1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)e_hypot.c 1.3 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* __ieee754_hypot(x,y) 15*1e651e1eSRoland Levillain * 16*1e651e1eSRoland Levillain * Method : 17*1e651e1eSRoland Levillain * If (assume round-to-nearest) z=x*x+y*y 18*1e651e1eSRoland Levillain * has error less than ieee_sqrt(2)/2 ulp, than 19*1e651e1eSRoland Levillain * sqrt(z) has error less than 1 ulp (exercise). 20*1e651e1eSRoland Levillain * 21*1e651e1eSRoland Levillain * So, compute ieee_sqrt(x*x+y*y) with some care as 22*1e651e1eSRoland Levillain * follows to get the error below 1 ulp: 23*1e651e1eSRoland Levillain * 24*1e651e1eSRoland Levillain * Assume x>y>0; 25*1e651e1eSRoland Levillain * (if possible, set rounding to round-to-nearest) 26*1e651e1eSRoland Levillain * 1. if x > 2y use 27*1e651e1eSRoland Levillain * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y 28*1e651e1eSRoland Levillain * where x1 = x with lower 32 bits cleared, x2 = x-x1; else 29*1e651e1eSRoland Levillain * 2. if x <= 2y use 30*1e651e1eSRoland Levillain * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) 31*1e651e1eSRoland Levillain * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 32*1e651e1eSRoland Levillain * y1= y with lower 32 bits chopped, y2 = y-y1. 33*1e651e1eSRoland Levillain * 34*1e651e1eSRoland Levillain * NOTE: scaling may be necessary if some argument is too 35*1e651e1eSRoland Levillain * large or too tiny 36*1e651e1eSRoland Levillain * 37*1e651e1eSRoland Levillain * Special cases: 38*1e651e1eSRoland Levillain * hypot(x,y) is INF if x or y is +INF or -INF; else 39*1e651e1eSRoland Levillain * hypot(x,y) is NAN if x or y is NAN. 40*1e651e1eSRoland Levillain * 41*1e651e1eSRoland Levillain * Accuracy: 42*1e651e1eSRoland Levillain * hypot(x,y) returns ieee_sqrt(x^2+y^2) with error less 43*1e651e1eSRoland Levillain * than 1 ulps (units in the last place) 44*1e651e1eSRoland Levillain */ 45*1e651e1eSRoland Levillain 46*1e651e1eSRoland Levillain #include "fdlibm.h" 47*1e651e1eSRoland Levillain 48*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_hypot(double x,double y)49*1e651e1eSRoland Levillain double __ieee754_hypot(double x, double y) 50*1e651e1eSRoland Levillain #else 51*1e651e1eSRoland Levillain double __ieee754_hypot(x,y) 52*1e651e1eSRoland Levillain double x, y; 53*1e651e1eSRoland Levillain #endif 54*1e651e1eSRoland Levillain { 55*1e651e1eSRoland Levillain double a=x,b=y,t1,t2,y1,y2,w; 56*1e651e1eSRoland Levillain int j,k,ha,hb; 57*1e651e1eSRoland Levillain 58*1e651e1eSRoland Levillain ha = __HI(x)&0x7fffffff; /* high word of x */ 59*1e651e1eSRoland Levillain hb = __HI(y)&0x7fffffff; /* high word of y */ 60*1e651e1eSRoland Levillain if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} 61*1e651e1eSRoland Levillain __HI(a) = ha; /* a <- |a| */ 62*1e651e1eSRoland Levillain __HI(b) = hb; /* b <- |b| */ 63*1e651e1eSRoland Levillain if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ 64*1e651e1eSRoland Levillain k=0; 65*1e651e1eSRoland Levillain if(ha > 0x5f300000) { /* a>2**500 */ 66*1e651e1eSRoland Levillain if(ha >= 0x7ff00000) { /* Inf or NaN */ 67*1e651e1eSRoland Levillain w = a+b; /* for sNaN */ 68*1e651e1eSRoland Levillain if(((ha&0xfffff)|__LO(a))==0) w = a; 69*1e651e1eSRoland Levillain if(((hb^0x7ff00000)|__LO(b))==0) w = b; 70*1e651e1eSRoland Levillain return w; 71*1e651e1eSRoland Levillain } 72*1e651e1eSRoland Levillain /* scale a and b by 2**-600 */ 73*1e651e1eSRoland Levillain ha -= 0x25800000; hb -= 0x25800000; k += 600; 74*1e651e1eSRoland Levillain __HI(a) = ha; 75*1e651e1eSRoland Levillain __HI(b) = hb; 76*1e651e1eSRoland Levillain } 77*1e651e1eSRoland Levillain if(hb < 0x20b00000) { /* b < 2**-500 */ 78*1e651e1eSRoland Levillain if(hb <= 0x000fffff) { /* subnormal b or 0 */ 79*1e651e1eSRoland Levillain if((hb|(__LO(b)))==0) return a; 80*1e651e1eSRoland Levillain t1=0; 81*1e651e1eSRoland Levillain __HI(t1) = 0x7fd00000; /* t1=2^1022 */ 82*1e651e1eSRoland Levillain b *= t1; 83*1e651e1eSRoland Levillain a *= t1; 84*1e651e1eSRoland Levillain k -= 1022; 85*1e651e1eSRoland Levillain } else { /* scale a and b by 2^600 */ 86*1e651e1eSRoland Levillain ha += 0x25800000; /* a *= 2^600 */ 87*1e651e1eSRoland Levillain hb += 0x25800000; /* b *= 2^600 */ 88*1e651e1eSRoland Levillain k -= 600; 89*1e651e1eSRoland Levillain __HI(a) = ha; 90*1e651e1eSRoland Levillain __HI(b) = hb; 91*1e651e1eSRoland Levillain } 92*1e651e1eSRoland Levillain } 93*1e651e1eSRoland Levillain /* medium size a and b */ 94*1e651e1eSRoland Levillain w = a-b; 95*1e651e1eSRoland Levillain if (w>b) { 96*1e651e1eSRoland Levillain t1 = 0; 97*1e651e1eSRoland Levillain __HI(t1) = ha; 98*1e651e1eSRoland Levillain t2 = a-t1; 99*1e651e1eSRoland Levillain w = ieee_sqrt(t1*t1-(b*(-b)-t2*(a+t1))); 100*1e651e1eSRoland Levillain } else { 101*1e651e1eSRoland Levillain a = a+a; 102*1e651e1eSRoland Levillain y1 = 0; 103*1e651e1eSRoland Levillain __HI(y1) = hb; 104*1e651e1eSRoland Levillain y2 = b - y1; 105*1e651e1eSRoland Levillain t1 = 0; 106*1e651e1eSRoland Levillain __HI(t1) = ha+0x00100000; 107*1e651e1eSRoland Levillain t2 = a - t1; 108*1e651e1eSRoland Levillain w = ieee_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); 109*1e651e1eSRoland Levillain } 110*1e651e1eSRoland Levillain if(k!=0) { 111*1e651e1eSRoland Levillain t1 = 1.0; 112*1e651e1eSRoland Levillain __HI(t1) += (k<<20); 113*1e651e1eSRoland Levillain return t1*w; 114*1e651e1eSRoland Levillain } else return w; 115*1e651e1eSRoland Levillain } 116