xref: /aosp_15_r20/external/fdlibm/e_asin.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)e_asin.c 1.3 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /* __ieee754_asin(x)
15*1e651e1eSRoland Levillain  * Method :
16*1e651e1eSRoland Levillain  *	Since  ieee_asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
17*1e651e1eSRoland Levillain  *	we approximate ieee_asin(x) on [0,0.5] by
18*1e651e1eSRoland Levillain  *		asin(x) = x + x*x^2*R(x^2)
19*1e651e1eSRoland Levillain  *	where
20*1e651e1eSRoland Levillain  *		R(x^2) is a rational approximation of (ieee_asin(x)-x)/x^3
21*1e651e1eSRoland Levillain  *	and its remez error is bounded by
22*1e651e1eSRoland Levillain  *		|(ieee_asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
23*1e651e1eSRoland Levillain  *
24*1e651e1eSRoland Levillain  *	For x in [0.5,1]
25*1e651e1eSRoland Levillain  *		asin(x) = pi/2-2*ieee_asin(ieee_sqrt((1-x)/2))
26*1e651e1eSRoland Levillain  *	Let y = (1-x), z = y/2, s := ieee_sqrt(z), and pio2_hi+pio2_lo=pi/2;
27*1e651e1eSRoland Levillain  *	then for x>0.98
28*1e651e1eSRoland Levillain  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
29*1e651e1eSRoland Levillain  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
30*1e651e1eSRoland Levillain  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
31*1e651e1eSRoland Levillain  *		f = hi part of s;
32*1e651e1eSRoland Levillain  *		c = ieee_sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=ieee_sqrt(z)
33*1e651e1eSRoland Levillain  *	and
34*1e651e1eSRoland Levillain  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
35*1e651e1eSRoland Levillain  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
36*1e651e1eSRoland Levillain  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
37*1e651e1eSRoland Levillain  *
38*1e651e1eSRoland Levillain  * Special cases:
39*1e651e1eSRoland Levillain  *	if x is NaN, return x itself;
40*1e651e1eSRoland Levillain  *	if |x|>1, return NaN with invalid signal.
41*1e651e1eSRoland Levillain  *
42*1e651e1eSRoland Levillain  */
43*1e651e1eSRoland Levillain 
44*1e651e1eSRoland Levillain 
45*1e651e1eSRoland Levillain #include "fdlibm.h"
46*1e651e1eSRoland Levillain 
47*1e651e1eSRoland Levillain #ifdef __STDC__
48*1e651e1eSRoland Levillain static const double
49*1e651e1eSRoland Levillain #else
50*1e651e1eSRoland Levillain static double
51*1e651e1eSRoland Levillain #endif
52*1e651e1eSRoland Levillain one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
53*1e651e1eSRoland Levillain huge =  1.000e+300,
54*1e651e1eSRoland Levillain pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
55*1e651e1eSRoland Levillain pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
56*1e651e1eSRoland Levillain pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
57*1e651e1eSRoland Levillain 	/* coefficient for R(x^2) */
58*1e651e1eSRoland Levillain pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
59*1e651e1eSRoland Levillain pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
60*1e651e1eSRoland Levillain pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
61*1e651e1eSRoland Levillain pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
62*1e651e1eSRoland Levillain pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
63*1e651e1eSRoland Levillain pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
64*1e651e1eSRoland Levillain qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
65*1e651e1eSRoland Levillain qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
66*1e651e1eSRoland Levillain qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
67*1e651e1eSRoland Levillain qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
68*1e651e1eSRoland Levillain 
69*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_asin(double x)70*1e651e1eSRoland Levillain 	double __ieee754_asin(double x)
71*1e651e1eSRoland Levillain #else
72*1e651e1eSRoland Levillain 	double __ieee754_asin(x)
73*1e651e1eSRoland Levillain 	double x;
74*1e651e1eSRoland Levillain #endif
75*1e651e1eSRoland Levillain {
76*1e651e1eSRoland Levillain 	double t,w,p,q,c,r,s;
77*1e651e1eSRoland Levillain 	int hx,ix;
78*1e651e1eSRoland Levillain 	hx = __HI(x);
79*1e651e1eSRoland Levillain 	ix = hx&0x7fffffff;
80*1e651e1eSRoland Levillain 	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
81*1e651e1eSRoland Levillain 	    if(((ix-0x3ff00000)|__LO(x))==0)
82*1e651e1eSRoland Levillain 		    /* ieee_asin(1)=+-pi/2 with inexact */
83*1e651e1eSRoland Levillain 		return x*pio2_hi+x*pio2_lo;
84*1e651e1eSRoland Levillain 	    return (x-x)/(x-x);		/* ieee_asin(|x|>1) is NaN */
85*1e651e1eSRoland Levillain 	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
86*1e651e1eSRoland Levillain 	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
87*1e651e1eSRoland Levillain 		if(huge+x>one) return x;/* return x with inexact if x!=0*/
88*1e651e1eSRoland Levillain 	    } else
89*1e651e1eSRoland Levillain 		t = x*x;
90*1e651e1eSRoland Levillain 		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
91*1e651e1eSRoland Levillain 		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
92*1e651e1eSRoland Levillain 		w = p/q;
93*1e651e1eSRoland Levillain 		return x+x*w;
94*1e651e1eSRoland Levillain 	}
95*1e651e1eSRoland Levillain 	/* 1> |x|>= 0.5 */
96*1e651e1eSRoland Levillain 	w = one-ieee_fabs(x);
97*1e651e1eSRoland Levillain 	t = w*0.5;
98*1e651e1eSRoland Levillain 	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
99*1e651e1eSRoland Levillain 	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
100*1e651e1eSRoland Levillain 	s = ieee_sqrt(t);
101*1e651e1eSRoland Levillain 	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
102*1e651e1eSRoland Levillain 	    w = p/q;
103*1e651e1eSRoland Levillain 	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
104*1e651e1eSRoland Levillain 	} else {
105*1e651e1eSRoland Levillain 	    w  = s;
106*1e651e1eSRoland Levillain 	    __LO(w) = 0;
107*1e651e1eSRoland Levillain 	    c  = (t-w*w)/(s+w);
108*1e651e1eSRoland Levillain 	    r  = p/q;
109*1e651e1eSRoland Levillain 	    p  = 2.0*s*r-(pio2_lo-2.0*c);
110*1e651e1eSRoland Levillain 	    q  = pio4_hi-2.0*w;
111*1e651e1eSRoland Levillain 	    t  = pio4_hi-(p-q);
112*1e651e1eSRoland Levillain 	}
113*1e651e1eSRoland Levillain 	if(hx>0) return t; else return -t;
114*1e651e1eSRoland Levillain }
115