1*1e651e1eSRoland Levillain #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
2*1e651e1eSRoland Levillain
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain * ====================================================
5*1e651e1eSRoland Levillain * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
6*1e651e1eSRoland Levillain *
7*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this
8*1e651e1eSRoland Levillain * software is freely granted, provided that this notice
9*1e651e1eSRoland Levillain * is preserved.
10*1e651e1eSRoland Levillain * ====================================================
11*1e651e1eSRoland Levillain */
12*1e651e1eSRoland Levillain
13*1e651e1eSRoland Levillain /* INDENT OFF */
14*1e651e1eSRoland Levillain /* __kernel_tan( x, y, k )
15*1e651e1eSRoland Levillain * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16*1e651e1eSRoland Levillain * Input x is assumed to be bounded by ~pi/4 in magnitude.
17*1e651e1eSRoland Levillain * Input y is the tail of x.
18*1e651e1eSRoland Levillain * Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) is returned.
19*1e651e1eSRoland Levillain *
20*1e651e1eSRoland Levillain * Algorithm
21*1e651e1eSRoland Levillain * 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
22*1e651e1eSRoland Levillain * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23*1e651e1eSRoland Levillain * 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
24*1e651e1eSRoland Levillain * [0,0.67434]
25*1e651e1eSRoland Levillain * 3 27
26*1e651e1eSRoland Levillain * tan(x) ~ x + T1*x + ... + T13*x
27*1e651e1eSRoland Levillain * where
28*1e651e1eSRoland Levillain *
29*1e651e1eSRoland Levillain * |ieee_tan(x) 2 4 26 | -59.2
30*1e651e1eSRoland Levillain * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
31*1e651e1eSRoland Levillain * | x |
32*1e651e1eSRoland Levillain *
33*1e651e1eSRoland Levillain * Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
34*1e651e1eSRoland Levillain * ~ ieee_tan(x) + (1+x*x)*y
35*1e651e1eSRoland Levillain * Therefore, for better accuracy in computing ieee_tan(x+y), let
36*1e651e1eSRoland Levillain * 3 2 2 2 2
37*1e651e1eSRoland Levillain * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38*1e651e1eSRoland Levillain * then
39*1e651e1eSRoland Levillain * 3 2
40*1e651e1eSRoland Levillain * tan(x+y) = x + (T1*x + (x *(r+y)+y))
41*1e651e1eSRoland Levillain *
42*1e651e1eSRoland Levillain * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
43*1e651e1eSRoland Levillain * tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
44*1e651e1eSRoland Levillain * = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
45*1e651e1eSRoland Levillain */
46*1e651e1eSRoland Levillain
47*1e651e1eSRoland Levillain #include "fdlibm.h"
48*1e651e1eSRoland Levillain
49*1e651e1eSRoland Levillain static const double xxx[] = {
50*1e651e1eSRoland Levillain 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
51*1e651e1eSRoland Levillain 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
52*1e651e1eSRoland Levillain 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
53*1e651e1eSRoland Levillain 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
54*1e651e1eSRoland Levillain 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
55*1e651e1eSRoland Levillain 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
56*1e651e1eSRoland Levillain 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
57*1e651e1eSRoland Levillain 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
58*1e651e1eSRoland Levillain 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
59*1e651e1eSRoland Levillain 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
60*1e651e1eSRoland Levillain 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
61*1e651e1eSRoland Levillain -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
62*1e651e1eSRoland Levillain 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
63*1e651e1eSRoland Levillain /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
64*1e651e1eSRoland Levillain /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
65*1e651e1eSRoland Levillain /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
66*1e651e1eSRoland Levillain };
67*1e651e1eSRoland Levillain #define one xxx[13]
68*1e651e1eSRoland Levillain #define pio4 xxx[14]
69*1e651e1eSRoland Levillain #define pio4lo xxx[15]
70*1e651e1eSRoland Levillain #define T xxx
71*1e651e1eSRoland Levillain /* INDENT ON */
72*1e651e1eSRoland Levillain
73*1e651e1eSRoland Levillain double
__kernel_tan(double x,double y,int iy)74*1e651e1eSRoland Levillain __kernel_tan(double x, double y, int iy) {
75*1e651e1eSRoland Levillain double z, r, v, w, s;
76*1e651e1eSRoland Levillain int ix, hx;
77*1e651e1eSRoland Levillain
78*1e651e1eSRoland Levillain hx = __HI(x); /* high word of x */
79*1e651e1eSRoland Levillain ix = hx & 0x7fffffff; /* high word of |x| */
80*1e651e1eSRoland Levillain if (ix < 0x3e300000) { /* x < 2**-28 */
81*1e651e1eSRoland Levillain if ((int) x == 0) { /* generate inexact */
82*1e651e1eSRoland Levillain if (((ix | __LO(x)) | (iy + 1)) == 0)
83*1e651e1eSRoland Levillain return one / ieee_fabs(x);
84*1e651e1eSRoland Levillain else {
85*1e651e1eSRoland Levillain if (iy == 1)
86*1e651e1eSRoland Levillain return x;
87*1e651e1eSRoland Levillain else { /* compute -1 / (x+y) carefully */
88*1e651e1eSRoland Levillain double a, t;
89*1e651e1eSRoland Levillain
90*1e651e1eSRoland Levillain z = w = x + y;
91*1e651e1eSRoland Levillain __LO(z) = 0;
92*1e651e1eSRoland Levillain v = y - (z - x);
93*1e651e1eSRoland Levillain t = a = -one / w;
94*1e651e1eSRoland Levillain __LO(t) = 0;
95*1e651e1eSRoland Levillain s = one + t * z;
96*1e651e1eSRoland Levillain return t + a * (s + t * v);
97*1e651e1eSRoland Levillain }
98*1e651e1eSRoland Levillain }
99*1e651e1eSRoland Levillain }
100*1e651e1eSRoland Levillain }
101*1e651e1eSRoland Levillain if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
102*1e651e1eSRoland Levillain if (hx < 0) {
103*1e651e1eSRoland Levillain x = -x;
104*1e651e1eSRoland Levillain y = -y;
105*1e651e1eSRoland Levillain }
106*1e651e1eSRoland Levillain z = pio4 - x;
107*1e651e1eSRoland Levillain w = pio4lo - y;
108*1e651e1eSRoland Levillain x = z + w;
109*1e651e1eSRoland Levillain y = 0.0;
110*1e651e1eSRoland Levillain }
111*1e651e1eSRoland Levillain z = x * x;
112*1e651e1eSRoland Levillain w = z * z;
113*1e651e1eSRoland Levillain /*
114*1e651e1eSRoland Levillain * Break x^5*(T[1]+x^2*T[2]+...) into
115*1e651e1eSRoland Levillain * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
116*1e651e1eSRoland Levillain * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
117*1e651e1eSRoland Levillain */
118*1e651e1eSRoland Levillain r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
119*1e651e1eSRoland Levillain w * T[11]))));
120*1e651e1eSRoland Levillain v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
121*1e651e1eSRoland Levillain w * T[12])))));
122*1e651e1eSRoland Levillain s = z * x;
123*1e651e1eSRoland Levillain r = y + z * (s * (r + v) + y);
124*1e651e1eSRoland Levillain r += T[0] * s;
125*1e651e1eSRoland Levillain w = x + r;
126*1e651e1eSRoland Levillain if (ix >= 0x3FE59428) {
127*1e651e1eSRoland Levillain v = (double) iy;
128*1e651e1eSRoland Levillain return (double) (1 - ((hx >> 30) & 2)) *
129*1e651e1eSRoland Levillain (v - 2.0 * (x - (w * w / (w + v) - r)));
130*1e651e1eSRoland Levillain }
131*1e651e1eSRoland Levillain if (iy == 1)
132*1e651e1eSRoland Levillain return w;
133*1e651e1eSRoland Levillain else {
134*1e651e1eSRoland Levillain /*
135*1e651e1eSRoland Levillain * if allow error up to 2 ulp, simply return
136*1e651e1eSRoland Levillain * -1.0 / (x+r) here
137*1e651e1eSRoland Levillain */
138*1e651e1eSRoland Levillain /* compute -1.0 / (x+r) accurately */
139*1e651e1eSRoland Levillain double a, t;
140*1e651e1eSRoland Levillain z = w;
141*1e651e1eSRoland Levillain __LO(z) = 0;
142*1e651e1eSRoland Levillain v = r - (z - x); /* z+v = r+x */
143*1e651e1eSRoland Levillain t = a = -1.0 / w; /* a = -1.0/w */
144*1e651e1eSRoland Levillain __LO(t) = 0;
145*1e651e1eSRoland Levillain s = 1.0 + t * z;
146*1e651e1eSRoland Levillain return t + a * (s + t * v);
147*1e651e1eSRoland Levillain }
148*1e651e1eSRoland Levillain }
149