xref: /aosp_15_r20/external/executorch/exir/tests/test_common.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Meta Platforms, Inc. and affiliates.
2# All rights reserved.
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6
7# pyre-strict
8
9import re
10import unittest
11
12import torch
13import torch.fx
14
15from executorch.exir.common import extract_out_arguments, get_schema_for_operators
16from executorch.exir.print_program import add_cursor_to_graph
17
18
19class TestExirCommon(unittest.TestCase):
20    def test_get_schema_for_operators(self) -> None:
21        op_list = [
22            "torch.ops._caffe2.RoIAlign.default",
23            "torch.ops.aten.add.Tensor",
24            "torch.ops.aten.batch_norm.default",
25            "torch.ops.aten.cat.default",
26            "torch.ops.aten.clamp.default",
27        ]
28
29        schemas = get_schema_for_operators(op_list)
30        pat = re.compile(r"[^\(]+\([^\)]+\) -> ")
31        for _op_name, schema in schemas.items():
32            self.assertIsNotNone(re.match(pat, schema))
33
34    def test_get_out_args(self) -> None:
35        schema1 = torch._C.parse_schema(
36            "aten::absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)"
37        )
38        schema2 = torch._C.parse_schema(
39            "split_copy.Tensor_out(Tensor self, int split_size, int dim=0, *, Tensor(a!)[] out) -> ()"
40        )
41
42        out_args_1 = extract_out_arguments(schema1, {"out": torch.ones(5)})
43        out_args_2 = extract_out_arguments(
44            schema2, {"out": [torch.ones(5), torch.ones(5)]}
45        )
46
47        out_arg_name_1, _ = out_args_1
48        self.assertEqual(out_arg_name_1, "out")
49
50        out_arg_name_2, _ = out_args_2
51        self.assertEqual(out_arg_name_2, "out")
52
53    def test_add_cursor(self) -> None:
54        class MyModule(torch.nn.Module):
55            def __init__(self):
56                super().__init__()
57                self.param = torch.nn.Parameter(torch.rand(3, 4))
58                self.linear = torch.nn.Linear(4, 5)
59
60            def forward(self, x):
61                return self.linear(x + self.param).clamp(min=0.0, max=1.0)
62
63        module = MyModule()
64
65        from torch.fx import symbolic_trace
66
67        symbolic_traced = symbolic_trace(module)
68
69        # Graph we are testing:
70        # graph():
71        #   %x : [#users=1] = placeholder[target=x]
72        #   %param : [#users=1] = get_attr[target=param]
73        #   %add : [#users=1] = call_function[target=operator.add](args = (%x, %param), kwargs = {})
74        # --> %linear : [#users=1] = call_module[target=linear](args = (%add,), kwargs = {})
75        #   %clamp : [#users=1] = call_method[target=clamp](args = (%linear,), kwargs = {min: 0.0, max: 1.0})
76        #   return clamp
77
78        actual_str = add_cursor_to_graph(
79            symbolic_traced.graph, list(symbolic_traced.graph.nodes)[3]
80        )
81        self.assertTrue(actual_str.split("\n")[4].startswith("-->"))
82