xref: /aosp_15_r20/external/google-breakpad/src/common/dwarf/bytereader.h (revision 9712c20fc9bbfbac4935993a2ca0b3958c5adad2)
1*9712c20fSFrederick Mayle // -*- mode: C++ -*-
2*9712c20fSFrederick Mayle 
3*9712c20fSFrederick Mayle // Copyright 2010 Google LLC
4*9712c20fSFrederick Mayle //
5*9712c20fSFrederick Mayle // Redistribution and use in source and binary forms, with or without
6*9712c20fSFrederick Mayle // modification, are permitted provided that the following conditions are
7*9712c20fSFrederick Mayle // met:
8*9712c20fSFrederick Mayle //
9*9712c20fSFrederick Mayle //     * Redistributions of source code must retain the above copyright
10*9712c20fSFrederick Mayle // notice, this list of conditions and the following disclaimer.
11*9712c20fSFrederick Mayle //     * Redistributions in binary form must reproduce the above
12*9712c20fSFrederick Mayle // copyright notice, this list of conditions and the following disclaimer
13*9712c20fSFrederick Mayle // in the documentation and/or other materials provided with the
14*9712c20fSFrederick Mayle // distribution.
15*9712c20fSFrederick Mayle //     * Neither the name of Google LLC nor the names of its
16*9712c20fSFrederick Mayle // contributors may be used to endorse or promote products derived from
17*9712c20fSFrederick Mayle // this software without specific prior written permission.
18*9712c20fSFrederick Mayle //
19*9712c20fSFrederick Mayle // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20*9712c20fSFrederick Mayle // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21*9712c20fSFrederick Mayle // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22*9712c20fSFrederick Mayle // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23*9712c20fSFrederick Mayle // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24*9712c20fSFrederick Mayle // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25*9712c20fSFrederick Mayle // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26*9712c20fSFrederick Mayle // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27*9712c20fSFrederick Mayle // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28*9712c20fSFrederick Mayle // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29*9712c20fSFrederick Mayle // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30*9712c20fSFrederick Mayle 
31*9712c20fSFrederick Mayle #ifndef COMMON_DWARF_BYTEREADER_H__
32*9712c20fSFrederick Mayle #define COMMON_DWARF_BYTEREADER_H__
33*9712c20fSFrederick Mayle 
34*9712c20fSFrederick Mayle #include <stdint.h>
35*9712c20fSFrederick Mayle 
36*9712c20fSFrederick Mayle #include <string>
37*9712c20fSFrederick Mayle 
38*9712c20fSFrederick Mayle #include "common/dwarf/types.h"
39*9712c20fSFrederick Mayle #include "common/dwarf/dwarf2enums.h"
40*9712c20fSFrederick Mayle 
41*9712c20fSFrederick Mayle namespace google_breakpad {
42*9712c20fSFrederick Mayle 
43*9712c20fSFrederick Mayle // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN
44*9712c20fSFrederick Mayle // because it conflicts with a macro
45*9712c20fSFrederick Mayle enum Endianness {
46*9712c20fSFrederick Mayle   ENDIANNESS_BIG,
47*9712c20fSFrederick Mayle   ENDIANNESS_LITTLE
48*9712c20fSFrederick Mayle };
49*9712c20fSFrederick Mayle 
50*9712c20fSFrederick Mayle // A ByteReader knows how to read single- and multi-byte values of
51*9712c20fSFrederick Mayle // various endiannesses, sizes, and encodings, as used in DWARF
52*9712c20fSFrederick Mayle // debugging information and Linux C++ exception handling data.
53*9712c20fSFrederick Mayle class ByteReader {
54*9712c20fSFrederick Mayle  public:
55*9712c20fSFrederick Mayle   // Construct a ByteReader capable of reading one-, two-, four-, and
56*9712c20fSFrederick Mayle   // eight-byte values according to ENDIANNESS, absolute machine-sized
57*9712c20fSFrederick Mayle   // addresses, DWARF-style "initial length" values, signed and
58*9712c20fSFrederick Mayle   // unsigned LEB128 numbers, and Linux C++ exception handling data's
59*9712c20fSFrederick Mayle   // encoded pointers.
60*9712c20fSFrederick Mayle   explicit ByteReader(enum Endianness endianness);
61*9712c20fSFrederick Mayle   virtual ~ByteReader();
62*9712c20fSFrederick Mayle 
63*9712c20fSFrederick Mayle   // Read a single byte from BUFFER and return it as an unsigned 8 bit
64*9712c20fSFrederick Mayle   // number.
65*9712c20fSFrederick Mayle   uint8_t ReadOneByte(const uint8_t* buffer) const;
66*9712c20fSFrederick Mayle 
67*9712c20fSFrederick Mayle   // Read two bytes from BUFFER and return them as an unsigned 16 bit
68*9712c20fSFrederick Mayle   // number, using this ByteReader's endianness.
69*9712c20fSFrederick Mayle   uint16_t ReadTwoBytes(const uint8_t* buffer) const;
70*9712c20fSFrederick Mayle 
71*9712c20fSFrederick Mayle   // Read three bytes from BUFFER and return them as an unsigned 64 bit
72*9712c20fSFrederick Mayle   // number, using this ByteReader's endianness. DWARF 5 uses this encoding
73*9712c20fSFrederick Mayle   // for various index-related DW_FORMs.
74*9712c20fSFrederick Mayle   uint64_t ReadThreeBytes(const uint8_t* buffer) const;
75*9712c20fSFrederick Mayle 
76*9712c20fSFrederick Mayle   // Read four bytes from BUFFER and return them as an unsigned 32 bit
77*9712c20fSFrederick Mayle   // number, using this ByteReader's endianness. This function returns
78*9712c20fSFrederick Mayle   // a uint64_t so that it is compatible with ReadAddress and
79*9712c20fSFrederick Mayle   // ReadOffset. The number it returns will never be outside the range
80*9712c20fSFrederick Mayle   // of an unsigned 32 bit integer.
81*9712c20fSFrederick Mayle   uint64_t ReadFourBytes(const uint8_t* buffer) const;
82*9712c20fSFrederick Mayle 
83*9712c20fSFrederick Mayle   // Read eight bytes from BUFFER and return them as an unsigned 64
84*9712c20fSFrederick Mayle   // bit number, using this ByteReader's endianness.
85*9712c20fSFrederick Mayle   uint64_t ReadEightBytes(const uint8_t* buffer) const;
86*9712c20fSFrederick Mayle 
87*9712c20fSFrederick Mayle   // Read an unsigned LEB128 (Little Endian Base 128) number from
88*9712c20fSFrederick Mayle   // BUFFER and return it as an unsigned 64 bit integer. Set LEN to
89*9712c20fSFrederick Mayle   // the number of bytes read.
90*9712c20fSFrederick Mayle   //
91*9712c20fSFrederick Mayle   // The unsigned LEB128 representation of an integer N is a variable
92*9712c20fSFrederick Mayle   // number of bytes:
93*9712c20fSFrederick Mayle   //
94*9712c20fSFrederick Mayle   // - If N is between 0 and 0x7f, then its unsigned LEB128
95*9712c20fSFrederick Mayle   //   representation is a single byte whose value is N.
96*9712c20fSFrederick Mayle   //
97*9712c20fSFrederick Mayle   // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
98*9712c20fSFrederick Mayle   //   0x80, followed by the unsigned LEB128 representation of N /
99*9712c20fSFrederick Mayle   //   128, rounded towards negative infinity.
100*9712c20fSFrederick Mayle   //
101*9712c20fSFrederick Mayle   // In other words, we break VALUE into groups of seven bits, put
102*9712c20fSFrederick Mayle   // them in little-endian order, and then write them as eight-bit
103*9712c20fSFrederick Mayle   // bytes with the high bit on all but the last.
104*9712c20fSFrederick Mayle   uint64_t ReadUnsignedLEB128(const uint8_t* buffer, size_t* len) const;
105*9712c20fSFrederick Mayle 
106*9712c20fSFrederick Mayle   // Read a signed LEB128 number from BUFFER and return it as an
107*9712c20fSFrederick Mayle   // signed 64 bit integer. Set LEN to the number of bytes read.
108*9712c20fSFrederick Mayle   //
109*9712c20fSFrederick Mayle   // The signed LEB128 representation of an integer N is a variable
110*9712c20fSFrederick Mayle   // number of bytes:
111*9712c20fSFrederick Mayle   //
112*9712c20fSFrederick Mayle   // - If N is between -0x40 and 0x3f, then its signed LEB128
113*9712c20fSFrederick Mayle   //   representation is a single byte whose value is N in two's
114*9712c20fSFrederick Mayle   //   complement.
115*9712c20fSFrederick Mayle   //
116*9712c20fSFrederick Mayle   // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
117*9712c20fSFrederick Mayle   //   0x80, followed by the signed LEB128 representation of N / 128,
118*9712c20fSFrederick Mayle   //   rounded towards negative infinity.
119*9712c20fSFrederick Mayle   //
120*9712c20fSFrederick Mayle   // In other words, we break VALUE into groups of seven bits, put
121*9712c20fSFrederick Mayle   // them in little-endian order, and then write them as eight-bit
122*9712c20fSFrederick Mayle   // bytes with the high bit on all but the last.
123*9712c20fSFrederick Mayle   int64_t ReadSignedLEB128(const uint8_t* buffer, size_t* len) const;
124*9712c20fSFrederick Mayle 
125*9712c20fSFrederick Mayle   // Indicate that addresses on this architecture are SIZE bytes long. SIZE
126*9712c20fSFrederick Mayle   // must be either 4 or 8. (DWARF allows addresses to be any number of
127*9712c20fSFrederick Mayle   // bytes in length from 1 to 255, but we only support 32- and 64-bit
128*9712c20fSFrederick Mayle   // addresses at the moment.) You must call this before using the
129*9712c20fSFrederick Mayle   // ReadAddress member function.
130*9712c20fSFrederick Mayle   //
131*9712c20fSFrederick Mayle   // For data in a .debug_info section, or something that .debug_info
132*9712c20fSFrederick Mayle   // refers to like line number or macro data, the compilation unit
133*9712c20fSFrederick Mayle   // header's address_size field indicates the address size to use. Call
134*9712c20fSFrederick Mayle   // frame information doesn't indicate its address size (a shortcoming of
135*9712c20fSFrederick Mayle   // the spec); you must supply the appropriate size based on the
136*9712c20fSFrederick Mayle   // architecture of the target machine.
137*9712c20fSFrederick Mayle   void SetAddressSize(uint8_t size);
138*9712c20fSFrederick Mayle 
139*9712c20fSFrederick Mayle   // Return the current address size, in bytes. This is either 4,
140*9712c20fSFrederick Mayle   // indicating 32-bit addresses, or 8, indicating 64-bit addresses.
AddressSize()141*9712c20fSFrederick Mayle   uint8_t AddressSize() const { return address_size_; }
142*9712c20fSFrederick Mayle 
143*9712c20fSFrederick Mayle   // Read an address from BUFFER and return it as an unsigned 64 bit
144*9712c20fSFrederick Mayle   // integer, respecting this ByteReader's endianness and address size. You
145*9712c20fSFrederick Mayle   // must call SetAddressSize before calling this function.
146*9712c20fSFrederick Mayle   uint64_t ReadAddress(const uint8_t* buffer) const;
147*9712c20fSFrederick Mayle 
148*9712c20fSFrederick Mayle   // DWARF actually defines two slightly different formats: 32-bit DWARF
149*9712c20fSFrederick Mayle   // and 64-bit DWARF. This is *not* related to the size of registers or
150*9712c20fSFrederick Mayle   // addresses on the target machine; it refers only to the size of section
151*9712c20fSFrederick Mayle   // offsets and data lengths appearing in the DWARF data. One only needs
152*9712c20fSFrederick Mayle   // 64-bit DWARF when the debugging data itself is larger than 4GiB.
153*9712c20fSFrederick Mayle   // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the
154*9712c20fSFrederick Mayle   // debugging data itself is very large.
155*9712c20fSFrederick Mayle   //
156*9712c20fSFrederick Mayle   // DWARF information identifies itself as 32-bit or 64-bit DWARF: each
157*9712c20fSFrederick Mayle   // compilation unit and call frame information entry begins with an
158*9712c20fSFrederick Mayle   // "initial length" field, which, in addition to giving the length of the
159*9712c20fSFrederick Mayle   // data, also indicates the size of section offsets and lengths appearing
160*9712c20fSFrederick Mayle   // in that data. The ReadInitialLength member function, below, reads an
161*9712c20fSFrederick Mayle   // initial length and sets the ByteReader's offset size as a side effect.
162*9712c20fSFrederick Mayle   // Thus, in the normal process of reading DWARF data, the appropriate
163*9712c20fSFrederick Mayle   // offset size is set automatically. So, you should only need to call
164*9712c20fSFrederick Mayle   // SetOffsetSize if you are using the same ByteReader to jump from the
165*9712c20fSFrederick Mayle   // midst of one block of DWARF data into another.
166*9712c20fSFrederick Mayle 
167*9712c20fSFrederick Mayle   // Read a DWARF "initial length" field from START, and return it as
168*9712c20fSFrederick Mayle   // an unsigned 64 bit integer, respecting this ByteReader's
169*9712c20fSFrederick Mayle   // endianness. Set *LEN to the length of the initial length in
170*9712c20fSFrederick Mayle   // bytes, either four or twelve. As a side effect, set this
171*9712c20fSFrederick Mayle   // ByteReader's offset size to either 4 (if we see a 32-bit DWARF
172*9712c20fSFrederick Mayle   // initial length) or 8 (if we see a 64-bit DWARF initial length).
173*9712c20fSFrederick Mayle   //
174*9712c20fSFrederick Mayle   // A DWARF initial length is either:
175*9712c20fSFrederick Mayle   //
176*9712c20fSFrederick Mayle   // - a byte count stored as an unsigned 32-bit value less than
177*9712c20fSFrederick Mayle   //   0xffffff00, indicating that the data whose length is being
178*9712c20fSFrederick Mayle   //   measured uses the 32-bit DWARF format, or
179*9712c20fSFrederick Mayle   //
180*9712c20fSFrederick Mayle   // - The 32-bit value 0xffffffff, followed by a 64-bit byte count,
181*9712c20fSFrederick Mayle   //   indicating that the data whose length is being measured uses
182*9712c20fSFrederick Mayle   //   the 64-bit DWARF format.
183*9712c20fSFrederick Mayle   uint64_t ReadInitialLength(const uint8_t* start, size_t* len);
184*9712c20fSFrederick Mayle 
185*9712c20fSFrederick Mayle   // Read an offset from BUFFER and return it as an unsigned 64 bit
186*9712c20fSFrederick Mayle   // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the
187*9712c20fSFrederick Mayle   // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes
188*9712c20fSFrederick Mayle   // long. You must call ReadInitialLength or SetOffsetSize before calling
189*9712c20fSFrederick Mayle   // this function; see the comments above for details.
190*9712c20fSFrederick Mayle   uint64_t ReadOffset(const uint8_t* buffer) const;
191*9712c20fSFrederick Mayle 
192*9712c20fSFrederick Mayle   // Return the current offset size, in bytes.
193*9712c20fSFrederick Mayle   // A return value of 4 indicates that we are reading 32-bit DWARF.
194*9712c20fSFrederick Mayle   // A return value of 8 indicates that we are reading 64-bit DWARF.
OffsetSize()195*9712c20fSFrederick Mayle   uint8_t OffsetSize() const { return offset_size_; }
196*9712c20fSFrederick Mayle 
197*9712c20fSFrederick Mayle   // Indicate that section offsets and lengths are SIZE bytes long. SIZE
198*9712c20fSFrederick Mayle   // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF).
199*9712c20fSFrederick Mayle   // Usually, you should not call this function yourself; instead, let a
200*9712c20fSFrederick Mayle   // call to ReadInitialLength establish the data's offset size
201*9712c20fSFrederick Mayle   // automatically.
202*9712c20fSFrederick Mayle   void SetOffsetSize(uint8_t size);
203*9712c20fSFrederick Mayle 
204*9712c20fSFrederick Mayle   // The Linux C++ ABI uses a variant of DWARF call frame information
205*9712c20fSFrederick Mayle   // for exception handling. This data is included in the program's
206*9712c20fSFrederick Mayle   // address space as the ".eh_frame" section, and intepreted at
207*9712c20fSFrederick Mayle   // runtime to walk the stack, find exception handlers, and run
208*9712c20fSFrederick Mayle   // cleanup code. The format is mostly the same as DWARF CFI, with
209*9712c20fSFrederick Mayle   // some adjustments made to provide the additional
210*9712c20fSFrederick Mayle   // exception-handling data, and to make the data easier to work with
211*9712c20fSFrederick Mayle   // in memory --- for example, to allow it to be placed in read-only
212*9712c20fSFrederick Mayle   // memory even when describing position-independent code.
213*9712c20fSFrederick Mayle   //
214*9712c20fSFrederick Mayle   // In particular, exception handling data can select a number of
215*9712c20fSFrederick Mayle   // different encodings for pointers that appear in the data, as
216*9712c20fSFrederick Mayle   // described by the DwarfPointerEncoding enum. There are actually
217*9712c20fSFrederick Mayle   // four axes(!) to the encoding:
218*9712c20fSFrederick Mayle   //
219*9712c20fSFrederick Mayle   // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use
220*9712c20fSFrederick Mayle   //   the DWARF LEB128 encoding.
221*9712c20fSFrederick Mayle   //
222*9712c20fSFrederick Mayle   // - The pointer's signedness: pointers can be signed or unsigned.
223*9712c20fSFrederick Mayle   //
224*9712c20fSFrederick Mayle   // - The pointer's base address: the data stored in the exception
225*9712c20fSFrederick Mayle   //   handling data can be the actual address (that is, an absolute
226*9712c20fSFrederick Mayle   //   pointer), or relative to one of a number of different base
227*9712c20fSFrederick Mayle   //   addreses --- including that of the encoded pointer itself, for
228*9712c20fSFrederick Mayle   //   a form of "pc-relative" addressing.
229*9712c20fSFrederick Mayle   //
230*9712c20fSFrederick Mayle   // - The pointer may be indirect: it may be the address where the
231*9712c20fSFrederick Mayle   //   true pointer is stored. (This is used to refer to things via
232*9712c20fSFrederick Mayle   //   global offset table entries, program linkage table entries, or
233*9712c20fSFrederick Mayle   //   other tricks used in position-independent code.)
234*9712c20fSFrederick Mayle   //
235*9712c20fSFrederick Mayle   // There are also two options that fall outside that matrix
236*9712c20fSFrederick Mayle   // altogether: the pointer may be omitted, or it may have padding to
237*9712c20fSFrederick Mayle   // align it on an appropriate address boundary. (That last option
238*9712c20fSFrederick Mayle   // may seem like it should be just another axis, but it is not.)
239*9712c20fSFrederick Mayle 
240*9712c20fSFrederick Mayle   // Indicate that the exception handling data is loaded starting at
241*9712c20fSFrederick Mayle   // SECTION_BASE, and that the start of its buffer in our own memory
242*9712c20fSFrederick Mayle   // is BUFFER_BASE. This allows us to find the address that a given
243*9712c20fSFrederick Mayle   // byte in our buffer would have when loaded into the program the
244*9712c20fSFrederick Mayle   // data describes. We need this to resolve DW_EH_PE_pcrel pointers.
245*9712c20fSFrederick Mayle   void SetCFIDataBase(uint64_t section_base, const uint8_t* buffer_base);
246*9712c20fSFrederick Mayle 
247*9712c20fSFrederick Mayle   // Indicate that the base address of the program's ".text" section
248*9712c20fSFrederick Mayle   // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers.
249*9712c20fSFrederick Mayle   void SetTextBase(uint64_t text_base);
250*9712c20fSFrederick Mayle 
251*9712c20fSFrederick Mayle   // Indicate that the base address for DW_EH_PE_datarel pointers is
252*9712c20fSFrederick Mayle   // DATA_BASE. The proper value depends on the ABI; it is usually the
253*9712c20fSFrederick Mayle   // address of the global offset table, held in a designated register in
254*9712c20fSFrederick Mayle   // position-independent code. You will need to look at the startup code
255*9712c20fSFrederick Mayle   // for the target system to be sure. I tried; my eyes bled.
256*9712c20fSFrederick Mayle   void SetDataBase(uint64_t data_base);
257*9712c20fSFrederick Mayle 
258*9712c20fSFrederick Mayle   // Indicate that the base address for the FDE we are processing is
259*9712c20fSFrederick Mayle   // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel
260*9712c20fSFrederick Mayle   // pointers. (This encoding does not seem to be used by the GNU
261*9712c20fSFrederick Mayle   // toolchain.)
262*9712c20fSFrederick Mayle   void SetFunctionBase(uint64_t function_base);
263*9712c20fSFrederick Mayle 
264*9712c20fSFrederick Mayle   // Indicate that we are no longer processing any FDE, so any use of
265*9712c20fSFrederick Mayle   // a DW_EH_PE_funcrel encoding is an error.
266*9712c20fSFrederick Mayle   void ClearFunctionBase();
267*9712c20fSFrederick Mayle 
268*9712c20fSFrederick Mayle   // Return true if ENCODING is a valid pointer encoding.
269*9712c20fSFrederick Mayle   bool ValidEncoding(DwarfPointerEncoding encoding) const;
270*9712c20fSFrederick Mayle 
271*9712c20fSFrederick Mayle   // Return true if we have all the information we need to read a
272*9712c20fSFrederick Mayle   // pointer that uses ENCODING. This checks that the appropriate
273*9712c20fSFrederick Mayle   // SetFooBase function for ENCODING has been called.
274*9712c20fSFrederick Mayle   bool UsableEncoding(DwarfPointerEncoding encoding) const;
275*9712c20fSFrederick Mayle 
276*9712c20fSFrederick Mayle   // Read an encoded pointer from BUFFER using ENCODING; return the
277*9712c20fSFrederick Mayle   // absolute address it represents, and set *LEN to the pointer's
278*9712c20fSFrederick Mayle   // length in bytes, including any padding for aligned pointers.
279*9712c20fSFrederick Mayle   //
280*9712c20fSFrederick Mayle   // This function calls 'abort' if ENCODING is invalid or refers to a
281*9712c20fSFrederick Mayle   // base address this reader hasn't been given, so you should check
282*9712c20fSFrederick Mayle   // with ValidEncoding and UsableEncoding first if you would rather
283*9712c20fSFrederick Mayle   // die in a more helpful way.
284*9712c20fSFrederick Mayle   uint64_t ReadEncodedPointer(const uint8_t* buffer,
285*9712c20fSFrederick Mayle                             DwarfPointerEncoding encoding,
286*9712c20fSFrederick Mayle                             size_t* len) const;
287*9712c20fSFrederick Mayle 
288*9712c20fSFrederick Mayle   Endianness GetEndianness() const;
289*9712c20fSFrederick Mayle  private:
290*9712c20fSFrederick Mayle 
291*9712c20fSFrederick Mayle   // Function pointer type for our address and offset readers.
292*9712c20fSFrederick Mayle   typedef uint64_t (ByteReader::*AddressReader)(const uint8_t*) const;
293*9712c20fSFrederick Mayle 
294*9712c20fSFrederick Mayle   // Read an offset from BUFFER and return it as an unsigned 64 bit
295*9712c20fSFrederick Mayle   // integer.  DWARF2/3 define offsets as either 4 or 8 bytes,
296*9712c20fSFrederick Mayle   // generally depending on the amount of DWARF2/3 info present.
297*9712c20fSFrederick Mayle   // This function pointer gets set by SetOffsetSize.
298*9712c20fSFrederick Mayle   AddressReader offset_reader_;
299*9712c20fSFrederick Mayle 
300*9712c20fSFrederick Mayle   // Read an address from BUFFER and return it as an unsigned 64 bit
301*9712c20fSFrederick Mayle   // integer.  DWARF2/3 allow addresses to be any size from 0-255
302*9712c20fSFrederick Mayle   // bytes currently.  Internally we support 4 and 8 byte addresses,
303*9712c20fSFrederick Mayle   // and will CHECK on anything else.
304*9712c20fSFrederick Mayle   // This function pointer gets set by SetAddressSize.
305*9712c20fSFrederick Mayle   AddressReader address_reader_;
306*9712c20fSFrederick Mayle 
307*9712c20fSFrederick Mayle   Endianness endian_;
308*9712c20fSFrederick Mayle   uint8_t address_size_;
309*9712c20fSFrederick Mayle   uint8_t offset_size_;
310*9712c20fSFrederick Mayle 
311*9712c20fSFrederick Mayle   // Base addresses for Linux C++ exception handling data's encoded pointers.
312*9712c20fSFrederick Mayle   bool have_section_base_, have_text_base_, have_data_base_;
313*9712c20fSFrederick Mayle   bool have_function_base_;
314*9712c20fSFrederick Mayle   uint64_t section_base_, text_base_, data_base_, function_base_;
315*9712c20fSFrederick Mayle   const uint8_t* buffer_base_;
316*9712c20fSFrederick Mayle };
317*9712c20fSFrederick Mayle 
318*9712c20fSFrederick Mayle }  // namespace google_breakpad
319*9712c20fSFrederick Mayle 
320*9712c20fSFrederick Mayle #endif  // COMMON_DWARF_BYTEREADER_H__
321