xref: /aosp_15_r20/external/libaom/av1/encoder/optical_flow.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 #include <math.h>
12 #include <limits.h>
13 
14 #include "config/aom_config.h"
15 
16 #include "aom_dsp/mathutils.h"
17 #include "aom_mem/aom_mem.h"
18 
19 #include "av1/common/av1_common_int.h"
20 #include "av1/encoder/encoder.h"
21 #include "av1/encoder/optical_flow.h"
22 #include "av1/encoder/sparse_linear_solver.h"
23 #include "av1/encoder/reconinter_enc.h"
24 
25 #if CONFIG_OPTICAL_FLOW_API
26 
av1_init_opfl_params(OPFL_PARAMS * opfl_params)27 void av1_init_opfl_params(OPFL_PARAMS *opfl_params) {
28   opfl_params->pyramid_levels = OPFL_PYRAMID_LEVELS;
29   opfl_params->warping_steps = OPFL_WARPING_STEPS;
30   opfl_params->lk_params = NULL;
31 }
32 
av1_init_lk_params(LK_PARAMS * lk_params)33 void av1_init_lk_params(LK_PARAMS *lk_params) {
34   lk_params->window_size = OPFL_WINDOW_SIZE;
35 }
36 
37 // Helper function to determine whether a frame is encoded with high bit-depth.
is_frame_high_bitdepth(const YV12_BUFFER_CONFIG * frame)38 static inline int is_frame_high_bitdepth(const YV12_BUFFER_CONFIG *frame) {
39   return (frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
40 }
41 
42 // Helper function to determine whether optical flow method is sparse.
is_sparse(const OPFL_PARAMS * opfl_params)43 static inline int is_sparse(const OPFL_PARAMS *opfl_params) {
44   return (opfl_params->flags & OPFL_FLAG_SPARSE) ? 1 : 0;
45 }
46 
47 static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
48                                   const YV12_BUFFER_CONFIG *ref_frame,
49                                   const double x_coord, const double y_coord,
50                                   const int window_size, const int bit_depth,
51                                   double *ix, double *iy, double *it,
52                                   LOCALMV *mv);
53 
54 // coefficients for bilinear interpolation on unit square
pixel_interp(const double x,const double y,const double b00,const double b01,const double b10,const double b11)55 static int pixel_interp(const double x, const double y, const double b00,
56                         const double b01, const double b10, const double b11) {
57   const int xint = (int)x;
58   const int yint = (int)y;
59   const double xdec = x - xint;
60   const double ydec = y - yint;
61   const double a = (1 - xdec) * (1 - ydec);
62   const double b = xdec * (1 - ydec);
63   const double c = (1 - xdec) * ydec;
64   const double d = xdec * ydec;
65   // if x, y are already integers, this results to b00
66   int interp = (int)round(a * b00 + b * b01 + c * b10 + d * b11);
67   return interp;
68 }
69 
70 // Scharr filter to compute spatial gradient
spatial_gradient(const YV12_BUFFER_CONFIG * frame,const int x_coord,const int y_coord,const int direction,double * derivative)71 static void spatial_gradient(const YV12_BUFFER_CONFIG *frame, const int x_coord,
72                              const int y_coord, const int direction,
73                              double *derivative) {
74   double *filter;
75   // Scharr filters
76   double gx[9] = { -3, 0, 3, -10, 0, 10, -3, 0, 3 };
77   double gy[9] = { -3, -10, -3, 0, 0, 0, 3, 10, 3 };
78   if (direction == 0) {  // x direction
79     filter = gx;
80   } else {  // y direction
81     filter = gy;
82   }
83   int idx = 0;
84   double d = 0;
85   for (int yy = -1; yy <= 1; yy++) {
86     for (int xx = -1; xx <= 1; xx++) {
87       d += filter[idx] *
88            frame->y_buffer[(y_coord + yy) * frame->y_stride + (x_coord + xx)];
89       idx++;
90     }
91   }
92   // normalization scaling factor for scharr
93   *derivative = d / 32.0;
94 }
95 
96 // Determine the spatial gradient at subpixel locations
97 // For example, when reducing images for pyramidal LK,
98 // corners found in original image may be at subpixel locations.
gradient_interp(double * fullpel_deriv,const double x_coord,const double y_coord,const int w,const int h,double * derivative)99 static void gradient_interp(double *fullpel_deriv, const double x_coord,
100                             const double y_coord, const int w, const int h,
101                             double *derivative) {
102   const int xint = (int)x_coord;
103   const int yint = (int)y_coord;
104   double interp;
105   if (xint + 1 > w - 1 || yint + 1 > h - 1) {
106     interp = fullpel_deriv[yint * w + xint];
107   } else {
108     interp = pixel_interp(x_coord, y_coord, fullpel_deriv[yint * w + xint],
109                           fullpel_deriv[yint * w + (xint + 1)],
110                           fullpel_deriv[(yint + 1) * w + xint],
111                           fullpel_deriv[(yint + 1) * w + (xint + 1)]);
112   }
113 
114   *derivative = interp;
115 }
116 
temporal_gradient(const YV12_BUFFER_CONFIG * frame,const YV12_BUFFER_CONFIG * frame2,const double x_coord,const double y_coord,const int bit_depth,double * derivative,LOCALMV * mv)117 static void temporal_gradient(const YV12_BUFFER_CONFIG *frame,
118                               const YV12_BUFFER_CONFIG *frame2,
119                               const double x_coord, const double y_coord,
120                               const int bit_depth, double *derivative,
121                               LOCALMV *mv) {
122   const int w = 2;
123   const int h = 2;
124   uint8_t pred1[4];
125   uint8_t pred2[4];
126 
127   const int y = (int)y_coord;
128   const int x = (int)x_coord;
129   const double ydec = y_coord - y;
130   const double xdec = x_coord - x;
131   const int is_intrabc = 0;  // Is intra-copied?
132   const int is_high_bitdepth = is_frame_high_bitdepth(frame2);
133   const int subsampling_x = 0, subsampling_y = 0;  // for y-buffer
134   const int_interpfilters interp_filters =
135       av1_broadcast_interp_filter(MULTITAP_SHARP);
136   const int plane = 0;  // y-plane
137   const struct buf_2d ref_buf2 = { NULL, frame2->y_buffer, frame2->y_crop_width,
138                                    frame2->y_crop_height, frame2->y_stride };
139   struct scale_factors scale;
140   av1_setup_scale_factors_for_frame(&scale, frame->y_crop_width,
141                                     frame->y_crop_height, frame->y_crop_width,
142                                     frame->y_crop_height);
143   InterPredParams inter_pred_params;
144   av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
145                         subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
146                         &scale, &ref_buf2, interp_filters);
147   inter_pred_params.interp_filter_params[0] =
148       &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
149   inter_pred_params.interp_filter_params[1] =
150       &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
151   inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
152   MV newmv = { .row = (int16_t)round((mv->row + xdec) * 8),
153                .col = (int16_t)round((mv->col + ydec) * 8) };
154   av1_enc_build_one_inter_predictor(pred2, w, &newmv, &inter_pred_params);
155   const struct buf_2d ref_buf1 = { NULL, frame->y_buffer, frame->y_crop_width,
156                                    frame->y_crop_height, frame->y_stride };
157   av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
158                         subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
159                         &scale, &ref_buf1, interp_filters);
160   inter_pred_params.interp_filter_params[0] =
161       &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
162   inter_pred_params.interp_filter_params[1] =
163       &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
164   inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
165   MV zeroMV = { .row = (int16_t)round(xdec * 8),
166                 .col = (int16_t)round(ydec * 8) };
167   av1_enc_build_one_inter_predictor(pred1, w, &zeroMV, &inter_pred_params);
168 
169   *derivative = pred2[0] - pred1[0];
170 }
171 
172 // Numerical differentiate over window_size x window_size surrounding (x,y)
173 // location. Alters ix, iy, it to contain numerical partial derivatives
gradients_over_window(const YV12_BUFFER_CONFIG * frame,const YV12_BUFFER_CONFIG * ref_frame,const double x_coord,const double y_coord,const int window_size,const int bit_depth,double * ix,double * iy,double * it,LOCALMV * mv)174 static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
175                                   const YV12_BUFFER_CONFIG *ref_frame,
176                                   const double x_coord, const double y_coord,
177                                   const int window_size, const int bit_depth,
178                                   double *ix, double *iy, double *it,
179                                   LOCALMV *mv) {
180   const double left = x_coord - window_size / 2.0;
181   const double top = y_coord - window_size / 2.0;
182   // gradient operators need pixel before and after (start at 1)
183   const double x_start = AOMMAX(1, left);
184   const double y_start = AOMMAX(1, top);
185   const int frame_height = frame->y_crop_height;
186   const int frame_width = frame->y_crop_width;
187   double deriv_x;
188   double deriv_y;
189   double deriv_t;
190 
191   const double x_end = AOMMIN(x_coord + window_size / 2.0, frame_width - 2);
192   const double y_end = AOMMIN(y_coord + window_size / 2.0, frame_height - 2);
193   const int xs = (int)AOMMAX(1, x_start - 1);
194   const int ys = (int)AOMMAX(1, y_start - 1);
195   const int xe = (int)AOMMIN(x_end + 2, frame_width - 2);
196   const int ye = (int)AOMMIN(y_end + 2, frame_height - 2);
197   // with normalization, gradients may be double values
198   double *fullpel_dx = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_x));
199   double *fullpel_dy = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_y));
200   if (!fullpel_dx || !fullpel_dy) {
201     aom_free(fullpel_dx);
202     aom_free(fullpel_dy);
203     return;
204   }
205 
206   // TODO(any): This could be more efficient in the case that x_coord
207   // and y_coord are integers.. but it may look more messy.
208 
209   // calculate spatial gradients at full pixel locations
210   for (int j = ys; j < ye; j++) {
211     for (int i = xs; i < xe; i++) {
212       spatial_gradient(frame, i, j, 0, &deriv_x);
213       spatial_gradient(frame, i, j, 1, &deriv_y);
214       int idx = (j - ys) * (xe - xs) + (i - xs);
215       fullpel_dx[idx] = deriv_x;
216       fullpel_dy[idx] = deriv_y;
217     }
218   }
219   // compute numerical differentiation for every pixel in window
220   // (this potentially includes subpixels)
221   for (double j = y_start; j < y_end; j++) {
222     for (double i = x_start; i < x_end; i++) {
223       temporal_gradient(frame, ref_frame, i, j, bit_depth, &deriv_t, mv);
224       gradient_interp(fullpel_dx, i - xs, j - ys, xe - xs, ye - ys, &deriv_x);
225       gradient_interp(fullpel_dy, i - xs, j - ys, xe - xs, ye - ys, &deriv_y);
226       int idx = (int)(j - top) * window_size + (int)(i - left);
227       ix[idx] = deriv_x;
228       iy[idx] = deriv_y;
229       it[idx] = deriv_t;
230     }
231   }
232   // TODO(any): to avoid setting deriv arrays to zero for every iteration,
233   // could instead pass these two values back through function call
234   // int first_idx = (int)(y_start - top) * window_size + (int)(x_start - left);
235   // int width = window_size - ((int)(x_start - left) + (int)(left + window_size
236   // - x_end));
237 
238   aom_free(fullpel_dx);
239   aom_free(fullpel_dy);
240 }
241 
242 // To compute eigenvalues of 2x2 matrix: Solve for lambda where
243 // Determinant(matrix - lambda*identity) == 0
eigenvalues_2x2(const double * matrix,double * eig)244 static void eigenvalues_2x2(const double *matrix, double *eig) {
245   const double a = 1;
246   const double b = -1 * matrix[0] - matrix[3];
247   const double c = -1 * matrix[1] * matrix[2] + matrix[0] * matrix[3];
248   // quadratic formula
249   const double discriminant = b * b - 4 * a * c;
250   eig[0] = (-b - sqrt(discriminant)) / (2.0 * a);
251   eig[1] = (-b + sqrt(discriminant)) / (2.0 * a);
252   // double check that eigenvalues are ordered by magnitude
253   if (fabs(eig[0]) > fabs(eig[1])) {
254     double tmp = eig[0];
255     eig[0] = eig[1];
256     eig[1] = tmp;
257   }
258 }
259 
260 // Shi-Tomasi corner detection criteria
corner_score(const YV12_BUFFER_CONFIG * frame_to_filter,const YV12_BUFFER_CONFIG * ref_frame,const int x,const int y,double * i_x,double * i_y,double * i_t,const int n,const int bit_depth)261 static double corner_score(const YV12_BUFFER_CONFIG *frame_to_filter,
262                            const YV12_BUFFER_CONFIG *ref_frame, const int x,
263                            const int y, double *i_x, double *i_y, double *i_t,
264                            const int n, const int bit_depth) {
265   double eig[2];
266   LOCALMV mv = { .row = 0, .col = 0 };
267   // TODO(any): technically, ref_frame and i_t are not used by corner score
268   // so these could be replaced by dummy variables,
269   // or change this to spatial gradient function over window only
270   gradients_over_window(frame_to_filter, ref_frame, x, y, n, bit_depth, i_x,
271                         i_y, i_t, &mv);
272   double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
273   multiply_mat(i_x, i_x, Mres1, 1, n * n, 1);
274   multiply_mat(i_x, i_y, Mres2, 1, n * n, 1);
275   multiply_mat(i_y, i_y, Mres3, 1, n * n, 1);
276   double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
277   eigenvalues_2x2(M, eig);
278   return fabs(eig[0]);
279 }
280 
281 // Finds corners in frame_to_filter
282 // For less strict requirements (i.e. more corners), decrease threshold
detect_corners(const YV12_BUFFER_CONFIG * frame_to_filter,const YV12_BUFFER_CONFIG * ref_frame,const int maxcorners,int * ref_corners,const int bit_depth)283 static int detect_corners(const YV12_BUFFER_CONFIG *frame_to_filter,
284                           const YV12_BUFFER_CONFIG *ref_frame,
285                           const int maxcorners, int *ref_corners,
286                           const int bit_depth) {
287   const int frame_height = frame_to_filter->y_crop_height;
288   const int frame_width = frame_to_filter->y_crop_width;
289   // TODO(any): currently if maxcorners is decreased, then it only means
290   // corners will be omited from bottom-right of image. if maxcorners
291   // is actually used, then this algorithm would need to re-iterate
292   // and choose threshold based on that
293   assert(maxcorners == frame_height * frame_width);
294   int countcorners = 0;
295   const double threshold = 0.1;
296   double score;
297   const int n = 3;
298   double i_x[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
299   double i_y[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
300   double i_t[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
301   const int fromedge = n;
302   double max_score = corner_score(frame_to_filter, ref_frame, fromedge,
303                                   fromedge, i_x, i_y, i_t, n, bit_depth);
304   // rough estimate of max corner score in image
305   for (int x = fromedge; x < frame_width - fromedge; x += 1) {
306     for (int y = fromedge; y < frame_height - fromedge; y += frame_height / 5) {
307       for (int i = 0; i < n * n; i++) {
308         i_x[i] = 0;
309         i_y[i] = 0;
310         i_t[i] = 0;
311       }
312       score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
313                            bit_depth);
314       if (score > max_score) {
315         max_score = score;
316       }
317     }
318   }
319   // score all the points and choose corners over threshold
320   for (int x = fromedge; x < frame_width - fromedge; x += 1) {
321     for (int y = fromedge;
322          (y < frame_height - fromedge) && countcorners < maxcorners; y += 1) {
323       for (int i = 0; i < n * n; i++) {
324         i_x[i] = 0;
325         i_y[i] = 0;
326         i_t[i] = 0;
327       }
328       score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
329                            bit_depth);
330       if (score > threshold * max_score) {
331         ref_corners[countcorners * 2] = x;
332         ref_corners[countcorners * 2 + 1] = y;
333         countcorners++;
334       }
335     }
336   }
337   return countcorners;
338 }
339 
340 // weights is an nxn matrix. weights is filled with a gaussian function,
341 // with independent variable: distance from the center point.
gaussian(const double sigma,const int n,const int normalize,double * weights)342 static void gaussian(const double sigma, const int n, const int normalize,
343                      double *weights) {
344   double total_weight = 0;
345   for (int j = 0; j < n; j++) {
346     for (int i = 0; i < n; i++) {
347       double distance = sqrt(pow(n / 2 - i, 2) + pow(n / 2 - j, 2));
348       double weight = exp(-0.5 * pow(distance / sigma, 2));
349       weights[j * n + i] = weight;
350       total_weight += weight;
351     }
352   }
353   if (normalize == 1) {
354     for (int j = 0; j < n; j++) {
355       weights[j] = weights[j] / total_weight;
356     }
357   }
358 }
359 
convolve(const double * filter,const int * img,const int size)360 static double convolve(const double *filter, const int *img, const int size) {
361   double result = 0;
362   for (int i = 0; i < size; i++) {
363     result += filter[i] * img[i];
364   }
365   return result;
366 }
367 
368 // Applies a Gaussian low-pass smoothing filter to produce
369 // a corresponding lower resolution image with halved dimensions
reduce(uint8_t * img,int height,int width,int stride,uint8_t * reduced_img)370 static void reduce(uint8_t *img, int height, int width, int stride,
371                    uint8_t *reduced_img) {
372   const int new_width = width / 2;
373   const int window_size = 5;
374   const double gaussian_filter[25] = {
375     1. / 256, 1.0 / 64, 3. / 128, 1. / 64,  1. / 256, 1. / 64, 1. / 16,
376     3. / 32,  1. / 16,  1. / 64,  3. / 128, 3. / 32,  9. / 64, 3. / 32,
377     3. / 128, 1. / 64,  1. / 16,  3. / 32,  1. / 16,  1. / 64, 1. / 256,
378     1. / 64,  3. / 128, 1. / 64,  1. / 256
379   };
380   // filter is 5x5 so need prev and forward 2 pixels
381   int img_section[25];
382   for (int y = 0; y < height - 1; y += 2) {
383     for (int x = 0; x < width - 1; x += 2) {
384       int i = 0;
385       for (int yy = y - window_size / 2; yy <= y + window_size / 2; yy++) {
386         for (int xx = x - window_size / 2; xx <= x + window_size / 2; xx++) {
387           int yvalue = yy;
388           int xvalue = xx;
389           // copied pixels outside the boundary
390           if (yvalue < 0) yvalue = 0;
391           if (xvalue < 0) xvalue = 0;
392           if (yvalue >= height) yvalue = height - 1;
393           if (xvalue >= width) xvalue = width - 1;
394           img_section[i++] = img[yvalue * stride + xvalue];
395         }
396       }
397       reduced_img[(y / 2) * new_width + (x / 2)] = (uint8_t)convolve(
398           gaussian_filter, img_section, window_size * window_size);
399     }
400   }
401 }
402 
cmpfunc(const void * a,const void * b)403 static int cmpfunc(const void *a, const void *b) {
404   return (*(int *)a - *(int *)b);
405 }
filter_mvs(const MV_FILTER_TYPE mv_filter,const int frame_height,const int frame_width,LOCALMV * localmvs,MV * mvs)406 static void filter_mvs(const MV_FILTER_TYPE mv_filter, const int frame_height,
407                        const int frame_width, LOCALMV *localmvs, MV *mvs) {
408   const int n = 5;  // window size
409   // for smoothing filter
410   const double gaussian_filter[25] = {
411     1. / 256, 1. / 64,  3. / 128, 1. / 64,  1. / 256, 1. / 64, 1. / 16,
412     3. / 32,  1. / 16,  1. / 64,  3. / 128, 3. / 32,  9. / 64, 3. / 32,
413     3. / 128, 1. / 64,  1. / 16,  3. / 32,  1. / 16,  1. / 64, 1. / 256,
414     1. / 64,  3. / 128, 1. / 64,  1. / 256
415   };
416   // for median filter
417   int mvrows[25];
418   int mvcols[25];
419   if (mv_filter != MV_FILTER_NONE) {
420     for (int y = 0; y < frame_height; y++) {
421       for (int x = 0; x < frame_width; x++) {
422         int center_idx = y * frame_width + x;
423         int i = 0;
424         double filtered_row = 0;
425         double filtered_col = 0;
426         for (int yy = y - n / 2; yy <= y + n / 2; yy++) {
427           for (int xx = x - n / 2; xx <= x + n / 2; xx++) {
428             int yvalue = yy;
429             int xvalue = xx;
430             // copied pixels outside the boundary
431             if (yvalue < 0) yvalue = 0;
432             if (xvalue < 0) xvalue = 0;
433             if (yvalue >= frame_height) yvalue = frame_height - 1;
434             if (xvalue >= frame_width) xvalue = frame_width - 1;
435             int index = yvalue * frame_width + xvalue;
436             if (mv_filter == MV_FILTER_SMOOTH) {
437               filtered_row += mvs[index].row * gaussian_filter[i];
438               filtered_col += mvs[index].col * gaussian_filter[i];
439             } else if (mv_filter == MV_FILTER_MEDIAN) {
440               mvrows[i] = mvs[index].row;
441               mvcols[i] = mvs[index].col;
442             }
443             i++;
444           }
445         }
446 
447         MV mv = mvs[center_idx];
448         if (mv_filter == MV_FILTER_SMOOTH) {
449           mv.row = (int16_t)filtered_row;
450           mv.col = (int16_t)filtered_col;
451         } else if (mv_filter == MV_FILTER_MEDIAN) {
452           qsort(mvrows, 25, sizeof(mv.row), cmpfunc);
453           qsort(mvcols, 25, sizeof(mv.col), cmpfunc);
454           mv.row = mvrows[25 / 2];
455           mv.col = mvcols[25 / 2];
456         }
457         LOCALMV localmv = { .row = ((double)mv.row) / 8,
458                             .col = ((double)mv.row) / 8 };
459         localmvs[y * frame_width + x] = localmv;
460         // if mvs array is immediately updated here, then the result may
461         // propagate to other pixels.
462       }
463     }
464     for (int i = 0; i < frame_height * frame_width; i++) {
465       MV mv = { .row = (int16_t)round(8 * localmvs[i].row),
466                 .col = (int16_t)round(8 * localmvs[i].col) };
467       mvs[i] = mv;
468     }
469   }
470 }
471 
472 // Computes optical flow at a single pyramid level,
473 // using Lucas-Kanade algorithm.
474 // Modifies mvs array.
lucas_kanade(const YV12_BUFFER_CONFIG * from_frame,const YV12_BUFFER_CONFIG * to_frame,const int level,const LK_PARAMS * lk_params,const int num_ref_corners,int * ref_corners,const int mv_stride,const int bit_depth,LOCALMV * mvs)475 static void lucas_kanade(const YV12_BUFFER_CONFIG *from_frame,
476                          const YV12_BUFFER_CONFIG *to_frame, const int level,
477                          const LK_PARAMS *lk_params, const int num_ref_corners,
478                          int *ref_corners, const int mv_stride,
479                          const int bit_depth, LOCALMV *mvs) {
480   assert(lk_params->window_size > 0 && lk_params->window_size % 2 == 0);
481   const int n = lk_params->window_size;
482   // algorithm is sensitive to window size
483   double *i_x = (double *)aom_malloc(n * n * sizeof(*i_x));
484   double *i_y = (double *)aom_malloc(n * n * sizeof(*i_y));
485   double *i_t = (double *)aom_malloc(n * n * sizeof(*i_t));
486   double *weights = (double *)aom_malloc(n * n * sizeof(*weights));
487   if (!i_x || !i_y || !i_t || !weights) goto free_lk_buf;
488 
489   const int expand_multiplier = (int)pow(2, level);
490   double sigma = 0.2 * n;
491   // normalizing doesn't really affect anything since it's applied
492   // to every component of M and b
493   gaussian(sigma, n, 0, weights);
494   for (int i = 0; i < num_ref_corners; i++) {
495     const double x_coord = 1.0 * ref_corners[i * 2] / expand_multiplier;
496     const double y_coord = 1.0 * ref_corners[i * 2 + 1] / expand_multiplier;
497     int highres_x = ref_corners[i * 2];
498     int highres_y = ref_corners[i * 2 + 1];
499     int mv_idx = highres_y * (mv_stride) + highres_x;
500     LOCALMV mv_old = mvs[mv_idx];
501     mv_old.row = mv_old.row / expand_multiplier;
502     mv_old.col = mv_old.col / expand_multiplier;
503     // using this instead of memset, since it's not completely
504     // clear if zero memset works on double arrays
505     for (int j = 0; j < n * n; j++) {
506       i_x[j] = 0;
507       i_y[j] = 0;
508       i_t[j] = 0;
509     }
510     gradients_over_window(from_frame, to_frame, x_coord, y_coord, n, bit_depth,
511                           i_x, i_y, i_t, &mv_old);
512     double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
513     double bres1[1] = { 0 }, bres2[1] = { 0 };
514     for (int j = 0; j < n * n; j++) {
515       Mres1[0] += weights[j] * i_x[j] * i_x[j];
516       Mres2[0] += weights[j] * i_x[j] * i_y[j];
517       Mres3[0] += weights[j] * i_y[j] * i_y[j];
518       bres1[0] += weights[j] * i_x[j] * i_t[j];
519       bres2[0] += weights[j] * i_y[j] * i_t[j];
520     }
521     double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
522     double b[2] = { -1 * bres1[0], -1 * bres2[0] };
523     double eig[2] = { 1, 1 };
524     eigenvalues_2x2(M, eig);
525     double threshold = 0.1;
526     if (fabs(eig[0]) > threshold) {
527       // if M is not invertible, then displacement
528       // will default to zeros
529       double u[2] = { 0, 0 };
530       linsolve(2, M, 2, b, u);
531       int mult = 1;
532       if (level != 0)
533         mult = expand_multiplier;  // mv doubles when resolution doubles
534       LOCALMV mv = { .row = (mult * (u[0] + mv_old.row)),
535                      .col = (mult * (u[1] + mv_old.col)) };
536       mvs[mv_idx] = mv;
537       mvs[mv_idx] = mv;
538     }
539   }
540 free_lk_buf:
541   aom_free(weights);
542   aom_free(i_t);
543   aom_free(i_x);
544   aom_free(i_y);
545 }
546 
547 // Warp the src_frame to warper_frame according to mvs.
548 // mvs point to src_frame
warp_back_frame(YV12_BUFFER_CONFIG * warped_frame,const YV12_BUFFER_CONFIG * src_frame,const LOCALMV * mvs,int mv_stride)549 static void warp_back_frame(YV12_BUFFER_CONFIG *warped_frame,
550                             const YV12_BUFFER_CONFIG *src_frame,
551                             const LOCALMV *mvs, int mv_stride) {
552   int w, h;
553   const int fw = src_frame->y_crop_width;
554   const int fh = src_frame->y_crop_height;
555   const int src_fs = src_frame->y_stride, warped_fs = warped_frame->y_stride;
556   const uint8_t *src_buf = src_frame->y_buffer;
557   uint8_t *warped_buf = warped_frame->y_buffer;
558   double temp;
559   for (h = 0; h < fh; h++) {
560     for (w = 0; w < fw; w++) {
561       double cord_x = (double)w + mvs[h * mv_stride + w].col;
562       double cord_y = (double)h + mvs[h * mv_stride + w].row;
563       cord_x = fclamp(cord_x, 0, (double)(fw - 1));
564       cord_y = fclamp(cord_y, 0, (double)(fh - 1));
565       const int floorx = (int)floor(cord_x);
566       const int floory = (int)floor(cord_y);
567       const double fracx = cord_x - (double)floorx;
568       const double fracy = cord_y - (double)floory;
569 
570       temp = 0;
571       for (int hh = 0; hh < 2; hh++) {
572         const double weighth = hh ? (fracy) : (1 - fracy);
573         for (int ww = 0; ww < 2; ww++) {
574           const double weightw = ww ? (fracx) : (1 - fracx);
575           int y = floory + hh;
576           int x = floorx + ww;
577           y = clamp(y, 0, fh - 1);
578           x = clamp(x, 0, fw - 1);
579           temp += (double)src_buf[y * src_fs + x] * weightw * weighth;
580         }
581       }
582       warped_buf[h * warped_fs + w] = (uint8_t)round(temp);
583     }
584   }
585 }
586 
587 // Same as warp_back_frame, but using a better interpolation filter.
warp_back_frame_intp(YV12_BUFFER_CONFIG * warped_frame,const YV12_BUFFER_CONFIG * src_frame,const LOCALMV * mvs,int mv_stride)588 static void warp_back_frame_intp(YV12_BUFFER_CONFIG *warped_frame,
589                                  const YV12_BUFFER_CONFIG *src_frame,
590                                  const LOCALMV *mvs, int mv_stride) {
591   int w, h;
592   const int fw = src_frame->y_crop_width;
593   const int fh = src_frame->y_crop_height;
594   const int warped_fs = warped_frame->y_stride;
595   uint8_t *warped_buf = warped_frame->y_buffer;
596   const int blk = 2;
597   uint8_t temp_blk[4];
598 
599   const int is_intrabc = 0;  // Is intra-copied?
600   const int is_high_bitdepth = is_frame_high_bitdepth(src_frame);
601   const int subsampling_x = 0, subsampling_y = 0;  // for y-buffer
602   const int_interpfilters interp_filters =
603       av1_broadcast_interp_filter(MULTITAP_SHARP2);
604   const int plane = 0;  // y-plane
605   const struct buf_2d ref_buf2 = { NULL, src_frame->y_buffer,
606                                    src_frame->y_crop_width,
607                                    src_frame->y_crop_height,
608                                    src_frame->y_stride };
609   const int bit_depth = src_frame->bit_depth;
610   struct scale_factors scale;
611   av1_setup_scale_factors_for_frame(
612       &scale, src_frame->y_crop_width, src_frame->y_crop_height,
613       src_frame->y_crop_width, src_frame->y_crop_height);
614 
615   for (h = 0; h < fh; h++) {
616     for (w = 0; w < fw; w++) {
617       InterPredParams inter_pred_params;
618       av1_init_inter_params(&inter_pred_params, blk, blk, h, w, subsampling_x,
619                             subsampling_y, bit_depth, is_high_bitdepth,
620                             is_intrabc, &scale, &ref_buf2, interp_filters);
621       inter_pred_params.interp_filter_params[0] =
622           &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
623       inter_pred_params.interp_filter_params[1] =
624           &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
625       inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
626       MV newmv = { .row = (int16_t)round((mvs[h * mv_stride + w].row) * 8),
627                    .col = (int16_t)round((mvs[h * mv_stride + w].col) * 8) };
628       av1_enc_build_one_inter_predictor(temp_blk, blk, &newmv,
629                                         &inter_pred_params);
630       warped_buf[h * warped_fs + w] = temp_blk[0];
631     }
632   }
633 }
634 
635 #define DERIVATIVE_FILTER_LENGTH 7
636 double filter[DERIVATIVE_FILTER_LENGTH] = { -1.0 / 60, 9.0 / 60,  -45.0 / 60, 0,
637                                             45.0 / 60, -9.0 / 60, 1.0 / 60 };
638 
639 // Get gradient of the whole frame
get_frame_gradients(const YV12_BUFFER_CONFIG * from_frame,const YV12_BUFFER_CONFIG * to_frame,double * ix,double * iy,double * it,int grad_stride)640 static void get_frame_gradients(const YV12_BUFFER_CONFIG *from_frame,
641                                 const YV12_BUFFER_CONFIG *to_frame, double *ix,
642                                 double *iy, double *it, int grad_stride) {
643   int w, h, k, idx;
644   const int fw = from_frame->y_crop_width;
645   const int fh = from_frame->y_crop_height;
646   const int from_fs = from_frame->y_stride, to_fs = to_frame->y_stride;
647   const uint8_t *from_buf = from_frame->y_buffer;
648   const uint8_t *to_buf = to_frame->y_buffer;
649 
650   const int lh = DERIVATIVE_FILTER_LENGTH;
651   const int hleft = (lh - 1) / 2;
652 
653   for (h = 0; h < fh; h++) {
654     for (w = 0; w < fw; w++) {
655       // x
656       ix[h * grad_stride + w] = 0;
657       for (k = 0; k < lh; k++) {
658         // if we want to make this block dependent, need to extend the
659         // boundaries using other initializations.
660         idx = w + k - hleft;
661         idx = clamp(idx, 0, fw - 1);
662         ix[h * grad_stride + w] += filter[k] * 0.5 *
663                                    ((double)from_buf[h * from_fs + idx] +
664                                     (double)to_buf[h * to_fs + idx]);
665       }
666       // y
667       iy[h * grad_stride + w] = 0;
668       for (k = 0; k < lh; k++) {
669         // if we want to make this block dependent, need to extend the
670         // boundaries using other initializations.
671         idx = h + k - hleft;
672         idx = clamp(idx, 0, fh - 1);
673         iy[h * grad_stride + w] += filter[k] * 0.5 *
674                                    ((double)from_buf[idx * from_fs + w] +
675                                     (double)to_buf[idx * to_fs + w]);
676       }
677       // t
678       it[h * grad_stride + w] =
679           (double)to_buf[h * to_fs + w] - (double)from_buf[h * from_fs + w];
680     }
681   }
682 }
683 
684 // Solve for linear equations given by the H-S method
solve_horn_schunck(const double * ix,const double * iy,const double * it,int grad_stride,int width,int height,const LOCALMV * init_mvs,int init_mv_stride,LOCALMV * mvs,int mv_stride)685 static void solve_horn_schunck(const double *ix, const double *iy,
686                                const double *it, int grad_stride, int width,
687                                int height, const LOCALMV *init_mvs,
688                                int init_mv_stride, LOCALMV *mvs,
689                                int mv_stride) {
690   // TODO(bohanli): May just need to allocate the buffers once per optical flow
691   // calculation
692   int *row_pos = aom_calloc(width * height * 28, sizeof(*row_pos));
693   int *col_pos = aom_calloc(width * height * 28, sizeof(*col_pos));
694   double *values = aom_calloc(width * height * 28, sizeof(*values));
695   double *mv_vec = aom_calloc(width * height * 2, sizeof(*mv_vec));
696   double *mv_init_vec = aom_calloc(width * height * 2, sizeof(*mv_init_vec));
697   double *temp_b = aom_calloc(width * height * 2, sizeof(*temp_b));
698   double *b = aom_calloc(width * height * 2, sizeof(*b));
699   if (!row_pos || !col_pos || !values || !mv_vec || !mv_init_vec || !temp_b ||
700       !b) {
701     goto free_hs_solver_buf;
702   }
703 
704   // the location idx for neighboring pixels, k < 4 are the 4 direct neighbors
705   const int check_locs_y[12] = { 0, 0, -1, 1, -1, -1, 1, 1, 0, 0, -2, 2 };
706   const int check_locs_x[12] = { -1, 1, 0, 0, -1, 1, -1, 1, -2, 2, 0, 0 };
707 
708   int h, w, checkh, checkw, k, ret;
709   const int offset = height * width;
710   SPARSE_MTX A;
711   int c = 0;
712   const double lambda = 100;
713 
714   for (w = 0; w < width; w++) {
715     for (h = 0; h < height; h++) {
716       mv_init_vec[w * height + h] = init_mvs[h * init_mv_stride + w].col;
717       mv_init_vec[w * height + h + offset] =
718           init_mvs[h * init_mv_stride + w].row;
719     }
720   }
721 
722   // get matrix A
723   for (w = 0; w < width; w++) {
724     for (h = 0; h < height; h++) {
725       int center_num_direct = 4;
726       const int center_idx = w * height + h;
727       if (w == 0 || w == width - 1) center_num_direct--;
728       if (h == 0 || h == height - 1) center_num_direct--;
729       // diagonal entry for this row from the center pixel
730       double cor_w = center_num_direct * center_num_direct + center_num_direct;
731       row_pos[c] = center_idx;
732       col_pos[c] = center_idx;
733       values[c] = lambda * cor_w;
734       c++;
735       row_pos[c] = center_idx + offset;
736       col_pos[c] = center_idx + offset;
737       values[c] = lambda * cor_w;
738       c++;
739       // other entries from direct neighbors
740       for (k = 0; k < 4; k++) {
741         checkh = h + check_locs_y[k];
742         checkw = w + check_locs_x[k];
743         if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
744           continue;
745         }
746         int this_idx = checkw * height + checkh;
747         int this_num_direct = 4;
748         if (checkw == 0 || checkw == width - 1) this_num_direct--;
749         if (checkh == 0 || checkh == height - 1) this_num_direct--;
750         cor_w = -center_num_direct - this_num_direct;
751         row_pos[c] = center_idx;
752         col_pos[c] = this_idx;
753         values[c] = lambda * cor_w;
754         c++;
755         row_pos[c] = center_idx + offset;
756         col_pos[c] = this_idx + offset;
757         values[c] = lambda * cor_w;
758         c++;
759       }
760       // entries from neighbors on the diagonal corners
761       for (k = 4; k < 8; k++) {
762         checkh = h + check_locs_y[k];
763         checkw = w + check_locs_x[k];
764         if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
765           continue;
766         }
767         int this_idx = checkw * height + checkh;
768         cor_w = 2;
769         row_pos[c] = center_idx;
770         col_pos[c] = this_idx;
771         values[c] = lambda * cor_w;
772         c++;
773         row_pos[c] = center_idx + offset;
774         col_pos[c] = this_idx + offset;
775         values[c] = lambda * cor_w;
776         c++;
777       }
778       // entries from neighbors with dist of 2
779       for (k = 8; k < 12; k++) {
780         checkh = h + check_locs_y[k];
781         checkw = w + check_locs_x[k];
782         if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
783           continue;
784         }
785         int this_idx = checkw * height + checkh;
786         cor_w = 1;
787         row_pos[c] = center_idx;
788         col_pos[c] = this_idx;
789         values[c] = lambda * cor_w;
790         c++;
791         row_pos[c] = center_idx + offset;
792         col_pos[c] = this_idx + offset;
793         values[c] = lambda * cor_w;
794         c++;
795       }
796     }
797   }
798   ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
799                             2 * width * height, &A);
800   if (ret < 0) goto free_hs_solver_buf;
801   // subtract init mv part from b
802   av1_mtx_vect_multi_left(&A, mv_init_vec, temp_b, 2 * width * height);
803   for (int i = 0; i < 2 * width * height; i++) {
804     b[i] = -temp_b[i];
805   }
806   av1_free_sparse_mtx_elems(&A);
807 
808   // add cross terms to A and modify b with ExEt / EyEt
809   for (w = 0; w < width; w++) {
810     for (h = 0; h < height; h++) {
811       int curidx = w * height + h;
812       // modify b
813       b[curidx] += -ix[h * grad_stride + w] * it[h * grad_stride + w];
814       b[curidx + offset] += -iy[h * grad_stride + w] * it[h * grad_stride + w];
815       // add cross terms to A
816       row_pos[c] = curidx;
817       col_pos[c] = curidx + offset;
818       values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
819       c++;
820       row_pos[c] = curidx + offset;
821       col_pos[c] = curidx;
822       values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
823       c++;
824     }
825   }
826   // Add diagonal terms to A
827   for (int i = 0; i < c; i++) {
828     if (row_pos[i] == col_pos[i]) {
829       if (row_pos[i] < offset) {
830         w = row_pos[i] / height;
831         h = row_pos[i] % height;
832         values[i] += pow(ix[h * grad_stride + w], 2);
833       } else {
834         w = (row_pos[i] - offset) / height;
835         h = (row_pos[i] - offset) % height;
836         values[i] += pow(iy[h * grad_stride + w], 2);
837       }
838     }
839   }
840 
841   ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
842                             2 * width * height, &A);
843   if (ret < 0) goto free_hs_solver_buf;
844 
845   // solve for the mvs
846   ret = av1_conjugate_gradient_sparse(&A, b, 2 * width * height, mv_vec);
847   if (ret < 0) goto free_hs_solver_buf;
848 
849   // copy mvs
850   for (w = 0; w < width; w++) {
851     for (h = 0; h < height; h++) {
852       mvs[h * mv_stride + w].col = mv_vec[w * height + h];
853       mvs[h * mv_stride + w].row = mv_vec[w * height + h + offset];
854     }
855   }
856 free_hs_solver_buf:
857   aom_free(row_pos);
858   aom_free(col_pos);
859   aom_free(values);
860   aom_free(mv_vec);
861   aom_free(mv_init_vec);
862   aom_free(b);
863   aom_free(temp_b);
864   av1_free_sparse_mtx_elems(&A);
865 }
866 
867 // Calculate optical flow from from_frame to to_frame using the H-S method.
horn_schunck(const YV12_BUFFER_CONFIG * from_frame,const YV12_BUFFER_CONFIG * to_frame,const int level,const int mv_stride,const int mv_height,const int mv_width,const OPFL_PARAMS * opfl_params,LOCALMV * mvs)868 static void horn_schunck(const YV12_BUFFER_CONFIG *from_frame,
869                          const YV12_BUFFER_CONFIG *to_frame, const int level,
870                          const int mv_stride, const int mv_height,
871                          const int mv_width, const OPFL_PARAMS *opfl_params,
872                          LOCALMV *mvs) {
873   // mvs are always on level 0, here we define two new mv arrays that is of size
874   // of this level.
875   const int fw = from_frame->y_crop_width;
876   const int fh = from_frame->y_crop_height;
877   const int factor = (int)pow(2, level);
878   int w, h, k, init_mv_stride;
879   LOCALMV *init_mvs = NULL, *refine_mvs = NULL;
880   double *ix = NULL, *iy = NULL, *it = NULL;
881   YV12_BUFFER_CONFIG temp_frame;
882   temp_frame.y_buffer = NULL;
883   if (level == 0) {
884     init_mvs = mvs;
885     init_mv_stride = mv_stride;
886   } else {
887     init_mvs = aom_calloc(fw * fh, sizeof(*mvs));
888     if (!init_mvs) goto free_hs_buf;
889     init_mv_stride = fw;
890     for (h = 0; h < fh; h++) {
891       for (w = 0; w < fw; w++) {
892         init_mvs[h * init_mv_stride + w].row =
893             mvs[h * factor * mv_stride + w * factor].row / (double)factor;
894         init_mvs[h * init_mv_stride + w].col =
895             mvs[h * factor * mv_stride + w * factor].col / (double)factor;
896       }
897     }
898   }
899   refine_mvs = aom_calloc(fw * fh, sizeof(*mvs));
900   if (!refine_mvs) goto free_hs_buf;
901   // temp frame for warping
902   temp_frame.y_buffer =
903       (uint8_t *)aom_calloc(fh * fw, sizeof(*temp_frame.y_buffer));
904   if (!temp_frame.y_buffer) goto free_hs_buf;
905   temp_frame.y_crop_height = fh;
906   temp_frame.y_crop_width = fw;
907   temp_frame.y_stride = fw;
908   // gradient buffers
909   ix = aom_calloc(fw * fh, sizeof(*ix));
910   iy = aom_calloc(fw * fh, sizeof(*iy));
911   it = aom_calloc(fw * fh, sizeof(*it));
912   if (!ix || !iy || !it) goto free_hs_buf;
913   // For each warping step
914   for (k = 0; k < opfl_params->warping_steps; k++) {
915     // warp from_frame with init_mv
916     if (level == 0) {
917       warp_back_frame_intp(&temp_frame, to_frame, init_mvs, init_mv_stride);
918     } else {
919       warp_back_frame(&temp_frame, to_frame, init_mvs, init_mv_stride);
920     }
921     // calculate frame gradients
922     get_frame_gradients(from_frame, &temp_frame, ix, iy, it, fw);
923     // form linear equations and solve mvs
924     solve_horn_schunck(ix, iy, it, fw, fw, fh, init_mvs, init_mv_stride,
925                        refine_mvs, fw);
926     // update init_mvs
927     for (h = 0; h < fh; h++) {
928       for (w = 0; w < fw; w++) {
929         init_mvs[h * init_mv_stride + w].col += refine_mvs[h * fw + w].col;
930         init_mvs[h * init_mv_stride + w].row += refine_mvs[h * fw + w].row;
931       }
932     }
933   }
934   // copy back the mvs if needed
935   if (level != 0) {
936     for (h = 0; h < mv_height; h++) {
937       for (w = 0; w < mv_width; w++) {
938         mvs[h * mv_stride + w].row =
939             init_mvs[h / factor * init_mv_stride + w / factor].row *
940             (double)factor;
941         mvs[h * mv_stride + w].col =
942             init_mvs[h / factor * init_mv_stride + w / factor].col *
943             (double)factor;
944       }
945     }
946   }
947 free_hs_buf:
948   if (level != 0) aom_free(init_mvs);
949   aom_free(refine_mvs);
950   aom_free(temp_frame.y_buffer);
951   aom_free(ix);
952   aom_free(iy);
953   aom_free(it);
954 }
955 
956 // Apply optical flow iteratively at each pyramid level
pyramid_optical_flow(const YV12_BUFFER_CONFIG * from_frame,const YV12_BUFFER_CONFIG * to_frame,const int bit_depth,const OPFL_PARAMS * opfl_params,const OPTFLOW_METHOD method,LOCALMV * mvs)957 static void pyramid_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
958                                  const YV12_BUFFER_CONFIG *to_frame,
959                                  const int bit_depth,
960                                  const OPFL_PARAMS *opfl_params,
961                                  const OPTFLOW_METHOD method, LOCALMV *mvs) {
962   assert(opfl_params->pyramid_levels > 0 &&
963          opfl_params->pyramid_levels <= MAX_PYRAMID_LEVELS);
964   int levels = opfl_params->pyramid_levels;
965   const int frame_height = from_frame->y_crop_height;
966   const int frame_width = from_frame->y_crop_width;
967   if ((frame_height / pow(2.0, levels - 1) < 50 ||
968        frame_height / pow(2.0, levels - 1) < 50) &&
969       levels > 1)
970     levels = levels - 1;
971   uint8_t *images1[MAX_PYRAMID_LEVELS] = { NULL };
972   uint8_t *images2[MAX_PYRAMID_LEVELS] = { NULL };
973   int *ref_corners = NULL;
974 
975   images1[0] = from_frame->y_buffer;
976   images2[0] = to_frame->y_buffer;
977   YV12_BUFFER_CONFIG *buffers1 = aom_malloc(levels * sizeof(*buffers1));
978   YV12_BUFFER_CONFIG *buffers2 = aom_malloc(levels * sizeof(*buffers2));
979   if (!buffers1 || !buffers2) goto free_pyramid_buf;
980   buffers1[0] = *from_frame;
981   buffers2[0] = *to_frame;
982   int fw = frame_width;
983   int fh = frame_height;
984   for (int i = 1; i < levels; i++) {
985     // TODO(bohanli): may need to extend buffers for better interpolation SIMD
986     images1[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images1[i]));
987     images2[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images2[i]));
988     if (!images1[i] || !images2[i]) goto free_pyramid_buf;
989     int stride;
990     if (i == 1)
991       stride = from_frame->y_stride;
992     else
993       stride = fw;
994     reduce(images1[i - 1], fh, fw, stride, images1[i]);
995     reduce(images2[i - 1], fh, fw, stride, images2[i]);
996     fh /= 2;
997     fw /= 2;
998     YV12_BUFFER_CONFIG a = { .y_buffer = images1[i],
999                              .y_crop_width = fw,
1000                              .y_crop_height = fh,
1001                              .y_stride = fw };
1002     YV12_BUFFER_CONFIG b = { .y_buffer = images2[i],
1003                              .y_crop_width = fw,
1004                              .y_crop_height = fh,
1005                              .y_stride = fw };
1006     buffers1[i] = a;
1007     buffers2[i] = b;
1008   }
1009   // Compute corners for specific frame
1010   int num_ref_corners = 0;
1011   if (is_sparse(opfl_params)) {
1012     int maxcorners = from_frame->y_crop_width * from_frame->y_crop_height;
1013     ref_corners = aom_malloc(maxcorners * 2 * sizeof(*ref_corners));
1014     if (!ref_corners) goto free_pyramid_buf;
1015     num_ref_corners = detect_corners(from_frame, to_frame, maxcorners,
1016                                      ref_corners, bit_depth);
1017   }
1018   const int stop_level = 0;
1019   for (int i = levels - 1; i >= stop_level; i--) {
1020     if (method == LUCAS_KANADE) {
1021       assert(is_sparse(opfl_params));
1022       lucas_kanade(&buffers1[i], &buffers2[i], i, opfl_params->lk_params,
1023                    num_ref_corners, ref_corners, buffers1[0].y_crop_width,
1024                    bit_depth, mvs);
1025     } else if (method == HORN_SCHUNCK) {
1026       assert(!is_sparse(opfl_params));
1027       horn_schunck(&buffers1[i], &buffers2[i], i, buffers1[0].y_crop_width,
1028                    buffers1[0].y_crop_height, buffers1[0].y_crop_width,
1029                    opfl_params, mvs);
1030     }
1031   }
1032 free_pyramid_buf:
1033   for (int i = 1; i < levels; i++) {
1034     aom_free(images1[i]);
1035     aom_free(images2[i]);
1036   }
1037   aom_free(ref_corners);
1038   aom_free(buffers1);
1039   aom_free(buffers2);
1040 }
1041 // Computes optical flow by applying algorithm at
1042 // multiple pyramid levels of images (lower-resolution, smoothed images)
1043 // This accounts for larger motions.
1044 // Inputs:
1045 //   from_frame Frame buffer.
1046 //   to_frame: Frame buffer. MVs point from_frame -> to_frame.
1047 //   from_frame_idx: Index of from_frame.
1048 //   to_frame_idx: Index of to_frame. Return all zero MVs when idx are equal.
1049 //   bit_depth:
1050 //   opfl_params: contains algorithm-specific parameters.
1051 //   mv_filter: MV_FILTER_NONE, MV_FILTER_SMOOTH, or MV_FILTER_MEDIAN.
1052 //   method: LUCAS_KANADE, HORN_SCHUNCK
1053 //   mvs: pointer to MVs. Contains initialization, and modified
1054 //   based on optical flow. Must have
1055 //   dimensions = from_frame->y_crop_width * from_frame->y_crop_height
av1_optical_flow(const YV12_BUFFER_CONFIG * from_frame,const YV12_BUFFER_CONFIG * to_frame,const int from_frame_idx,const int to_frame_idx,const int bit_depth,const OPFL_PARAMS * opfl_params,const MV_FILTER_TYPE mv_filter,const OPTFLOW_METHOD method,MV * mvs)1056 void av1_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
1057                       const YV12_BUFFER_CONFIG *to_frame,
1058                       const int from_frame_idx, const int to_frame_idx,
1059                       const int bit_depth, const OPFL_PARAMS *opfl_params,
1060                       const MV_FILTER_TYPE mv_filter,
1061                       const OPTFLOW_METHOD method, MV *mvs) {
1062   const int frame_height = from_frame->y_crop_height;
1063   const int frame_width = from_frame->y_crop_width;
1064   // TODO(any): deal with the case where frames are not of the same dimensions
1065   assert(frame_height == to_frame->y_crop_height &&
1066          frame_width == to_frame->y_crop_width);
1067   if (from_frame_idx == to_frame_idx) {
1068     // immediately return all zero mvs when frame indices are equal
1069     for (int yy = 0; yy < frame_height; yy++) {
1070       for (int xx = 0; xx < frame_width; xx++) {
1071         MV mv = { .row = 0, .col = 0 };
1072         mvs[yy * frame_width + xx] = mv;
1073       }
1074     }
1075     return;
1076   }
1077 
1078   // Initialize double mvs based on input parameter mvs array
1079   LOCALMV *localmvs =
1080       aom_malloc(frame_height * frame_width * sizeof(*localmvs));
1081   if (!localmvs) return;
1082 
1083   filter_mvs(MV_FILTER_SMOOTH, frame_height, frame_width, localmvs, mvs);
1084 
1085   for (int i = 0; i < frame_width * frame_height; i++) {
1086     MV mv = mvs[i];
1087     LOCALMV localmv = { .row = ((double)mv.row) / 8,
1088                         .col = ((double)mv.col) / 8 };
1089     localmvs[i] = localmv;
1090   }
1091   // Apply optical flow algorithm
1092   pyramid_optical_flow(from_frame, to_frame, bit_depth, opfl_params, method,
1093                        localmvs);
1094 
1095   // Update original mvs array
1096   for (int j = 0; j < frame_height; j++) {
1097     for (int i = 0; i < frame_width; i++) {
1098       int idx = j * frame_width + i;
1099       if (j + localmvs[idx].row < 0 || j + localmvs[idx].row >= frame_height ||
1100           i + localmvs[idx].col < 0 || i + localmvs[idx].col >= frame_width) {
1101         continue;
1102       }
1103       MV mv = { .row = (int16_t)round(8 * localmvs[idx].row),
1104                 .col = (int16_t)round(8 * localmvs[idx].col) };
1105       mvs[idx] = mv;
1106     }
1107   }
1108 
1109   filter_mvs(mv_filter, frame_height, frame_width, localmvs, mvs);
1110 
1111   aom_free(localmvs);
1112 }
1113 #endif
1114