xref: /aosp_15_r20/external/fdlibm/s_log1p.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)s_log1p.c 1.3 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /* double ieee_log1p(double x)
15*1e651e1eSRoland Levillain  *
16*1e651e1eSRoland Levillain  * Method :
17*1e651e1eSRoland Levillain  *   1. Argument Reduction: find k and f such that
18*1e651e1eSRoland Levillain  *			1+x = 2^k * (1+f),
19*1e651e1eSRoland Levillain  *	   where  ieee_sqrt(2)/2 < 1+f < ieee_sqrt(2) .
20*1e651e1eSRoland Levillain  *
21*1e651e1eSRoland Levillain  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
22*1e651e1eSRoland Levillain  *	may not be representable exactly. In that case, a correction
23*1e651e1eSRoland Levillain  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
24*1e651e1eSRoland Levillain  *	log(1+x) - ieee_log(u) ~ c/u. Thus, we proceed to compute ieee_log(u),
25*1e651e1eSRoland Levillain  *	and add back the correction term c/u.
26*1e651e1eSRoland Levillain  *	(Note: when x > 2**53, one can simply return ieee_log(x))
27*1e651e1eSRoland Levillain  *
28*1e651e1eSRoland Levillain  *   2. Approximation of ieee_log1p(f).
29*1e651e1eSRoland Levillain  *	Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s)
30*1e651e1eSRoland Levillain  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
31*1e651e1eSRoland Levillain  *	     	 = 2s + s*R
32*1e651e1eSRoland Levillain  *      We use a special Reme algorithm on [0,0.1716] to generate
33*1e651e1eSRoland Levillain  * 	a polynomial of degree 14 to approximate R The maximum error
34*1e651e1eSRoland Levillain  *	of this polynomial approximation is bounded by 2**-58.45. In
35*1e651e1eSRoland Levillain  *	other words,
36*1e651e1eSRoland Levillain  *		        2      4      6      8      10      12      14
37*1e651e1eSRoland Levillain  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
38*1e651e1eSRoland Levillain  *  	(the values of Lp1 to Lp7 are listed in the program)
39*1e651e1eSRoland Levillain  *	and
40*1e651e1eSRoland Levillain  *	    |      2          14          |     -58.45
41*1e651e1eSRoland Levillain  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
42*1e651e1eSRoland Levillain  *	    |                             |
43*1e651e1eSRoland Levillain  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
44*1e651e1eSRoland Levillain  *	In order to guarantee error in log below 1ulp, we compute log
45*1e651e1eSRoland Levillain  *	by
46*1e651e1eSRoland Levillain  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
47*1e651e1eSRoland Levillain  *
48*1e651e1eSRoland Levillain  *	3. Finally, ieee_log1p(x) = k*ln2 + ieee_log1p(f).
49*1e651e1eSRoland Levillain  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
50*1e651e1eSRoland Levillain  *	   Here ln2 is split into two floating point number:
51*1e651e1eSRoland Levillain  *			ln2_hi + ln2_lo,
52*1e651e1eSRoland Levillain  *	   where n*ln2_hi is always exact for |n| < 2000.
53*1e651e1eSRoland Levillain  *
54*1e651e1eSRoland Levillain  * Special cases:
55*1e651e1eSRoland Levillain  *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
56*1e651e1eSRoland Levillain  *	log1p(+INF) is +INF; ieee_log1p(-1) is -INF with signal;
57*1e651e1eSRoland Levillain  *	log1p(NaN) is that NaN with no signal.
58*1e651e1eSRoland Levillain  *
59*1e651e1eSRoland Levillain  * Accuracy:
60*1e651e1eSRoland Levillain  *	according to an error analysis, the error is always less than
61*1e651e1eSRoland Levillain  *	1 ulp (unit in the last place).
62*1e651e1eSRoland Levillain  *
63*1e651e1eSRoland Levillain  * Constants:
64*1e651e1eSRoland Levillain  * The hexadecimal values are the intended ones for the following
65*1e651e1eSRoland Levillain  * constants. The decimal values may be used, provided that the
66*1e651e1eSRoland Levillain  * compiler will convert from decimal to binary accurately enough
67*1e651e1eSRoland Levillain  * to produce the hexadecimal values shown.
68*1e651e1eSRoland Levillain  *
69*1e651e1eSRoland Levillain  * Note: Assuming ieee_log() return accurate answer, the following
70*1e651e1eSRoland Levillain  * 	 algorithm can be used to compute ieee_log1p(x) to within a few ULP:
71*1e651e1eSRoland Levillain  *
72*1e651e1eSRoland Levillain  *		u = 1+x;
73*1e651e1eSRoland Levillain  *		if(u==1.0) return x ; else
74*1e651e1eSRoland Levillain  *			   return ieee_log(u)*(x/(u-1.0));
75*1e651e1eSRoland Levillain  *
76*1e651e1eSRoland Levillain  *	 See HP-15C Advanced Functions Handbook, p.193.
77*1e651e1eSRoland Levillain  */
78*1e651e1eSRoland Levillain 
79*1e651e1eSRoland Levillain #include "fdlibm.h"
80*1e651e1eSRoland Levillain 
81*1e651e1eSRoland Levillain #ifdef __STDC__
82*1e651e1eSRoland Levillain static const double
83*1e651e1eSRoland Levillain #else
84*1e651e1eSRoland Levillain static double
85*1e651e1eSRoland Levillain #endif
86*1e651e1eSRoland Levillain ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
87*1e651e1eSRoland Levillain ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
88*1e651e1eSRoland Levillain two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
89*1e651e1eSRoland Levillain Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
90*1e651e1eSRoland Levillain Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
91*1e651e1eSRoland Levillain Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
92*1e651e1eSRoland Levillain Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
93*1e651e1eSRoland Levillain Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
94*1e651e1eSRoland Levillain Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
95*1e651e1eSRoland Levillain Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
96*1e651e1eSRoland Levillain 
97*1e651e1eSRoland Levillain static double zero = 0.0;
98*1e651e1eSRoland Levillain 
99*1e651e1eSRoland Levillain #ifdef __STDC__
ieee_log1p(double x)100*1e651e1eSRoland Levillain 	double ieee_log1p(double x)
101*1e651e1eSRoland Levillain #else
102*1e651e1eSRoland Levillain 	double ieee_log1p(x)
103*1e651e1eSRoland Levillain 	double x;
104*1e651e1eSRoland Levillain #endif
105*1e651e1eSRoland Levillain {
106*1e651e1eSRoland Levillain 	double hfsq,f,c,s,z,R,u;
107*1e651e1eSRoland Levillain 	int k,hx,hu,ax;
108*1e651e1eSRoland Levillain 
109*1e651e1eSRoland Levillain 	hx = __HI(x);		/* high word of x */
110*1e651e1eSRoland Levillain 	ax = hx&0x7fffffff;
111*1e651e1eSRoland Levillain 
112*1e651e1eSRoland Levillain 	k = 1;
113*1e651e1eSRoland Levillain 	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
114*1e651e1eSRoland Levillain 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
115*1e651e1eSRoland Levillain 		if(x==-1.0) return -two54/zero; /* ieee_log1p(-1)=+inf */
116*1e651e1eSRoland Levillain 		else return (x-x)/(x-x);	/* ieee_log1p(x<-1)=NaN */
117*1e651e1eSRoland Levillain 	    }
118*1e651e1eSRoland Levillain 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
119*1e651e1eSRoland Levillain 		if(two54+x>zero			/* raise inexact */
120*1e651e1eSRoland Levillain 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
121*1e651e1eSRoland Levillain 		    return x;
122*1e651e1eSRoland Levillain 		else
123*1e651e1eSRoland Levillain 		    return x - x*x*0.5;
124*1e651e1eSRoland Levillain 	    }
125*1e651e1eSRoland Levillain 	    if(hx>0||hx<=((int)0xbfd2bec3)) {
126*1e651e1eSRoland Levillain 		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
127*1e651e1eSRoland Levillain 	}
128*1e651e1eSRoland Levillain 	if (hx >= 0x7ff00000) return x+x;
129*1e651e1eSRoland Levillain 	if(k!=0) {
130*1e651e1eSRoland Levillain 	    if(hx<0x43400000) {
131*1e651e1eSRoland Levillain 		u  = 1.0+x;
132*1e651e1eSRoland Levillain 	        hu = __HI(u);		/* high word of u */
133*1e651e1eSRoland Levillain 	        k  = (hu>>20)-1023;
134*1e651e1eSRoland Levillain 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
135*1e651e1eSRoland Levillain 		c /= u;
136*1e651e1eSRoland Levillain 	    } else {
137*1e651e1eSRoland Levillain 		u  = x;
138*1e651e1eSRoland Levillain 	        hu = __HI(u);		/* high word of u */
139*1e651e1eSRoland Levillain 	        k  = (hu>>20)-1023;
140*1e651e1eSRoland Levillain 		c  = 0;
141*1e651e1eSRoland Levillain 	    }
142*1e651e1eSRoland Levillain 	    hu &= 0x000fffff;
143*1e651e1eSRoland Levillain 	    if(hu<0x6a09e) {
144*1e651e1eSRoland Levillain 	        __HI(u) = hu|0x3ff00000;	/* normalize u */
145*1e651e1eSRoland Levillain 	    } else {
146*1e651e1eSRoland Levillain 	        k += 1;
147*1e651e1eSRoland Levillain 	        __HI(u) = hu|0x3fe00000;	/* normalize u/2 */
148*1e651e1eSRoland Levillain 	        hu = (0x00100000-hu)>>2;
149*1e651e1eSRoland Levillain 	    }
150*1e651e1eSRoland Levillain 	    f = u-1.0;
151*1e651e1eSRoland Levillain 	}
152*1e651e1eSRoland Levillain 	hfsq=0.5*f*f;
153*1e651e1eSRoland Levillain 	if(hu==0) {	/* |f| < 2**-20 */
154*1e651e1eSRoland Levillain 	    if(f==zero) if(k==0) return zero;
155*1e651e1eSRoland Levillain 			else {c += k*ln2_lo; return k*ln2_hi+c;}
156*1e651e1eSRoland Levillain 	    R = hfsq*(1.0-0.66666666666666666*f);
157*1e651e1eSRoland Levillain 	    if(k==0) return f-R; else
158*1e651e1eSRoland Levillain 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
159*1e651e1eSRoland Levillain 	}
160*1e651e1eSRoland Levillain  	s = f/(2.0+f);
161*1e651e1eSRoland Levillain 	z = s*s;
162*1e651e1eSRoland Levillain 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
163*1e651e1eSRoland Levillain 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
164*1e651e1eSRoland Levillain 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
165*1e651e1eSRoland Levillain }
166