1*9712c20fSFrederick Mayle // -*- mode: C++ -*- 2*9712c20fSFrederick Mayle 3*9712c20fSFrederick Mayle // Copyright 2010 Google LLC 4*9712c20fSFrederick Mayle // 5*9712c20fSFrederick Mayle // Redistribution and use in source and binary forms, with or without 6*9712c20fSFrederick Mayle // modification, are permitted provided that the following conditions are 7*9712c20fSFrederick Mayle // met: 8*9712c20fSFrederick Mayle // 9*9712c20fSFrederick Mayle // * Redistributions of source code must retain the above copyright 10*9712c20fSFrederick Mayle // notice, this list of conditions and the following disclaimer. 11*9712c20fSFrederick Mayle // * Redistributions in binary form must reproduce the above 12*9712c20fSFrederick Mayle // copyright notice, this list of conditions and the following disclaimer 13*9712c20fSFrederick Mayle // in the documentation and/or other materials provided with the 14*9712c20fSFrederick Mayle // distribution. 15*9712c20fSFrederick Mayle // * Neither the name of Google LLC nor the names of its 16*9712c20fSFrederick Mayle // contributors may be used to endorse or promote products derived from 17*9712c20fSFrederick Mayle // this software without specific prior written permission. 18*9712c20fSFrederick Mayle // 19*9712c20fSFrederick Mayle // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20*9712c20fSFrederick Mayle // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21*9712c20fSFrederick Mayle // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22*9712c20fSFrederick Mayle // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23*9712c20fSFrederick Mayle // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24*9712c20fSFrederick Mayle // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25*9712c20fSFrederick Mayle // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26*9712c20fSFrederick Mayle // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27*9712c20fSFrederick Mayle // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28*9712c20fSFrederick Mayle // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29*9712c20fSFrederick Mayle // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30*9712c20fSFrederick Mayle 31*9712c20fSFrederick Mayle #ifndef COMMON_DWARF_BYTEREADER_H__ 32*9712c20fSFrederick Mayle #define COMMON_DWARF_BYTEREADER_H__ 33*9712c20fSFrederick Mayle 34*9712c20fSFrederick Mayle #include <stdint.h> 35*9712c20fSFrederick Mayle 36*9712c20fSFrederick Mayle #include <string> 37*9712c20fSFrederick Mayle 38*9712c20fSFrederick Mayle #include "common/dwarf/types.h" 39*9712c20fSFrederick Mayle #include "common/dwarf/dwarf2enums.h" 40*9712c20fSFrederick Mayle 41*9712c20fSFrederick Mayle namespace google_breakpad { 42*9712c20fSFrederick Mayle 43*9712c20fSFrederick Mayle // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN 44*9712c20fSFrederick Mayle // because it conflicts with a macro 45*9712c20fSFrederick Mayle enum Endianness { 46*9712c20fSFrederick Mayle ENDIANNESS_BIG, 47*9712c20fSFrederick Mayle ENDIANNESS_LITTLE 48*9712c20fSFrederick Mayle }; 49*9712c20fSFrederick Mayle 50*9712c20fSFrederick Mayle // A ByteReader knows how to read single- and multi-byte values of 51*9712c20fSFrederick Mayle // various endiannesses, sizes, and encodings, as used in DWARF 52*9712c20fSFrederick Mayle // debugging information and Linux C++ exception handling data. 53*9712c20fSFrederick Mayle class ByteReader { 54*9712c20fSFrederick Mayle public: 55*9712c20fSFrederick Mayle // Construct a ByteReader capable of reading one-, two-, four-, and 56*9712c20fSFrederick Mayle // eight-byte values according to ENDIANNESS, absolute machine-sized 57*9712c20fSFrederick Mayle // addresses, DWARF-style "initial length" values, signed and 58*9712c20fSFrederick Mayle // unsigned LEB128 numbers, and Linux C++ exception handling data's 59*9712c20fSFrederick Mayle // encoded pointers. 60*9712c20fSFrederick Mayle explicit ByteReader(enum Endianness endianness); 61*9712c20fSFrederick Mayle virtual ~ByteReader(); 62*9712c20fSFrederick Mayle 63*9712c20fSFrederick Mayle // Read a single byte from BUFFER and return it as an unsigned 8 bit 64*9712c20fSFrederick Mayle // number. 65*9712c20fSFrederick Mayle uint8_t ReadOneByte(const uint8_t* buffer) const; 66*9712c20fSFrederick Mayle 67*9712c20fSFrederick Mayle // Read two bytes from BUFFER and return them as an unsigned 16 bit 68*9712c20fSFrederick Mayle // number, using this ByteReader's endianness. 69*9712c20fSFrederick Mayle uint16_t ReadTwoBytes(const uint8_t* buffer) const; 70*9712c20fSFrederick Mayle 71*9712c20fSFrederick Mayle // Read three bytes from BUFFER and return them as an unsigned 64 bit 72*9712c20fSFrederick Mayle // number, using this ByteReader's endianness. DWARF 5 uses this encoding 73*9712c20fSFrederick Mayle // for various index-related DW_FORMs. 74*9712c20fSFrederick Mayle uint64_t ReadThreeBytes(const uint8_t* buffer) const; 75*9712c20fSFrederick Mayle 76*9712c20fSFrederick Mayle // Read four bytes from BUFFER and return them as an unsigned 32 bit 77*9712c20fSFrederick Mayle // number, using this ByteReader's endianness. This function returns 78*9712c20fSFrederick Mayle // a uint64_t so that it is compatible with ReadAddress and 79*9712c20fSFrederick Mayle // ReadOffset. The number it returns will never be outside the range 80*9712c20fSFrederick Mayle // of an unsigned 32 bit integer. 81*9712c20fSFrederick Mayle uint64_t ReadFourBytes(const uint8_t* buffer) const; 82*9712c20fSFrederick Mayle 83*9712c20fSFrederick Mayle // Read eight bytes from BUFFER and return them as an unsigned 64 84*9712c20fSFrederick Mayle // bit number, using this ByteReader's endianness. 85*9712c20fSFrederick Mayle uint64_t ReadEightBytes(const uint8_t* buffer) const; 86*9712c20fSFrederick Mayle 87*9712c20fSFrederick Mayle // Read an unsigned LEB128 (Little Endian Base 128) number from 88*9712c20fSFrederick Mayle // BUFFER and return it as an unsigned 64 bit integer. Set LEN to 89*9712c20fSFrederick Mayle // the number of bytes read. 90*9712c20fSFrederick Mayle // 91*9712c20fSFrederick Mayle // The unsigned LEB128 representation of an integer N is a variable 92*9712c20fSFrederick Mayle // number of bytes: 93*9712c20fSFrederick Mayle // 94*9712c20fSFrederick Mayle // - If N is between 0 and 0x7f, then its unsigned LEB128 95*9712c20fSFrederick Mayle // representation is a single byte whose value is N. 96*9712c20fSFrederick Mayle // 97*9712c20fSFrederick Mayle // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) | 98*9712c20fSFrederick Mayle // 0x80, followed by the unsigned LEB128 representation of N / 99*9712c20fSFrederick Mayle // 128, rounded towards negative infinity. 100*9712c20fSFrederick Mayle // 101*9712c20fSFrederick Mayle // In other words, we break VALUE into groups of seven bits, put 102*9712c20fSFrederick Mayle // them in little-endian order, and then write them as eight-bit 103*9712c20fSFrederick Mayle // bytes with the high bit on all but the last. 104*9712c20fSFrederick Mayle uint64_t ReadUnsignedLEB128(const uint8_t* buffer, size_t* len) const; 105*9712c20fSFrederick Mayle 106*9712c20fSFrederick Mayle // Read a signed LEB128 number from BUFFER and return it as an 107*9712c20fSFrederick Mayle // signed 64 bit integer. Set LEN to the number of bytes read. 108*9712c20fSFrederick Mayle // 109*9712c20fSFrederick Mayle // The signed LEB128 representation of an integer N is a variable 110*9712c20fSFrederick Mayle // number of bytes: 111*9712c20fSFrederick Mayle // 112*9712c20fSFrederick Mayle // - If N is between -0x40 and 0x3f, then its signed LEB128 113*9712c20fSFrederick Mayle // representation is a single byte whose value is N in two's 114*9712c20fSFrederick Mayle // complement. 115*9712c20fSFrederick Mayle // 116*9712c20fSFrederick Mayle // - Otherwise, its signed LEB128 representation is (N & 0x7f) | 117*9712c20fSFrederick Mayle // 0x80, followed by the signed LEB128 representation of N / 128, 118*9712c20fSFrederick Mayle // rounded towards negative infinity. 119*9712c20fSFrederick Mayle // 120*9712c20fSFrederick Mayle // In other words, we break VALUE into groups of seven bits, put 121*9712c20fSFrederick Mayle // them in little-endian order, and then write them as eight-bit 122*9712c20fSFrederick Mayle // bytes with the high bit on all but the last. 123*9712c20fSFrederick Mayle int64_t ReadSignedLEB128(const uint8_t* buffer, size_t* len) const; 124*9712c20fSFrederick Mayle 125*9712c20fSFrederick Mayle // Indicate that addresses on this architecture are SIZE bytes long. SIZE 126*9712c20fSFrederick Mayle // must be either 4 or 8. (DWARF allows addresses to be any number of 127*9712c20fSFrederick Mayle // bytes in length from 1 to 255, but we only support 32- and 64-bit 128*9712c20fSFrederick Mayle // addresses at the moment.) You must call this before using the 129*9712c20fSFrederick Mayle // ReadAddress member function. 130*9712c20fSFrederick Mayle // 131*9712c20fSFrederick Mayle // For data in a .debug_info section, or something that .debug_info 132*9712c20fSFrederick Mayle // refers to like line number or macro data, the compilation unit 133*9712c20fSFrederick Mayle // header's address_size field indicates the address size to use. Call 134*9712c20fSFrederick Mayle // frame information doesn't indicate its address size (a shortcoming of 135*9712c20fSFrederick Mayle // the spec); you must supply the appropriate size based on the 136*9712c20fSFrederick Mayle // architecture of the target machine. 137*9712c20fSFrederick Mayle void SetAddressSize(uint8_t size); 138*9712c20fSFrederick Mayle 139*9712c20fSFrederick Mayle // Return the current address size, in bytes. This is either 4, 140*9712c20fSFrederick Mayle // indicating 32-bit addresses, or 8, indicating 64-bit addresses. AddressSize()141*9712c20fSFrederick Mayle uint8_t AddressSize() const { return address_size_; } 142*9712c20fSFrederick Mayle 143*9712c20fSFrederick Mayle // Read an address from BUFFER and return it as an unsigned 64 bit 144*9712c20fSFrederick Mayle // integer, respecting this ByteReader's endianness and address size. You 145*9712c20fSFrederick Mayle // must call SetAddressSize before calling this function. 146*9712c20fSFrederick Mayle uint64_t ReadAddress(const uint8_t* buffer) const; 147*9712c20fSFrederick Mayle 148*9712c20fSFrederick Mayle // DWARF actually defines two slightly different formats: 32-bit DWARF 149*9712c20fSFrederick Mayle // and 64-bit DWARF. This is *not* related to the size of registers or 150*9712c20fSFrederick Mayle // addresses on the target machine; it refers only to the size of section 151*9712c20fSFrederick Mayle // offsets and data lengths appearing in the DWARF data. One only needs 152*9712c20fSFrederick Mayle // 64-bit DWARF when the debugging data itself is larger than 4GiB. 153*9712c20fSFrederick Mayle // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the 154*9712c20fSFrederick Mayle // debugging data itself is very large. 155*9712c20fSFrederick Mayle // 156*9712c20fSFrederick Mayle // DWARF information identifies itself as 32-bit or 64-bit DWARF: each 157*9712c20fSFrederick Mayle // compilation unit and call frame information entry begins with an 158*9712c20fSFrederick Mayle // "initial length" field, which, in addition to giving the length of the 159*9712c20fSFrederick Mayle // data, also indicates the size of section offsets and lengths appearing 160*9712c20fSFrederick Mayle // in that data. The ReadInitialLength member function, below, reads an 161*9712c20fSFrederick Mayle // initial length and sets the ByteReader's offset size as a side effect. 162*9712c20fSFrederick Mayle // Thus, in the normal process of reading DWARF data, the appropriate 163*9712c20fSFrederick Mayle // offset size is set automatically. So, you should only need to call 164*9712c20fSFrederick Mayle // SetOffsetSize if you are using the same ByteReader to jump from the 165*9712c20fSFrederick Mayle // midst of one block of DWARF data into another. 166*9712c20fSFrederick Mayle 167*9712c20fSFrederick Mayle // Read a DWARF "initial length" field from START, and return it as 168*9712c20fSFrederick Mayle // an unsigned 64 bit integer, respecting this ByteReader's 169*9712c20fSFrederick Mayle // endianness. Set *LEN to the length of the initial length in 170*9712c20fSFrederick Mayle // bytes, either four or twelve. As a side effect, set this 171*9712c20fSFrederick Mayle // ByteReader's offset size to either 4 (if we see a 32-bit DWARF 172*9712c20fSFrederick Mayle // initial length) or 8 (if we see a 64-bit DWARF initial length). 173*9712c20fSFrederick Mayle // 174*9712c20fSFrederick Mayle // A DWARF initial length is either: 175*9712c20fSFrederick Mayle // 176*9712c20fSFrederick Mayle // - a byte count stored as an unsigned 32-bit value less than 177*9712c20fSFrederick Mayle // 0xffffff00, indicating that the data whose length is being 178*9712c20fSFrederick Mayle // measured uses the 32-bit DWARF format, or 179*9712c20fSFrederick Mayle // 180*9712c20fSFrederick Mayle // - The 32-bit value 0xffffffff, followed by a 64-bit byte count, 181*9712c20fSFrederick Mayle // indicating that the data whose length is being measured uses 182*9712c20fSFrederick Mayle // the 64-bit DWARF format. 183*9712c20fSFrederick Mayle uint64_t ReadInitialLength(const uint8_t* start, size_t* len); 184*9712c20fSFrederick Mayle 185*9712c20fSFrederick Mayle // Read an offset from BUFFER and return it as an unsigned 64 bit 186*9712c20fSFrederick Mayle // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the 187*9712c20fSFrederick Mayle // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes 188*9712c20fSFrederick Mayle // long. You must call ReadInitialLength or SetOffsetSize before calling 189*9712c20fSFrederick Mayle // this function; see the comments above for details. 190*9712c20fSFrederick Mayle uint64_t ReadOffset(const uint8_t* buffer) const; 191*9712c20fSFrederick Mayle 192*9712c20fSFrederick Mayle // Return the current offset size, in bytes. 193*9712c20fSFrederick Mayle // A return value of 4 indicates that we are reading 32-bit DWARF. 194*9712c20fSFrederick Mayle // A return value of 8 indicates that we are reading 64-bit DWARF. OffsetSize()195*9712c20fSFrederick Mayle uint8_t OffsetSize() const { return offset_size_; } 196*9712c20fSFrederick Mayle 197*9712c20fSFrederick Mayle // Indicate that section offsets and lengths are SIZE bytes long. SIZE 198*9712c20fSFrederick Mayle // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF). 199*9712c20fSFrederick Mayle // Usually, you should not call this function yourself; instead, let a 200*9712c20fSFrederick Mayle // call to ReadInitialLength establish the data's offset size 201*9712c20fSFrederick Mayle // automatically. 202*9712c20fSFrederick Mayle void SetOffsetSize(uint8_t size); 203*9712c20fSFrederick Mayle 204*9712c20fSFrederick Mayle // The Linux C++ ABI uses a variant of DWARF call frame information 205*9712c20fSFrederick Mayle // for exception handling. This data is included in the program's 206*9712c20fSFrederick Mayle // address space as the ".eh_frame" section, and intepreted at 207*9712c20fSFrederick Mayle // runtime to walk the stack, find exception handlers, and run 208*9712c20fSFrederick Mayle // cleanup code. The format is mostly the same as DWARF CFI, with 209*9712c20fSFrederick Mayle // some adjustments made to provide the additional 210*9712c20fSFrederick Mayle // exception-handling data, and to make the data easier to work with 211*9712c20fSFrederick Mayle // in memory --- for example, to allow it to be placed in read-only 212*9712c20fSFrederick Mayle // memory even when describing position-independent code. 213*9712c20fSFrederick Mayle // 214*9712c20fSFrederick Mayle // In particular, exception handling data can select a number of 215*9712c20fSFrederick Mayle // different encodings for pointers that appear in the data, as 216*9712c20fSFrederick Mayle // described by the DwarfPointerEncoding enum. There are actually 217*9712c20fSFrederick Mayle // four axes(!) to the encoding: 218*9712c20fSFrederick Mayle // 219*9712c20fSFrederick Mayle // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use 220*9712c20fSFrederick Mayle // the DWARF LEB128 encoding. 221*9712c20fSFrederick Mayle // 222*9712c20fSFrederick Mayle // - The pointer's signedness: pointers can be signed or unsigned. 223*9712c20fSFrederick Mayle // 224*9712c20fSFrederick Mayle // - The pointer's base address: the data stored in the exception 225*9712c20fSFrederick Mayle // handling data can be the actual address (that is, an absolute 226*9712c20fSFrederick Mayle // pointer), or relative to one of a number of different base 227*9712c20fSFrederick Mayle // addreses --- including that of the encoded pointer itself, for 228*9712c20fSFrederick Mayle // a form of "pc-relative" addressing. 229*9712c20fSFrederick Mayle // 230*9712c20fSFrederick Mayle // - The pointer may be indirect: it may be the address where the 231*9712c20fSFrederick Mayle // true pointer is stored. (This is used to refer to things via 232*9712c20fSFrederick Mayle // global offset table entries, program linkage table entries, or 233*9712c20fSFrederick Mayle // other tricks used in position-independent code.) 234*9712c20fSFrederick Mayle // 235*9712c20fSFrederick Mayle // There are also two options that fall outside that matrix 236*9712c20fSFrederick Mayle // altogether: the pointer may be omitted, or it may have padding to 237*9712c20fSFrederick Mayle // align it on an appropriate address boundary. (That last option 238*9712c20fSFrederick Mayle // may seem like it should be just another axis, but it is not.) 239*9712c20fSFrederick Mayle 240*9712c20fSFrederick Mayle // Indicate that the exception handling data is loaded starting at 241*9712c20fSFrederick Mayle // SECTION_BASE, and that the start of its buffer in our own memory 242*9712c20fSFrederick Mayle // is BUFFER_BASE. This allows us to find the address that a given 243*9712c20fSFrederick Mayle // byte in our buffer would have when loaded into the program the 244*9712c20fSFrederick Mayle // data describes. We need this to resolve DW_EH_PE_pcrel pointers. 245*9712c20fSFrederick Mayle void SetCFIDataBase(uint64_t section_base, const uint8_t* buffer_base); 246*9712c20fSFrederick Mayle 247*9712c20fSFrederick Mayle // Indicate that the base address of the program's ".text" section 248*9712c20fSFrederick Mayle // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers. 249*9712c20fSFrederick Mayle void SetTextBase(uint64_t text_base); 250*9712c20fSFrederick Mayle 251*9712c20fSFrederick Mayle // Indicate that the base address for DW_EH_PE_datarel pointers is 252*9712c20fSFrederick Mayle // DATA_BASE. The proper value depends on the ABI; it is usually the 253*9712c20fSFrederick Mayle // address of the global offset table, held in a designated register in 254*9712c20fSFrederick Mayle // position-independent code. You will need to look at the startup code 255*9712c20fSFrederick Mayle // for the target system to be sure. I tried; my eyes bled. 256*9712c20fSFrederick Mayle void SetDataBase(uint64_t data_base); 257*9712c20fSFrederick Mayle 258*9712c20fSFrederick Mayle // Indicate that the base address for the FDE we are processing is 259*9712c20fSFrederick Mayle // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel 260*9712c20fSFrederick Mayle // pointers. (This encoding does not seem to be used by the GNU 261*9712c20fSFrederick Mayle // toolchain.) 262*9712c20fSFrederick Mayle void SetFunctionBase(uint64_t function_base); 263*9712c20fSFrederick Mayle 264*9712c20fSFrederick Mayle // Indicate that we are no longer processing any FDE, so any use of 265*9712c20fSFrederick Mayle // a DW_EH_PE_funcrel encoding is an error. 266*9712c20fSFrederick Mayle void ClearFunctionBase(); 267*9712c20fSFrederick Mayle 268*9712c20fSFrederick Mayle // Return true if ENCODING is a valid pointer encoding. 269*9712c20fSFrederick Mayle bool ValidEncoding(DwarfPointerEncoding encoding) const; 270*9712c20fSFrederick Mayle 271*9712c20fSFrederick Mayle // Return true if we have all the information we need to read a 272*9712c20fSFrederick Mayle // pointer that uses ENCODING. This checks that the appropriate 273*9712c20fSFrederick Mayle // SetFooBase function for ENCODING has been called. 274*9712c20fSFrederick Mayle bool UsableEncoding(DwarfPointerEncoding encoding) const; 275*9712c20fSFrederick Mayle 276*9712c20fSFrederick Mayle // Read an encoded pointer from BUFFER using ENCODING; return the 277*9712c20fSFrederick Mayle // absolute address it represents, and set *LEN to the pointer's 278*9712c20fSFrederick Mayle // length in bytes, including any padding for aligned pointers. 279*9712c20fSFrederick Mayle // 280*9712c20fSFrederick Mayle // This function calls 'abort' if ENCODING is invalid or refers to a 281*9712c20fSFrederick Mayle // base address this reader hasn't been given, so you should check 282*9712c20fSFrederick Mayle // with ValidEncoding and UsableEncoding first if you would rather 283*9712c20fSFrederick Mayle // die in a more helpful way. 284*9712c20fSFrederick Mayle uint64_t ReadEncodedPointer(const uint8_t* buffer, 285*9712c20fSFrederick Mayle DwarfPointerEncoding encoding, 286*9712c20fSFrederick Mayle size_t* len) const; 287*9712c20fSFrederick Mayle 288*9712c20fSFrederick Mayle Endianness GetEndianness() const; 289*9712c20fSFrederick Mayle private: 290*9712c20fSFrederick Mayle 291*9712c20fSFrederick Mayle // Function pointer type for our address and offset readers. 292*9712c20fSFrederick Mayle typedef uint64_t (ByteReader::*AddressReader)(const uint8_t*) const; 293*9712c20fSFrederick Mayle 294*9712c20fSFrederick Mayle // Read an offset from BUFFER and return it as an unsigned 64 bit 295*9712c20fSFrederick Mayle // integer. DWARF2/3 define offsets as either 4 or 8 bytes, 296*9712c20fSFrederick Mayle // generally depending on the amount of DWARF2/3 info present. 297*9712c20fSFrederick Mayle // This function pointer gets set by SetOffsetSize. 298*9712c20fSFrederick Mayle AddressReader offset_reader_; 299*9712c20fSFrederick Mayle 300*9712c20fSFrederick Mayle // Read an address from BUFFER and return it as an unsigned 64 bit 301*9712c20fSFrederick Mayle // integer. DWARF2/3 allow addresses to be any size from 0-255 302*9712c20fSFrederick Mayle // bytes currently. Internally we support 4 and 8 byte addresses, 303*9712c20fSFrederick Mayle // and will CHECK on anything else. 304*9712c20fSFrederick Mayle // This function pointer gets set by SetAddressSize. 305*9712c20fSFrederick Mayle AddressReader address_reader_; 306*9712c20fSFrederick Mayle 307*9712c20fSFrederick Mayle Endianness endian_; 308*9712c20fSFrederick Mayle uint8_t address_size_; 309*9712c20fSFrederick Mayle uint8_t offset_size_; 310*9712c20fSFrederick Mayle 311*9712c20fSFrederick Mayle // Base addresses for Linux C++ exception handling data's encoded pointers. 312*9712c20fSFrederick Mayle bool have_section_base_, have_text_base_, have_data_base_; 313*9712c20fSFrederick Mayle bool have_function_base_; 314*9712c20fSFrederick Mayle uint64_t section_base_, text_base_, data_base_, function_base_; 315*9712c20fSFrederick Mayle const uint8_t* buffer_base_; 316*9712c20fSFrederick Mayle }; 317*9712c20fSFrederick Mayle 318*9712c20fSFrederick Mayle } // namespace google_breakpad 319*9712c20fSFrederick Mayle 320*9712c20fSFrederick Mayle #endif // COMMON_DWARF_BYTEREADER_H__ 321