1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)s_erf.c 1.3 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* double ieee_erf(double x) 15*1e651e1eSRoland Levillain * double ieee_erfc(double x) 16*1e651e1eSRoland Levillain * x 17*1e651e1eSRoland Levillain * 2 |\ 18*1e651e1eSRoland Levillain * ieee_erf(x) = --------- | ieee_exp(-t*t)dt 19*1e651e1eSRoland Levillain * ieee_sqrt(pi) \| 20*1e651e1eSRoland Levillain * 0 21*1e651e1eSRoland Levillain * 22*1e651e1eSRoland Levillain * ieee_erfc(x) = 1-ieee_erf(x) 23*1e651e1eSRoland Levillain * Note that 24*1e651e1eSRoland Levillain * erf(-x) = -ieee_erf(x) 25*1e651e1eSRoland Levillain * erfc(-x) = 2 - ieee_erfc(x) 26*1e651e1eSRoland Levillain * 27*1e651e1eSRoland Levillain * Method: 28*1e651e1eSRoland Levillain * 1. For |x| in [0, 0.84375] 29*1e651e1eSRoland Levillain * ieee_erf(x) = x + x*R(x^2) 30*1e651e1eSRoland Levillain * ieee_erfc(x) = 1 - ieee_erf(x) if x in [-.84375,0.25] 31*1e651e1eSRoland Levillain * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] 32*1e651e1eSRoland Levillain * where R = P/Q where P is an odd poly of degree 8 and 33*1e651e1eSRoland Levillain * Q is an odd poly of degree 10. 34*1e651e1eSRoland Levillain * -57.90 35*1e651e1eSRoland Levillain * | R - (ieee_erf(x)-x)/x | <= 2 36*1e651e1eSRoland Levillain * 37*1e651e1eSRoland Levillain * 38*1e651e1eSRoland Levillain * Remark. The formula is derived by noting 39*1e651e1eSRoland Levillain * ieee_erf(x) = (2/ieee_sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 40*1e651e1eSRoland Levillain * and that 41*1e651e1eSRoland Levillain * 2/ieee_sqrt(pi) = 1.128379167095512573896158903121545171688 42*1e651e1eSRoland Levillain * is close to one. The interval is chosen because the fix 43*1e651e1eSRoland Levillain * point of ieee_erf(x) is near 0.6174 (i.e., ieee_erf(x)=x when x is 44*1e651e1eSRoland Levillain * near 0.6174), and by some experiment, 0.84375 is chosen to 45*1e651e1eSRoland Levillain * guarantee the error is less than one ulp for erf. 46*1e651e1eSRoland Levillain * 47*1e651e1eSRoland Levillain * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and 48*1e651e1eSRoland Levillain * c = 0.84506291151 rounded to single (24 bits) 49*1e651e1eSRoland Levillain * erf(x) = sign(x) * (c + P1(s)/Q1(s)) 50*1e651e1eSRoland Levillain * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 51*1e651e1eSRoland Levillain * 1+(c+P1(s)/Q1(s)) if x < 0 52*1e651e1eSRoland Levillain * |P1/Q1 - (ieee_erf(|x|)-c)| <= 2**-59.06 53*1e651e1eSRoland Levillain * Remark: here we use the taylor series expansion at x=1. 54*1e651e1eSRoland Levillain * erf(1+s) = ieee_erf(1) + s*Poly(s) 55*1e651e1eSRoland Levillain * = 0.845.. + P1(s)/Q1(s) 56*1e651e1eSRoland Levillain * That is, we use rational approximation to approximate 57*1e651e1eSRoland Levillain * erf(1+s) - (c = (single)0.84506291151) 58*1e651e1eSRoland Levillain * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] 59*1e651e1eSRoland Levillain * where 60*1e651e1eSRoland Levillain * P1(s) = degree 6 poly in s 61*1e651e1eSRoland Levillain * Q1(s) = degree 6 poly in s 62*1e651e1eSRoland Levillain * 63*1e651e1eSRoland Levillain * 3. For x in [1.25,1/0.35(~2.857143)], 64*1e651e1eSRoland Levillain * erfc(x) = (1/x)*ieee_exp(-x*x-0.5625+R1/S1) 65*1e651e1eSRoland Levillain * erf(x) = 1 - ieee_erfc(x) 66*1e651e1eSRoland Levillain * where 67*1e651e1eSRoland Levillain * R1(z) = degree 7 poly in z, (z=1/x^2) 68*1e651e1eSRoland Levillain * S1(z) = degree 8 poly in z 69*1e651e1eSRoland Levillain * 70*1e651e1eSRoland Levillain * 4. For x in [1/0.35,28] 71*1e651e1eSRoland Levillain * erfc(x) = (1/x)*ieee_exp(-x*x-0.5625+R2/S2) if x > 0 72*1e651e1eSRoland Levillain * = 2.0 - (1/x)*ieee_exp(-x*x-0.5625+R2/S2) if -6<x<0 73*1e651e1eSRoland Levillain * = 2.0 - tiny (if x <= -6) 74*1e651e1eSRoland Levillain * erf(x) = sign(x)*(1.0 - ieee_erfc(x)) if x < 6, else 75*1e651e1eSRoland Levillain * erf(x) = sign(x)*(1.0 - tiny) 76*1e651e1eSRoland Levillain * where 77*1e651e1eSRoland Levillain * R2(z) = degree 6 poly in z, (z=1/x^2) 78*1e651e1eSRoland Levillain * S2(z) = degree 7 poly in z 79*1e651e1eSRoland Levillain * 80*1e651e1eSRoland Levillain * Note1: 81*1e651e1eSRoland Levillain * To compute ieee_exp(-x*x-0.5625+R/S), let s be a single 82*1e651e1eSRoland Levillain * precision number and s := x; then 83*1e651e1eSRoland Levillain * -x*x = -s*s + (s-x)*(s+x) 84*1e651e1eSRoland Levillain * ieee_exp(-x*x-0.5626+R/S) = 85*1e651e1eSRoland Levillain * exp(-s*s-0.5625)*ieee_exp((s-x)*(s+x)+R/S); 86*1e651e1eSRoland Levillain * Note2: 87*1e651e1eSRoland Levillain * Here 4 and 5 make use of the asymptotic series 88*1e651e1eSRoland Levillain * ieee_exp(-x*x) 89*1e651e1eSRoland Levillain * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) 90*1e651e1eSRoland Levillain * x*ieee_sqrt(pi) 91*1e651e1eSRoland Levillain * We use rational approximation to approximate 92*1e651e1eSRoland Levillain * g(s)=f(1/x^2) = ieee_log(ieee_erfc(x)*x) - x*x + 0.5625 93*1e651e1eSRoland Levillain * Here is the error bound for R1/S1 and R2/S2 94*1e651e1eSRoland Levillain * |R1/S1 - f(x)| < 2**(-62.57) 95*1e651e1eSRoland Levillain * |R2/S2 - f(x)| < 2**(-61.52) 96*1e651e1eSRoland Levillain * 97*1e651e1eSRoland Levillain * 5. For inf > x >= 28 98*1e651e1eSRoland Levillain * erf(x) = sign(x) *(1 - tiny) (raise inexact) 99*1e651e1eSRoland Levillain * erfc(x) = tiny*tiny (raise underflow) if x > 0 100*1e651e1eSRoland Levillain * = 2 - tiny if x<0 101*1e651e1eSRoland Levillain * 102*1e651e1eSRoland Levillain * 7. Special case: 103*1e651e1eSRoland Levillain * erf(0) = 0, ieee_erf(inf) = 1, ieee_erf(-inf) = -1, 104*1e651e1eSRoland Levillain * erfc(0) = 1, ieee_erfc(inf) = 0, ieee_erfc(-inf) = 2, 105*1e651e1eSRoland Levillain * erfc/ieee_erf(NaN) is NaN 106*1e651e1eSRoland Levillain */ 107*1e651e1eSRoland Levillain 108*1e651e1eSRoland Levillain 109*1e651e1eSRoland Levillain #include "fdlibm.h" 110*1e651e1eSRoland Levillain 111*1e651e1eSRoland Levillain #ifdef __STDC__ 112*1e651e1eSRoland Levillain static const double 113*1e651e1eSRoland Levillain #else 114*1e651e1eSRoland Levillain static double 115*1e651e1eSRoland Levillain #endif 116*1e651e1eSRoland Levillain tiny = 1e-300, 117*1e651e1eSRoland Levillain half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ 118*1e651e1eSRoland Levillain one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 119*1e651e1eSRoland Levillain two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ 120*1e651e1eSRoland Levillain /* c = (float)0.84506291151 */ 121*1e651e1eSRoland Levillain erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ 122*1e651e1eSRoland Levillain /* 123*1e651e1eSRoland Levillain * Coefficients for approximation to erf on [0,0.84375] 124*1e651e1eSRoland Levillain */ 125*1e651e1eSRoland Levillain efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ 126*1e651e1eSRoland Levillain efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ 127*1e651e1eSRoland Levillain pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ 128*1e651e1eSRoland Levillain pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ 129*1e651e1eSRoland Levillain pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ 130*1e651e1eSRoland Levillain pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ 131*1e651e1eSRoland Levillain pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ 132*1e651e1eSRoland Levillain qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ 133*1e651e1eSRoland Levillain qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ 134*1e651e1eSRoland Levillain qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ 135*1e651e1eSRoland Levillain qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ 136*1e651e1eSRoland Levillain qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ 137*1e651e1eSRoland Levillain /* 138*1e651e1eSRoland Levillain * Coefficients for approximation to erf in [0.84375,1.25] 139*1e651e1eSRoland Levillain */ 140*1e651e1eSRoland Levillain pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ 141*1e651e1eSRoland Levillain pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ 142*1e651e1eSRoland Levillain pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ 143*1e651e1eSRoland Levillain pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ 144*1e651e1eSRoland Levillain pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ 145*1e651e1eSRoland Levillain pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ 146*1e651e1eSRoland Levillain pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ 147*1e651e1eSRoland Levillain qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ 148*1e651e1eSRoland Levillain qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ 149*1e651e1eSRoland Levillain qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ 150*1e651e1eSRoland Levillain qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ 151*1e651e1eSRoland Levillain qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ 152*1e651e1eSRoland Levillain qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ 153*1e651e1eSRoland Levillain /* 154*1e651e1eSRoland Levillain * Coefficients for approximation to erfc in [1.25,1/0.35] 155*1e651e1eSRoland Levillain */ 156*1e651e1eSRoland Levillain ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ 157*1e651e1eSRoland Levillain ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ 158*1e651e1eSRoland Levillain ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ 159*1e651e1eSRoland Levillain ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ 160*1e651e1eSRoland Levillain ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ 161*1e651e1eSRoland Levillain ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ 162*1e651e1eSRoland Levillain ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ 163*1e651e1eSRoland Levillain ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ 164*1e651e1eSRoland Levillain sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ 165*1e651e1eSRoland Levillain sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ 166*1e651e1eSRoland Levillain sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ 167*1e651e1eSRoland Levillain sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ 168*1e651e1eSRoland Levillain sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ 169*1e651e1eSRoland Levillain sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ 170*1e651e1eSRoland Levillain sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ 171*1e651e1eSRoland Levillain sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ 172*1e651e1eSRoland Levillain /* 173*1e651e1eSRoland Levillain * Coefficients for approximation to erfc in [1/.35,28] 174*1e651e1eSRoland Levillain */ 175*1e651e1eSRoland Levillain rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ 176*1e651e1eSRoland Levillain rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ 177*1e651e1eSRoland Levillain rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ 178*1e651e1eSRoland Levillain rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ 179*1e651e1eSRoland Levillain rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ 180*1e651e1eSRoland Levillain rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ 181*1e651e1eSRoland Levillain rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ 182*1e651e1eSRoland Levillain sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ 183*1e651e1eSRoland Levillain sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ 184*1e651e1eSRoland Levillain sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ 185*1e651e1eSRoland Levillain sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ 186*1e651e1eSRoland Levillain sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ 187*1e651e1eSRoland Levillain sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ 188*1e651e1eSRoland Levillain sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ 189*1e651e1eSRoland Levillain 190*1e651e1eSRoland Levillain #ifdef __STDC__ ieee_erf(double x)191*1e651e1eSRoland Levillain double ieee_erf(double x) 192*1e651e1eSRoland Levillain #else 193*1e651e1eSRoland Levillain double ieee_erf(x) 194*1e651e1eSRoland Levillain double x; 195*1e651e1eSRoland Levillain #endif 196*1e651e1eSRoland Levillain { 197*1e651e1eSRoland Levillain int hx,ix,i; 198*1e651e1eSRoland Levillain double R,S,P,Q,s,y,z,r; 199*1e651e1eSRoland Levillain hx = __HI(x); 200*1e651e1eSRoland Levillain ix = hx&0x7fffffff; 201*1e651e1eSRoland Levillain if(ix>=0x7ff00000) { /* ieee_erf(nan)=nan */ 202*1e651e1eSRoland Levillain i = ((unsigned)hx>>31)<<1; 203*1e651e1eSRoland Levillain return (double)(1-i)+one/x; /* ieee_erf(+-inf)=+-1 */ 204*1e651e1eSRoland Levillain } 205*1e651e1eSRoland Levillain 206*1e651e1eSRoland Levillain if(ix < 0x3feb0000) { /* |x|<0.84375 */ 207*1e651e1eSRoland Levillain if(ix < 0x3e300000) { /* |x|<2**-28 */ 208*1e651e1eSRoland Levillain if (ix < 0x00800000) 209*1e651e1eSRoland Levillain return 0.125*(8.0*x+efx8*x); /*avoid underflow */ 210*1e651e1eSRoland Levillain return x + efx*x; 211*1e651e1eSRoland Levillain } 212*1e651e1eSRoland Levillain z = x*x; 213*1e651e1eSRoland Levillain r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 214*1e651e1eSRoland Levillain s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 215*1e651e1eSRoland Levillain y = r/s; 216*1e651e1eSRoland Levillain return x + x*y; 217*1e651e1eSRoland Levillain } 218*1e651e1eSRoland Levillain if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 219*1e651e1eSRoland Levillain s = ieee_fabs(x)-one; 220*1e651e1eSRoland Levillain P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 221*1e651e1eSRoland Levillain Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 222*1e651e1eSRoland Levillain if(hx>=0) return erx + P/Q; else return -erx - P/Q; 223*1e651e1eSRoland Levillain } 224*1e651e1eSRoland Levillain if (ix >= 0x40180000) { /* inf>|x|>=6 */ 225*1e651e1eSRoland Levillain if(hx>=0) return one-tiny; else return tiny-one; 226*1e651e1eSRoland Levillain } 227*1e651e1eSRoland Levillain x = ieee_fabs(x); 228*1e651e1eSRoland Levillain s = one/(x*x); 229*1e651e1eSRoland Levillain if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ 230*1e651e1eSRoland Levillain R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 231*1e651e1eSRoland Levillain ra5+s*(ra6+s*ra7)))))); 232*1e651e1eSRoland Levillain S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 233*1e651e1eSRoland Levillain sa5+s*(sa6+s*(sa7+s*sa8))))))); 234*1e651e1eSRoland Levillain } else { /* |x| >= 1/0.35 */ 235*1e651e1eSRoland Levillain R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 236*1e651e1eSRoland Levillain rb5+s*rb6))))); 237*1e651e1eSRoland Levillain S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 238*1e651e1eSRoland Levillain sb5+s*(sb6+s*sb7)))))); 239*1e651e1eSRoland Levillain } 240*1e651e1eSRoland Levillain z = x; 241*1e651e1eSRoland Levillain __LO(z) = 0; 242*1e651e1eSRoland Levillain r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); 243*1e651e1eSRoland Levillain if(hx>=0) return one-r/x; else return r/x-one; 244*1e651e1eSRoland Levillain } 245*1e651e1eSRoland Levillain 246*1e651e1eSRoland Levillain #ifdef __STDC__ ieee_erfc(double x)247*1e651e1eSRoland Levillain double ieee_erfc(double x) 248*1e651e1eSRoland Levillain #else 249*1e651e1eSRoland Levillain double ieee_erfc(x) 250*1e651e1eSRoland Levillain double x; 251*1e651e1eSRoland Levillain #endif 252*1e651e1eSRoland Levillain { 253*1e651e1eSRoland Levillain int hx,ix; 254*1e651e1eSRoland Levillain double R,S,P,Q,s,y,z,r; 255*1e651e1eSRoland Levillain hx = __HI(x); 256*1e651e1eSRoland Levillain ix = hx&0x7fffffff; 257*1e651e1eSRoland Levillain if(ix>=0x7ff00000) { /* ieee_erfc(nan)=nan */ 258*1e651e1eSRoland Levillain /* ieee_erfc(+-inf)=0,2 */ 259*1e651e1eSRoland Levillain return (double)(((unsigned)hx>>31)<<1)+one/x; 260*1e651e1eSRoland Levillain } 261*1e651e1eSRoland Levillain 262*1e651e1eSRoland Levillain if(ix < 0x3feb0000) { /* |x|<0.84375 */ 263*1e651e1eSRoland Levillain if(ix < 0x3c700000) /* |x|<2**-56 */ 264*1e651e1eSRoland Levillain return one-x; 265*1e651e1eSRoland Levillain z = x*x; 266*1e651e1eSRoland Levillain r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 267*1e651e1eSRoland Levillain s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 268*1e651e1eSRoland Levillain y = r/s; 269*1e651e1eSRoland Levillain if(hx < 0x3fd00000) { /* x<1/4 */ 270*1e651e1eSRoland Levillain return one-(x+x*y); 271*1e651e1eSRoland Levillain } else { 272*1e651e1eSRoland Levillain r = x*y; 273*1e651e1eSRoland Levillain r += (x-half); 274*1e651e1eSRoland Levillain return half - r ; 275*1e651e1eSRoland Levillain } 276*1e651e1eSRoland Levillain } 277*1e651e1eSRoland Levillain if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 278*1e651e1eSRoland Levillain s = ieee_fabs(x)-one; 279*1e651e1eSRoland Levillain P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 280*1e651e1eSRoland Levillain Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 281*1e651e1eSRoland Levillain if(hx>=0) { 282*1e651e1eSRoland Levillain z = one-erx; return z - P/Q; 283*1e651e1eSRoland Levillain } else { 284*1e651e1eSRoland Levillain z = erx+P/Q; return one+z; 285*1e651e1eSRoland Levillain } 286*1e651e1eSRoland Levillain } 287*1e651e1eSRoland Levillain if (ix < 0x403c0000) { /* |x|<28 */ 288*1e651e1eSRoland Levillain x = ieee_fabs(x); 289*1e651e1eSRoland Levillain s = one/(x*x); 290*1e651e1eSRoland Levillain if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ 291*1e651e1eSRoland Levillain R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 292*1e651e1eSRoland Levillain ra5+s*(ra6+s*ra7)))))); 293*1e651e1eSRoland Levillain S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 294*1e651e1eSRoland Levillain sa5+s*(sa6+s*(sa7+s*sa8))))))); 295*1e651e1eSRoland Levillain } else { /* |x| >= 1/.35 ~ 2.857143 */ 296*1e651e1eSRoland Levillain if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ 297*1e651e1eSRoland Levillain R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 298*1e651e1eSRoland Levillain rb5+s*rb6))))); 299*1e651e1eSRoland Levillain S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 300*1e651e1eSRoland Levillain sb5+s*(sb6+s*sb7)))))); 301*1e651e1eSRoland Levillain } 302*1e651e1eSRoland Levillain z = x; 303*1e651e1eSRoland Levillain __LO(z) = 0; 304*1e651e1eSRoland Levillain r = __ieee754_exp(-z*z-0.5625)* 305*1e651e1eSRoland Levillain __ieee754_exp((z-x)*(z+x)+R/S); 306*1e651e1eSRoland Levillain if(hx>0) return r/x; else return two-r/x; 307*1e651e1eSRoland Levillain } else { 308*1e651e1eSRoland Levillain if(hx>0) return tiny*tiny; else return two-tiny; 309*1e651e1eSRoland Levillain } 310*1e651e1eSRoland Levillain } 311