1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)e_asin.c 1.3 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* __ieee754_asin(x) 15*1e651e1eSRoland Levillain * Method : 16*1e651e1eSRoland Levillain * Since ieee_asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... 17*1e651e1eSRoland Levillain * we approximate ieee_asin(x) on [0,0.5] by 18*1e651e1eSRoland Levillain * asin(x) = x + x*x^2*R(x^2) 19*1e651e1eSRoland Levillain * where 20*1e651e1eSRoland Levillain * R(x^2) is a rational approximation of (ieee_asin(x)-x)/x^3 21*1e651e1eSRoland Levillain * and its remez error is bounded by 22*1e651e1eSRoland Levillain * |(ieee_asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) 23*1e651e1eSRoland Levillain * 24*1e651e1eSRoland Levillain * For x in [0.5,1] 25*1e651e1eSRoland Levillain * asin(x) = pi/2-2*ieee_asin(ieee_sqrt((1-x)/2)) 26*1e651e1eSRoland Levillain * Let y = (1-x), z = y/2, s := ieee_sqrt(z), and pio2_hi+pio2_lo=pi/2; 27*1e651e1eSRoland Levillain * then for x>0.98 28*1e651e1eSRoland Levillain * asin(x) = pi/2 - 2*(s+s*z*R(z)) 29*1e651e1eSRoland Levillain * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) 30*1e651e1eSRoland Levillain * For x<=0.98, let pio4_hi = pio2_hi/2, then 31*1e651e1eSRoland Levillain * f = hi part of s; 32*1e651e1eSRoland Levillain * c = ieee_sqrt(z) - f = (z-f*f)/(s+f) ...f+c=ieee_sqrt(z) 33*1e651e1eSRoland Levillain * and 34*1e651e1eSRoland Levillain * asin(x) = pi/2 - 2*(s+s*z*R(z)) 35*1e651e1eSRoland Levillain * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) 36*1e651e1eSRoland Levillain * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) 37*1e651e1eSRoland Levillain * 38*1e651e1eSRoland Levillain * Special cases: 39*1e651e1eSRoland Levillain * if x is NaN, return x itself; 40*1e651e1eSRoland Levillain * if |x|>1, return NaN with invalid signal. 41*1e651e1eSRoland Levillain * 42*1e651e1eSRoland Levillain */ 43*1e651e1eSRoland Levillain 44*1e651e1eSRoland Levillain 45*1e651e1eSRoland Levillain #include "fdlibm.h" 46*1e651e1eSRoland Levillain 47*1e651e1eSRoland Levillain #ifdef __STDC__ 48*1e651e1eSRoland Levillain static const double 49*1e651e1eSRoland Levillain #else 50*1e651e1eSRoland Levillain static double 51*1e651e1eSRoland Levillain #endif 52*1e651e1eSRoland Levillain one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 53*1e651e1eSRoland Levillain huge = 1.000e+300, 54*1e651e1eSRoland Levillain pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ 55*1e651e1eSRoland Levillain pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ 56*1e651e1eSRoland Levillain pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 57*1e651e1eSRoland Levillain /* coefficient for R(x^2) */ 58*1e651e1eSRoland Levillain pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ 59*1e651e1eSRoland Levillain pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ 60*1e651e1eSRoland Levillain pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ 61*1e651e1eSRoland Levillain pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ 62*1e651e1eSRoland Levillain pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ 63*1e651e1eSRoland Levillain pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ 64*1e651e1eSRoland Levillain qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ 65*1e651e1eSRoland Levillain qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ 66*1e651e1eSRoland Levillain qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ 67*1e651e1eSRoland Levillain qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ 68*1e651e1eSRoland Levillain 69*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_asin(double x)70*1e651e1eSRoland Levillain double __ieee754_asin(double x) 71*1e651e1eSRoland Levillain #else 72*1e651e1eSRoland Levillain double __ieee754_asin(x) 73*1e651e1eSRoland Levillain double x; 74*1e651e1eSRoland Levillain #endif 75*1e651e1eSRoland Levillain { 76*1e651e1eSRoland Levillain double t,w,p,q,c,r,s; 77*1e651e1eSRoland Levillain int hx,ix; 78*1e651e1eSRoland Levillain hx = __HI(x); 79*1e651e1eSRoland Levillain ix = hx&0x7fffffff; 80*1e651e1eSRoland Levillain if(ix>= 0x3ff00000) { /* |x|>= 1 */ 81*1e651e1eSRoland Levillain if(((ix-0x3ff00000)|__LO(x))==0) 82*1e651e1eSRoland Levillain /* ieee_asin(1)=+-pi/2 with inexact */ 83*1e651e1eSRoland Levillain return x*pio2_hi+x*pio2_lo; 84*1e651e1eSRoland Levillain return (x-x)/(x-x); /* ieee_asin(|x|>1) is NaN */ 85*1e651e1eSRoland Levillain } else if (ix<0x3fe00000) { /* |x|<0.5 */ 86*1e651e1eSRoland Levillain if(ix<0x3e400000) { /* if |x| < 2**-27 */ 87*1e651e1eSRoland Levillain if(huge+x>one) return x;/* return x with inexact if x!=0*/ 88*1e651e1eSRoland Levillain } else 89*1e651e1eSRoland Levillain t = x*x; 90*1e651e1eSRoland Levillain p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 91*1e651e1eSRoland Levillain q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 92*1e651e1eSRoland Levillain w = p/q; 93*1e651e1eSRoland Levillain return x+x*w; 94*1e651e1eSRoland Levillain } 95*1e651e1eSRoland Levillain /* 1> |x|>= 0.5 */ 96*1e651e1eSRoland Levillain w = one-ieee_fabs(x); 97*1e651e1eSRoland Levillain t = w*0.5; 98*1e651e1eSRoland Levillain p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); 99*1e651e1eSRoland Levillain q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); 100*1e651e1eSRoland Levillain s = ieee_sqrt(t); 101*1e651e1eSRoland Levillain if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ 102*1e651e1eSRoland Levillain w = p/q; 103*1e651e1eSRoland Levillain t = pio2_hi-(2.0*(s+s*w)-pio2_lo); 104*1e651e1eSRoland Levillain } else { 105*1e651e1eSRoland Levillain w = s; 106*1e651e1eSRoland Levillain __LO(w) = 0; 107*1e651e1eSRoland Levillain c = (t-w*w)/(s+w); 108*1e651e1eSRoland Levillain r = p/q; 109*1e651e1eSRoland Levillain p = 2.0*s*r-(pio2_lo-2.0*c); 110*1e651e1eSRoland Levillain q = pio4_hi-2.0*w; 111*1e651e1eSRoland Levillain t = pio4_hi-(p-q); 112*1e651e1eSRoland Levillain } 113*1e651e1eSRoland Levillain if(hx>0) return t; else return -t; 114*1e651e1eSRoland Levillain } 115