1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)s_log1p.c 1.3 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* double ieee_log1p(double x) 15*1e651e1eSRoland Levillain * 16*1e651e1eSRoland Levillain * Method : 17*1e651e1eSRoland Levillain * 1. Argument Reduction: find k and f such that 18*1e651e1eSRoland Levillain * 1+x = 2^k * (1+f), 19*1e651e1eSRoland Levillain * where ieee_sqrt(2)/2 < 1+f < ieee_sqrt(2) . 20*1e651e1eSRoland Levillain * 21*1e651e1eSRoland Levillain * Note. If k=0, then f=x is exact. However, if k!=0, then f 22*1e651e1eSRoland Levillain * may not be representable exactly. In that case, a correction 23*1e651e1eSRoland Levillain * term is need. Let u=1+x rounded. Let c = (1+x)-u, then 24*1e651e1eSRoland Levillain * log(1+x) - ieee_log(u) ~ c/u. Thus, we proceed to compute ieee_log(u), 25*1e651e1eSRoland Levillain * and add back the correction term c/u. 26*1e651e1eSRoland Levillain * (Note: when x > 2**53, one can simply return ieee_log(x)) 27*1e651e1eSRoland Levillain * 28*1e651e1eSRoland Levillain * 2. Approximation of ieee_log1p(f). 29*1e651e1eSRoland Levillain * Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s) 30*1e651e1eSRoland Levillain * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 31*1e651e1eSRoland Levillain * = 2s + s*R 32*1e651e1eSRoland Levillain * We use a special Reme algorithm on [0,0.1716] to generate 33*1e651e1eSRoland Levillain * a polynomial of degree 14 to approximate R The maximum error 34*1e651e1eSRoland Levillain * of this polynomial approximation is bounded by 2**-58.45. In 35*1e651e1eSRoland Levillain * other words, 36*1e651e1eSRoland Levillain * 2 4 6 8 10 12 14 37*1e651e1eSRoland Levillain * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s 38*1e651e1eSRoland Levillain * (the values of Lp1 to Lp7 are listed in the program) 39*1e651e1eSRoland Levillain * and 40*1e651e1eSRoland Levillain * | 2 14 | -58.45 41*1e651e1eSRoland Levillain * | Lp1*s +...+Lp7*s - R(z) | <= 2 42*1e651e1eSRoland Levillain * | | 43*1e651e1eSRoland Levillain * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 44*1e651e1eSRoland Levillain * In order to guarantee error in log below 1ulp, we compute log 45*1e651e1eSRoland Levillain * by 46*1e651e1eSRoland Levillain * log1p(f) = f - (hfsq - s*(hfsq+R)). 47*1e651e1eSRoland Levillain * 48*1e651e1eSRoland Levillain * 3. Finally, ieee_log1p(x) = k*ln2 + ieee_log1p(f). 49*1e651e1eSRoland Levillain * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 50*1e651e1eSRoland Levillain * Here ln2 is split into two floating point number: 51*1e651e1eSRoland Levillain * ln2_hi + ln2_lo, 52*1e651e1eSRoland Levillain * where n*ln2_hi is always exact for |n| < 2000. 53*1e651e1eSRoland Levillain * 54*1e651e1eSRoland Levillain * Special cases: 55*1e651e1eSRoland Levillain * log1p(x) is NaN with signal if x < -1 (including -INF) ; 56*1e651e1eSRoland Levillain * log1p(+INF) is +INF; ieee_log1p(-1) is -INF with signal; 57*1e651e1eSRoland Levillain * log1p(NaN) is that NaN with no signal. 58*1e651e1eSRoland Levillain * 59*1e651e1eSRoland Levillain * Accuracy: 60*1e651e1eSRoland Levillain * according to an error analysis, the error is always less than 61*1e651e1eSRoland Levillain * 1 ulp (unit in the last place). 62*1e651e1eSRoland Levillain * 63*1e651e1eSRoland Levillain * Constants: 64*1e651e1eSRoland Levillain * The hexadecimal values are the intended ones for the following 65*1e651e1eSRoland Levillain * constants. The decimal values may be used, provided that the 66*1e651e1eSRoland Levillain * compiler will convert from decimal to binary accurately enough 67*1e651e1eSRoland Levillain * to produce the hexadecimal values shown. 68*1e651e1eSRoland Levillain * 69*1e651e1eSRoland Levillain * Note: Assuming ieee_log() return accurate answer, the following 70*1e651e1eSRoland Levillain * algorithm can be used to compute ieee_log1p(x) to within a few ULP: 71*1e651e1eSRoland Levillain * 72*1e651e1eSRoland Levillain * u = 1+x; 73*1e651e1eSRoland Levillain * if(u==1.0) return x ; else 74*1e651e1eSRoland Levillain * return ieee_log(u)*(x/(u-1.0)); 75*1e651e1eSRoland Levillain * 76*1e651e1eSRoland Levillain * See HP-15C Advanced Functions Handbook, p.193. 77*1e651e1eSRoland Levillain */ 78*1e651e1eSRoland Levillain 79*1e651e1eSRoland Levillain #include "fdlibm.h" 80*1e651e1eSRoland Levillain 81*1e651e1eSRoland Levillain #ifdef __STDC__ 82*1e651e1eSRoland Levillain static const double 83*1e651e1eSRoland Levillain #else 84*1e651e1eSRoland Levillain static double 85*1e651e1eSRoland Levillain #endif 86*1e651e1eSRoland Levillain ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 87*1e651e1eSRoland Levillain ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 88*1e651e1eSRoland Levillain two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 89*1e651e1eSRoland Levillain Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 90*1e651e1eSRoland Levillain Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 91*1e651e1eSRoland Levillain Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 92*1e651e1eSRoland Levillain Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 93*1e651e1eSRoland Levillain Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 94*1e651e1eSRoland Levillain Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 95*1e651e1eSRoland Levillain Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 96*1e651e1eSRoland Levillain 97*1e651e1eSRoland Levillain static double zero = 0.0; 98*1e651e1eSRoland Levillain 99*1e651e1eSRoland Levillain #ifdef __STDC__ ieee_log1p(double x)100*1e651e1eSRoland Levillain double ieee_log1p(double x) 101*1e651e1eSRoland Levillain #else 102*1e651e1eSRoland Levillain double ieee_log1p(x) 103*1e651e1eSRoland Levillain double x; 104*1e651e1eSRoland Levillain #endif 105*1e651e1eSRoland Levillain { 106*1e651e1eSRoland Levillain double hfsq,f,c,s,z,R,u; 107*1e651e1eSRoland Levillain int k,hx,hu,ax; 108*1e651e1eSRoland Levillain 109*1e651e1eSRoland Levillain hx = __HI(x); /* high word of x */ 110*1e651e1eSRoland Levillain ax = hx&0x7fffffff; 111*1e651e1eSRoland Levillain 112*1e651e1eSRoland Levillain k = 1; 113*1e651e1eSRoland Levillain if (hx < 0x3FDA827A) { /* x < 0.41422 */ 114*1e651e1eSRoland Levillain if(ax>=0x3ff00000) { /* x <= -1.0 */ 115*1e651e1eSRoland Levillain if(x==-1.0) return -two54/zero; /* ieee_log1p(-1)=+inf */ 116*1e651e1eSRoland Levillain else return (x-x)/(x-x); /* ieee_log1p(x<-1)=NaN */ 117*1e651e1eSRoland Levillain } 118*1e651e1eSRoland Levillain if(ax<0x3e200000) { /* |x| < 2**-29 */ 119*1e651e1eSRoland Levillain if(two54+x>zero /* raise inexact */ 120*1e651e1eSRoland Levillain &&ax<0x3c900000) /* |x| < 2**-54 */ 121*1e651e1eSRoland Levillain return x; 122*1e651e1eSRoland Levillain else 123*1e651e1eSRoland Levillain return x - x*x*0.5; 124*1e651e1eSRoland Levillain } 125*1e651e1eSRoland Levillain if(hx>0||hx<=((int)0xbfd2bec3)) { 126*1e651e1eSRoland Levillain k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */ 127*1e651e1eSRoland Levillain } 128*1e651e1eSRoland Levillain if (hx >= 0x7ff00000) return x+x; 129*1e651e1eSRoland Levillain if(k!=0) { 130*1e651e1eSRoland Levillain if(hx<0x43400000) { 131*1e651e1eSRoland Levillain u = 1.0+x; 132*1e651e1eSRoland Levillain hu = __HI(u); /* high word of u */ 133*1e651e1eSRoland Levillain k = (hu>>20)-1023; 134*1e651e1eSRoland Levillain c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ 135*1e651e1eSRoland Levillain c /= u; 136*1e651e1eSRoland Levillain } else { 137*1e651e1eSRoland Levillain u = x; 138*1e651e1eSRoland Levillain hu = __HI(u); /* high word of u */ 139*1e651e1eSRoland Levillain k = (hu>>20)-1023; 140*1e651e1eSRoland Levillain c = 0; 141*1e651e1eSRoland Levillain } 142*1e651e1eSRoland Levillain hu &= 0x000fffff; 143*1e651e1eSRoland Levillain if(hu<0x6a09e) { 144*1e651e1eSRoland Levillain __HI(u) = hu|0x3ff00000; /* normalize u */ 145*1e651e1eSRoland Levillain } else { 146*1e651e1eSRoland Levillain k += 1; 147*1e651e1eSRoland Levillain __HI(u) = hu|0x3fe00000; /* normalize u/2 */ 148*1e651e1eSRoland Levillain hu = (0x00100000-hu)>>2; 149*1e651e1eSRoland Levillain } 150*1e651e1eSRoland Levillain f = u-1.0; 151*1e651e1eSRoland Levillain } 152*1e651e1eSRoland Levillain hfsq=0.5*f*f; 153*1e651e1eSRoland Levillain if(hu==0) { /* |f| < 2**-20 */ 154*1e651e1eSRoland Levillain if(f==zero) if(k==0) return zero; 155*1e651e1eSRoland Levillain else {c += k*ln2_lo; return k*ln2_hi+c;} 156*1e651e1eSRoland Levillain R = hfsq*(1.0-0.66666666666666666*f); 157*1e651e1eSRoland Levillain if(k==0) return f-R; else 158*1e651e1eSRoland Levillain return k*ln2_hi-((R-(k*ln2_lo+c))-f); 159*1e651e1eSRoland Levillain } 160*1e651e1eSRoland Levillain s = f/(2.0+f); 161*1e651e1eSRoland Levillain z = s*s; 162*1e651e1eSRoland Levillain R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); 163*1e651e1eSRoland Levillain if(k==0) return f-(hfsq-s*(hfsq+R)); else 164*1e651e1eSRoland Levillain return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); 165*1e651e1eSRoland Levillain } 166