xref: /aosp_15_r20/external/fdlibm/e_hypot.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)e_hypot.c 1.3 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /* __ieee754_hypot(x,y)
15*1e651e1eSRoland Levillain  *
16*1e651e1eSRoland Levillain  * Method :
17*1e651e1eSRoland Levillain  *	If (assume round-to-nearest) z=x*x+y*y
18*1e651e1eSRoland Levillain  *	has error less than ieee_sqrt(2)/2 ulp, than
19*1e651e1eSRoland Levillain  *	sqrt(z) has error less than 1 ulp (exercise).
20*1e651e1eSRoland Levillain  *
21*1e651e1eSRoland Levillain  *	So, compute ieee_sqrt(x*x+y*y) with some care as
22*1e651e1eSRoland Levillain  *	follows to get the error below 1 ulp:
23*1e651e1eSRoland Levillain  *
24*1e651e1eSRoland Levillain  *	Assume x>y>0;
25*1e651e1eSRoland Levillain  *	(if possible, set rounding to round-to-nearest)
26*1e651e1eSRoland Levillain  *	1. if x > 2y  use
27*1e651e1eSRoland Levillain  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
28*1e651e1eSRoland Levillain  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
29*1e651e1eSRoland Levillain  *	2. if x <= 2y use
30*1e651e1eSRoland Levillain  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
31*1e651e1eSRoland Levillain  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
32*1e651e1eSRoland Levillain  *	y1= y with lower 32 bits chopped, y2 = y-y1.
33*1e651e1eSRoland Levillain  *
34*1e651e1eSRoland Levillain  *	NOTE: scaling may be necessary if some argument is too
35*1e651e1eSRoland Levillain  *	      large or too tiny
36*1e651e1eSRoland Levillain  *
37*1e651e1eSRoland Levillain  * Special cases:
38*1e651e1eSRoland Levillain  *	hypot(x,y) is INF if x or y is +INF or -INF; else
39*1e651e1eSRoland Levillain  *	hypot(x,y) is NAN if x or y is NAN.
40*1e651e1eSRoland Levillain  *
41*1e651e1eSRoland Levillain  * Accuracy:
42*1e651e1eSRoland Levillain  * 	hypot(x,y) returns ieee_sqrt(x^2+y^2) with error less
43*1e651e1eSRoland Levillain  * 	than 1 ulps (units in the last place)
44*1e651e1eSRoland Levillain  */
45*1e651e1eSRoland Levillain 
46*1e651e1eSRoland Levillain #include "fdlibm.h"
47*1e651e1eSRoland Levillain 
48*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_hypot(double x,double y)49*1e651e1eSRoland Levillain 	double __ieee754_hypot(double x, double y)
50*1e651e1eSRoland Levillain #else
51*1e651e1eSRoland Levillain 	double __ieee754_hypot(x,y)
52*1e651e1eSRoland Levillain 	double x, y;
53*1e651e1eSRoland Levillain #endif
54*1e651e1eSRoland Levillain {
55*1e651e1eSRoland Levillain 	double a=x,b=y,t1,t2,y1,y2,w;
56*1e651e1eSRoland Levillain 	int j,k,ha,hb;
57*1e651e1eSRoland Levillain 
58*1e651e1eSRoland Levillain 	ha = __HI(x)&0x7fffffff;	/* high word of  x */
59*1e651e1eSRoland Levillain 	hb = __HI(y)&0x7fffffff;	/* high word of  y */
60*1e651e1eSRoland Levillain 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
61*1e651e1eSRoland Levillain 	__HI(a) = ha;	/* a <- |a| */
62*1e651e1eSRoland Levillain 	__HI(b) = hb;	/* b <- |b| */
63*1e651e1eSRoland Levillain 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
64*1e651e1eSRoland Levillain 	k=0;
65*1e651e1eSRoland Levillain 	if(ha > 0x5f300000) {	/* a>2**500 */
66*1e651e1eSRoland Levillain 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
67*1e651e1eSRoland Levillain 	       w = a+b;			/* for sNaN */
68*1e651e1eSRoland Levillain 	       if(((ha&0xfffff)|__LO(a))==0) w = a;
69*1e651e1eSRoland Levillain 	       if(((hb^0x7ff00000)|__LO(b))==0) w = b;
70*1e651e1eSRoland Levillain 	       return w;
71*1e651e1eSRoland Levillain 	   }
72*1e651e1eSRoland Levillain 	   /* scale a and b by 2**-600 */
73*1e651e1eSRoland Levillain 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
74*1e651e1eSRoland Levillain 	   __HI(a) = ha;
75*1e651e1eSRoland Levillain 	   __HI(b) = hb;
76*1e651e1eSRoland Levillain 	}
77*1e651e1eSRoland Levillain 	if(hb < 0x20b00000) {	/* b < 2**-500 */
78*1e651e1eSRoland Levillain 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
79*1e651e1eSRoland Levillain 		if((hb|(__LO(b)))==0) return a;
80*1e651e1eSRoland Levillain 		t1=0;
81*1e651e1eSRoland Levillain 		__HI(t1) = 0x7fd00000;	/* t1=2^1022 */
82*1e651e1eSRoland Levillain 		b *= t1;
83*1e651e1eSRoland Levillain 		a *= t1;
84*1e651e1eSRoland Levillain 		k -= 1022;
85*1e651e1eSRoland Levillain 	    } else {		/* scale a and b by 2^600 */
86*1e651e1eSRoland Levillain 	        ha += 0x25800000; 	/* a *= 2^600 */
87*1e651e1eSRoland Levillain 		hb += 0x25800000;	/* b *= 2^600 */
88*1e651e1eSRoland Levillain 		k -= 600;
89*1e651e1eSRoland Levillain 	   	__HI(a) = ha;
90*1e651e1eSRoland Levillain 	   	__HI(b) = hb;
91*1e651e1eSRoland Levillain 	    }
92*1e651e1eSRoland Levillain 	}
93*1e651e1eSRoland Levillain     /* medium size a and b */
94*1e651e1eSRoland Levillain 	w = a-b;
95*1e651e1eSRoland Levillain 	if (w>b) {
96*1e651e1eSRoland Levillain 	    t1 = 0;
97*1e651e1eSRoland Levillain 	    __HI(t1) = ha;
98*1e651e1eSRoland Levillain 	    t2 = a-t1;
99*1e651e1eSRoland Levillain 	    w  = ieee_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
100*1e651e1eSRoland Levillain 	} else {
101*1e651e1eSRoland Levillain 	    a  = a+a;
102*1e651e1eSRoland Levillain 	    y1 = 0;
103*1e651e1eSRoland Levillain 	    __HI(y1) = hb;
104*1e651e1eSRoland Levillain 	    y2 = b - y1;
105*1e651e1eSRoland Levillain 	    t1 = 0;
106*1e651e1eSRoland Levillain 	    __HI(t1) = ha+0x00100000;
107*1e651e1eSRoland Levillain 	    t2 = a - t1;
108*1e651e1eSRoland Levillain 	    w  = ieee_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
109*1e651e1eSRoland Levillain 	}
110*1e651e1eSRoland Levillain 	if(k!=0) {
111*1e651e1eSRoland Levillain 	    t1 = 1.0;
112*1e651e1eSRoland Levillain 	    __HI(t1) += (k<<20);
113*1e651e1eSRoland Levillain 	    return t1*w;
114*1e651e1eSRoland Levillain 	} else return w;
115*1e651e1eSRoland Levillain }
116