359041, 604167209, 618216201, 632508801,
334*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
335*a58d3d2aSXin Li /*...208:*/
336*a58d3d2aSXin Li 647047809, 661836041, 676876329, 692171521, 707724481, 723538089, 739615241,
337*a58d3d2aSXin Li 755958849, 772571841, 789457161, 806617769, 824056641, 841776769, 859781161,
338*a58d3d2aSXin Li 878072841, 896654849, 915530241, 934702089, 954173481, 973947521, 994027329,
339*a58d3d2aSXin Li 1014416041, 1035116809, 1056132801, 1077467201, 1099123209, 1121104041,
340*a58d3d2aSXin Li 1143412929, 1166053121, 1189027881, 1212340489, 1235994241,
341*a58d3d2aSXin Li #endif
342*a58d3d2aSXin Li /*N=6, K=6...96:*/
343*a58d3d2aSXin Li 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
344*a58d3d2aSXin Li 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
345*a58d3d2aSXin Li 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
346*a58d3d2aSXin Li 11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
347*a58d3d2aSXin Li 29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
348*a58d3d2aSXin Li 64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
349*a58d3d2aSXin Li 128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
350*a58d3d2aSXin Li 235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
351*a58d3d2aSXin Li 402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
352*a58d3d2aSXin Li 655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
353*a58d3d2aSXin Li 1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
354*a58d3d2aSXin Li 1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
355*a58d3d2aSXin Li 2011371957, 2120032959,
356*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
357*a58d3d2aSXin Li /*...109:*/
358*a58d3d2aSXin Li 2233340609U, 2351442379U, 2474488829U, 2602633639U, 2736033641U, 2874848851U,
359*a58d3d2aSXin Li 3019242501U, 3169381071U, 3325434321U, 3487575323U, 3655980493U, 3830829623U,
360*a58d3d2aSXin Li 4012305913U,
361*a58d3d2aSXin Li #endif
362*a58d3d2aSXin Li /*N=7, K=7...54*/
363*a58d3d2aSXin Li 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
364*a58d3d2aSXin Li 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
365*a58d3d2aSXin Li 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
366*a58d3d2aSXin Li 88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
367*a58d3d2aSXin Li 292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
368*a58d3d2aSXin Li 793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
369*a58d3d2aSXin Li 1667010073, 1870535785, 2094367717,
370*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
371*a58d3d2aSXin Li /*...60:*/
372*a58d3d2aSXin Li 2340095869U, 2609401873U, 2904062449U, 3225952925U, 3577050821U, 3959439497U,
373*a58d3d2aSXin Li #endif
374*a58d3d2aSXin Li /*N=8, K=8...37*/
375*a58d3d2aSXin Li 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
376*a58d3d2aSXin Li 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
377*a58d3d2aSXin Li 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
378*a58d3d2aSXin Li 638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
379*a58d3d2aSXin Li 2229491905U,
380*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
381*a58d3d2aSXin Li /*...40:*/
382*a58d3d2aSXin Li 2691463695U, 3233240945U, 3866006015U,
383*a58d3d2aSXin Li #endif
384*a58d3d2aSXin Li /*N=9, K=9...28:*/
385*a58d3d2aSXin Li 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
386*a58d3d2aSXin Li 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
387*a58d3d2aSXin Li 628496897, 872893441, 1196924561, 1621925137, 2173806145U,
388*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
389*a58d3d2aSXin Li /*...29:*/
390*a58d3d2aSXin Li 2883810113U,
391*a58d3d2aSXin Li #endif
392*a58d3d2aSXin Li /*N=10, K=10...24:*/
393*a58d3d2aSXin Li 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
394*a58d3d2aSXin Li 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629U,
395*a58d3d2aSXin Li 3375210671U,
396*a58d3d2aSXin Li /*N=11, K=11...19:*/
397*a58d3d2aSXin Li 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
398*a58d3d2aSXin Li 948062325, 1616336765,
399*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
400*a58d3d2aSXin Li /*...20:*/
401*a58d3d2aSXin Li 2684641785U,
402*a58d3d2aSXin Li #endif
403*a58d3d2aSXin Li /*N=12, K=12...18:*/
404*a58d3d2aSXin Li 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
405*a58d3d2aSXin Li 3248227095U,
406*a58d3d2aSXin Li /*N=13, K=13...16:*/
407*a58d3d2aSXin Li 251595969, 579168825, 1267854873, 2653649025U,
408*a58d3d2aSXin Li /*N=14, K=14:*/
409*a58d3d2aSXin Li 1409933619
410*a58d3d2aSXin Li };
411*a58d3d2aSXin Li
412*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
413*a58d3d2aSXin Li static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
414*a58d3d2aSXin Li CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 208,CELT_PVQ_U_DATA+ 415,
415*a58d3d2aSXin Li CELT_PVQ_U_DATA+ 621,CELT_PVQ_U_DATA+ 826,CELT_PVQ_U_DATA+1030,
416*a58d3d2aSXin Li CELT_PVQ_U_DATA+1233,CELT_PVQ_U_DATA+1336,CELT_PVQ_U_DATA+1389,
417*a58d3d2aSXin Li CELT_PVQ_U_DATA+1421,CELT_PVQ_U_DATA+1441,CELT_PVQ_U_DATA+1455,
418*a58d3d2aSXin Li CELT_PVQ_U_DATA+1464,CELT_PVQ_U_DATA+1470,CELT_PVQ_U_DATA+1473
419*a58d3d2aSXin Li };
420*a58d3d2aSXin Li #else
421*a58d3d2aSXin Li static const opus_uint32 *const CELT_PVQ_U_ROW[15]={
422*a58d3d2aSXin Li CELT_PVQ_U_DATA+ 0,CELT_PVQ_U_DATA+ 176,CELT_PVQ_U_DATA+ 351,
423*a58d3d2aSXin Li CELT_PVQ_U_DATA+ 525,CELT_PVQ_U_DATA+ 698,CELT_PVQ_U_DATA+ 870,
424*a58d3d2aSXin Li CELT_PVQ_U_DATA+1041,CELT_PVQ_U_DATA+1131,CELT_PVQ_U_DATA+1178,
425*a58d3d2aSXin Li CELT_PVQ_U_DATA+1207,CELT_PVQ_U_DATA+1226,CELT_PVQ_U_DATA+1240,
426*a58d3d2aSXin Li CELT_PVQ_U_DATA+1248,CELT_PVQ_U_DATA+1254,CELT_PVQ_U_DATA+1257
427*a58d3d2aSXin Li };
428*a58d3d2aSXin Li #endif
429*a58d3d2aSXin Li
430*a58d3d2aSXin Li #if defined(CUSTOM_MODES)
get_required_bits(opus_int16 * _bits,int _n,int _maxk,int _frac)431*a58d3d2aSXin Li void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
432*a58d3d2aSXin Li int k;
433*a58d3d2aSXin Li /*_maxk==0 => there's nothing to do.*/
434*a58d3d2aSXin Li celt_assert(_maxk>0);
435*a58d3d2aSXin Li _bits[0]=0;
436*a58d3d2aSXin Li for(k=1;k<=_maxk;k++)_bits[k]=log2_frac(CELT_PVQ_V(_n,k),_frac);
437*a58d3d2aSXin Li }
438*a58d3d2aSXin Li #endif
439*a58d3d2aSXin Li
icwrs(int _n,const int * _y)440*a58d3d2aSXin Li static opus_uint32 icwrs(int _n,const int *_y){
441*a58d3d2aSXin Li opus_uint32 i;
442*a58d3d2aSXin Li int j;
443*a58d3d2aSXin Li int k;
444*a58d3d2aSXin Li celt_assert(_n>=2);
445*a58d3d2aSXin Li j=_n-1;
446*a58d3d2aSXin Li i=_y[j]<0;
447*a58d3d2aSXin Li k=abs(_y[j]);
448*a58d3d2aSXin Li do{
449*a58d3d2aSXin Li j--;
450*a58d3d2aSXin Li i+=CELT_PVQ_U(_n-j,k);
451*a58d3d2aSXin Li k+=abs(_y[j]);
452*a58d3d2aSXin Li if(_y[j]<0)i+=CELT_PVQ_U(_n-j,k+1);
453*a58d3d2aSXin Li }
454*a58d3d2aSXin Li while(j>0);
455*a58d3d2aSXin Li return i;
456*a58d3d2aSXin Li }
457*a58d3d2aSXin Li
encode_pulses(const int * _y,int _n,int _k,ec_enc * _enc)458*a58d3d2aSXin Li void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
459*a58d3d2aSXin Li celt_assert(_k>0);
460*a58d3d2aSXin Li ec_enc_uint(_enc,icwrs(_n,_y),CELT_PVQ_V(_n,_k));
461*a58d3d2aSXin Li }
462*a58d3d2aSXin Li
cwrsi(int _n,int _k,opus_uint32 _i,int * _y)463*a58d3d2aSXin Li static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y){
464*a58d3d2aSXin Li opus_uint32 p;
465*a58d3d2aSXin Li int s;
466*a58d3d2aSXin Li int k0;
467*a58d3d2aSXin Li opus_int16 val;
468*a58d3d2aSXin Li opus_val32 yy=0;
469*a58d3d2aSXin Li celt_assert(_k>0);
470*a58d3d2aSXin Li celt_assert(_n>1);
471*a58d3d2aSXin Li while(_n>2){
472*a58d3d2aSXin Li opus_uint32 q;
473*a58d3d2aSXin Li /*Lots of pulses case:*/
474*a58d3d2aSXin Li if(_k>=_n){
475*a58d3d2aSXin Li const opus_uint32 *row;
476*a58d3d2aSXin Li row=CELT_PVQ_U_ROW[_n];
477*a58d3d2aSXin Li /*Are the pulses in this dimension negative?*/
478*a58d3d2aSXin Li p=row[_k+1];
479*a58d3d2aSXin Li s=-(_i>=p);
480*a58d3d2aSXin Li _i-=p&s;
481*a58d3d2aSXin Li /*Count how many pulses were placed in this dimension.*/
482*a58d3d2aSXin Li k0=_k;
483*a58d3d2aSXin Li q=row[_n];
484*a58d3d2aSXin Li if(q>_i){
485*a58d3d2aSXin Li celt_sig_assert(p>q);
486*a58d3d2aSXin Li _k=_n;
487*a58d3d2aSXin Li do p=CELT_PVQ_U_ROW[--_k][_n];
488*a58d3d2aSXin Li while(p>_i);
489*a58d3d2aSXin Li }
490*a58d3d2aSXin Li else for(p=row[_k];p>_i;p=row[_k])_k--;
491*a58d3d2aSXin Li _i-=p;
492*a58d3d2aSXin Li val=(k0-_k+s)^s;
493*a58d3d2aSXin Li *_y++=val;
494*a58d3d2aSXin Li yy=MAC16_16(yy,val,val);
495*a58d3d2aSXin Li }
496*a58d3d2aSXin Li /*Lots of dimensions case:*/
497*a58d3d2aSXin Li else{
498*a58d3d2aSXin Li /*Are there any pulses in this dimension at all?*/
499*a58d3d2aSXin Li p=CELT_PVQ_U_ROW[_k][_n];
500*a58d3d2aSXin Li q=CELT_PVQ_U_ROW[_k+1][_n];
501*a58d3d2aSXin Li if(p<=_i&&_i<q){
502*a58d3d2aSXin Li _i-=p;
503*a58d3d2aSXin Li *_y++=0;
504*a58d3d2aSXin Li }
505*a58d3d2aSXin Li else{
506*a58d3d2aSXin Li /*Are the pulses in this dimension negative?*/
507*a58d3d2aSXin Li s=-(_i>=q);
508*a58d3d2aSXin Li _i-=q&s;
509*a58d3d2aSXin Li /*Count how many pulses were placed in this dimension.*/
510*a58d3d2aSXin Li k0=_k;
511*a58d3d2aSXin Li do p=CELT_PVQ_U_ROW[--_k][_n];
512*a58d3d2aSXin Li while(p>_i);
513*a58d3d2aSXin Li _i-=p;
514*a58d3d2aSXin Li val=(k0-_k+s)^s;
515*a58d3d2aSXin Li *_y++=val;
516*a58d3d2aSXin Li yy=MAC16_16(yy,val,val);
517*a58d3d2aSXin Li }
518*a58d3d2aSXin Li }
519*a58d3d2aSXin Li _n--;
520*a58d3d2aSXin Li }
521*a58d3d2aSXin Li /*_n==2*/
522*a58d3d2aSXin Li p=2*_k+1;
523*a58d3d2aSXin Li s=-(_i>=p);
524*a58d3d2aSXin Li _i-=p&s;
525*a58d3d2aSXin Li k0=_k;
526*a58d3d2aSXin Li _k=(_i+1)>>1;
527*a58d3d2aSXin Li if(_k)_i-=2*_k-1;
528*a58d3d2aSXin Li val=(k0-_k+s)^s;
529*a58d3d2aSXin Li *_y++=val;
530*a58d3d2aSXin Li yy=MAC16_16(yy,val,val);
531*a58d3d2aSXin Li /*_n==1*/
532*a58d3d2aSXin Li s=-(int)_i;
533*a58d3d2aSXin Li val=(_k+s)^s;
534*a58d3d2aSXin Li *_y=val;
535*a58d3d2aSXin Li yy=MAC16_16(yy,val,val);
536*a58d3d2aSXin Li return yy;
537*a58d3d2aSXin Li }
538*a58d3d2aSXin Li
decode_pulses(int * _y,int _n,int _k,ec_dec * _dec)539*a58d3d2aSXin Li opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
540*a58d3d2aSXin Li return cwrsi(_n,_k,ec_dec_uint(_dec,CELT_PVQ_V(_n,_k)),_y);
541*a58d3d2aSXin Li }
542*a58d3d2aSXin Li
543*a58d3d2aSXin Li #else /* SMALL_FOOTPRINT */
544*a58d3d2aSXin Li
545*a58d3d2aSXin Li /*Computes the next row/column of any recurrence that obeys the relation
546*a58d3d2aSXin Li u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
547*a58d3d2aSXin Li _ui0 is the base case for the new row/column.*/
unext(opus_uint32 * _ui,unsigned _len,opus_uint32 _ui0)548*a58d3d2aSXin Li static OPUS_INLINE void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
549*a58d3d2aSXin Li opus_uint32 ui1;
550*a58d3d2aSXin Li unsigned j;
551*a58d3d2aSXin Li /*This do-while will overrun the array if we don't have storage for at least
552*a58d3d2aSXin Li 2 values.*/
553*a58d3d2aSXin Li j=1; do {
554*a58d3d2aSXin Li ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
555*a58d3d2aSXin Li _ui[j-1]=_ui0;
556*a58d3d2aSXin Li _ui0=ui1;
557*a58d3d2aSXin Li } while (++j<_len);
558*a58d3d2aSXin Li _ui[j-1]=_ui0;
559*a58d3d2aSXin Li }
560*a58d3d2aSXin Li
561*a58d3d2aSXin Li /*Computes the previous row/column of any recurrence that obeys the relation
562*a58d3d2aSXin Li u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
563*a58d3d2aSXin Li _ui0 is the base case for the new row/column.*/
uprev(opus_uint32 * _ui,unsigned _n,opus_uint32 _ui0)564*a58d3d2aSXin Li static OPUS_INLINE void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
565*a58d3d2aSXin Li opus_uint32 ui1;
566*a58d3d2aSXin Li unsigned j;
567*a58d3d2aSXin Li /*This do-while will overrun the array if we don't have storage for at least
568*a58d3d2aSXin Li 2 values.*/
569*a58d3d2aSXin Li j=1; do {
570*a58d3d2aSXin Li ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
571*a58d3d2aSXin Li _ui[j-1]=_ui0;
572*a58d3d2aSXin Li _ui0=ui1;
573*a58d3d2aSXin Li } while (++j<_n);
574*a58d3d2aSXin Li _ui[j-1]=_ui0;
575*a58d3d2aSXin Li }
576*a58d3d2aSXin Li
577*a58d3d2aSXin Li /*Compute V(_n,_k), as well as U(_n,0..._k+1).
578*a58d3d2aSXin Li _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 * _u)579*a58d3d2aSXin Li static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
580*a58d3d2aSXin Li opus_uint32 um2;
581*a58d3d2aSXin Li unsigned len;
582*a58d3d2aSXin Li unsigned k;
583*a58d3d2aSXin Li len=_k+2;
584*a58d3d2aSXin Li /*We require storage at least 3 values (e.g., _k>0).*/
585*a58d3d2aSXin Li celt_assert(len>=3);
586*a58d3d2aSXin Li _u[0]=0;
587*a58d3d2aSXin Li _u[1]=um2=1;
588*a58d3d2aSXin Li /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
589*a58d3d2aSXin Li /*If _n==1, _u[i] should be 1 for i>1.*/
590*a58d3d2aSXin Li celt_assert(_n>=2);
591*a58d3d2aSXin Li /*If _k==0, the following do-while loop will overflow the buffer.*/
592*a58d3d2aSXin Li celt_assert(_k>0);
593*a58d3d2aSXin Li k=2;
594*a58d3d2aSXin Li do _u[k]=(k<<1)-1;
595*a58d3d2aSXin Li while(++k<len);
596*a58d3d2aSXin Li for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
597*a58d3d2aSXin Li return _u[_k]+_u[_k+1];
598*a58d3d2aSXin Li }
599*a58d3d2aSXin Li
600*a58d3d2aSXin Li /*Returns the _i'th combination of _k elements chosen from a set of size _n
601*a58d3d2aSXin Li with associated sign bits.
602*a58d3d2aSXin Li _y: Returns the vector of pulses.
603*a58d3d2aSXin Li _u: Must contain entries [0..._k+1] of row _n of U() on input.
604*a58d3d2aSXin Li Its contents will be destructively modified.*/
cwrsi(int _n,int _k,opus_uint32 _i,int * _y,opus_uint32 * _u)605*a58d3d2aSXin Li static opus_val32 cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
606*a58d3d2aSXin Li int j;
607*a58d3d2aSXin Li opus_int16 val;
608*a58d3d2aSXin Li opus_val32 yy=0;
609*a58d3d2aSXin Li celt_assert(_n>0);
610*a58d3d2aSXin Li j=0;
611*a58d3d2aSXin Li do{
612*a58d3d2aSXin Li opus_uint32 p;
613*a58d3d2aSXin Li int s;
614*a58d3d2aSXin Li int yj;
615*a58d3d2aSXin Li p=_u[_k+1];
616*a58d3d2aSXin Li s=-(_i>=p);
617*a58d3d2aSXin Li _i-=p&s;
618*a58d3d2aSXin Li yj=_k;
619*a58d3d2aSXin Li p=_u[_k];
620*a58d3d2aSXin Li while(p>_i)p=_u[--_k];
621*a58d3d2aSXin Li _i-=p;
622*a58d3d2aSXin Li yj-=_k;
623*a58d3d2aSXin Li val=(yj+s)^s;
624*a58d3d2aSXin Li _y[j]=val;
625*a58d3d2aSXin Li yy=MAC16_16(yy,val,val);
626*a58d3d2aSXin Li uprev(_u,_k+2,0);
627*a58d3d2aSXin Li }
628*a58d3d2aSXin Li while(++j<_n);
629*a58d3d2aSXin Li return yy;
630*a58d3d2aSXin Li }
631*a58d3d2aSXin Li
632*a58d3d2aSXin Li /*Returns the index of the given combination of K elements chosen from a set
633*a58d3d2aSXin Li of size 1 with associated sign bits.
634*a58d3d2aSXin Li _y: The vector of pulses, whose sum of absolute values is K.
635*a58d3d2aSXin Li _k: Returns K.*/
icwrs1(const int * _y,int * _k)636*a58d3d2aSXin Li static OPUS_INLINE opus_uint32 icwrs1(const int *_y,int *_k){
637*a58d3d2aSXin Li *_k=abs(_y[0]);
638*a58d3d2aSXin Li return _y[0]<0;
639*a58d3d2aSXin Li }
640*a58d3d2aSXin Li
641*a58d3d2aSXin Li /*Returns the index of the given combination of K elements chosen from a set
642*a58d3d2aSXin Li of size _n with associated sign bits.
643*a58d3d2aSXin Li _y: The vector of pulses, whose sum of absolute values must be _k.
644*a58d3d2aSXin Li _nc: Returns V(_n,_k).*/
icwrs(int _n,int _k,opus_uint32 * _nc,const int * _y,opus_uint32 * _u)645*a58d3d2aSXin Li static OPUS_INLINE opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
646*a58d3d2aSXin Li opus_uint32 *_u){
647*a58d3d2aSXin Li opus_uint32 i;
648*a58d3d2aSXin Li int j;
649*a58d3d2aSXin Li int k;
650*a58d3d2aSXin Li /*We can't unroll the first two iterations of the loop unless _n>=2.*/
651*a58d3d2aSXin Li celt_assert(_n>=2);
652*a58d3d2aSXin Li _u[0]=0;
653*a58d3d2aSXin Li for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
654*a58d3d2aSXin Li i=icwrs1(_y+_n-1,&k);
655*a58d3d2aSXin Li j=_n-2;
656*a58d3d2aSXin Li i+=_u[k];
657*a58d3d2aSXin Li k+=abs(_y[j]);
658*a58d3d2aSXin Li if(_y[j]<0)i+=_u[k+1];
659*a58d3d2aSXin Li while(j-->0){
660*a58d3d2aSXin Li unext(_u,_k+2,0);
661*a58d3d2aSXin Li i+=_u[k];
662*a58d3d2aSXin Li k+=abs(_y[j]);
663*a58d3d2aSXin Li if(_y[j]<0)i+=_u[k+1];
664*a58d3d2aSXin Li }
665*a58d3d2aSXin Li *_nc=_u[k]+_u[k+1];
666*a58d3d2aSXin Li return i;
667*a58d3d2aSXin Li }
668*a58d3d2aSXin Li
669*a58d3d2aSXin Li #ifdef CUSTOM_MODES
get_required_bits(opus_int16 * _bits,int _n,int _maxk,int _frac)670*a58d3d2aSXin Li void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
671*a58d3d2aSXin Li int k;
672*a58d3d2aSXin Li /*_maxk==0 => there's nothing to do.*/
673*a58d3d2aSXin Li celt_assert(_maxk>0);
674*a58d3d2aSXin Li _bits[0]=0;
675*a58d3d2aSXin Li if (_n==1)
676*a58d3d2aSXin Li {
677*a58d3d2aSXin Li for (k=1;k<=_maxk;k++)
678*a58d3d2aSXin Li _bits[k] = 1<<_frac;
679*a58d3d2aSXin Li }
680*a58d3d2aSXin Li else {
681*a58d3d2aSXin Li VARDECL(opus_uint32,u);
682*a58d3d2aSXin Li SAVE_STACK;
683*a58d3d2aSXin Li ALLOC(u,_maxk+2U,opus_uint32);
684*a58d3d2aSXin Li ncwrs_urow(_n,_maxk,u);
685*a58d3d2aSXin Li for(k=1;k<=_maxk;k++)
686*a58d3d2aSXin Li _bits[k]=log2_frac(u[k]+u[k+1],_frac);
687*a58d3d2aSXin Li RESTORE_STACK;
688*a58d3d2aSXin Li }
689*a58d3d2aSXin Li }
690*a58d3d2aSXin Li #endif /* CUSTOM_MODES */
691*a58d3d2aSXin Li
encode_pulses(const int * _y,int _n,int _k,ec_enc * _enc)692*a58d3d2aSXin Li void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
693*a58d3d2aSXin Li opus_uint32 i;
694*a58d3d2aSXin Li VARDECL(opus_uint32,u);
695*a58d3d2aSXin Li opus_uint32 nc;
696*a58d3d2aSXin Li SAVE_STACK;
697*a58d3d2aSXin Li celt_assert(_k>0);
698*a58d3d2aSXin Li ALLOC(u,_k+2U,opus_uint32);
699*a58d3d2aSXin Li i=icwrs(_n,_k,&nc,_y,u);
700*a58d3d2aSXin Li ec_enc_uint(_enc,i,nc);
701*a58d3d2aSXin Li RESTORE_STACK;
702*a58d3d2aSXin Li }
703*a58d3d2aSXin Li
decode_pulses(int * _y,int _n,int _k,ec_dec * _dec)704*a58d3d2aSXin Li opus_val32 decode_pulses(int *_y,int _n,int _k,ec_dec *_dec){
705*a58d3d2aSXin Li VARDECL(opus_uint32,u);
706*a58d3d2aSXin Li int ret;
707*a58d3d2aSXin Li SAVE_STACK;
708*a58d3d2aSXin Li celt_assert(_k>0);
709*a58d3d2aSXin Li ALLOC(u,_k+2U,opus_uint32);
710*a58d3d2aSXin Li ret = cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
711*a58d3d2aSXin Li RESTORE_STACK;
712*a58d3d2aSXin Li return ret;
713*a58d3d2aSXin Li }
714*a58d3d2aSXin Li
715*a58d3d2aSXin Li #endif /* SMALL_FOOTPRINT */
716