|
Name |
|
Date |
Size |
#Lines |
LOC |
| .. | | - | - |
| aot_utils/ | H | 25-Apr-2025 | - | 2,375 | 1,942 |
| eval_utils/ | H | 25-Apr-2025 | - | 199 | 153 |
| executor_runner/ | H | 25-Apr-2025 | - | 4,550 | 3,221 |
| model_export_scripts/ | H | 25-Apr-2025 | - | 1,510 | 1,197 |
| models/llm_models/ | H | 25-Apr-2025 | - | 1,238,983 | 1,238,828 |
| shell_scripts/ | H | 25-Apr-2025 | - | 79 | 71 |
| CMakeLists.txt | H A D | 25-Apr-2025 | 5.4 KiB | 180 | 153 |
| README.md | H A D | 25-Apr-2025 | 6.6 KiB | 132 | 109 |
| mtk_build_examples.sh | H A D | 25-Apr-2025 | 2.3 KiB | 76 | 44 |
README.md
1# Directory Structure
2
3Below is the layout of the `examples/mediatek` directory, which includes the necessary files for the example applications:
4
5```plaintext
6examples/mediatek
7├── aot_utils # Utils for AoT export
8 ├── llm_utils # Utils for LLM models
9 ├── preformatter_templates # Model specific prompt preformatter templates
10 ├── prompts # Calibration Prompts
11 ├── tokenizers_ # Model tokenizer scripts
12 ├── oss_utils # Utils for oss models
13├── eval_utils # Utils for eval oss models
14├── model_export_scripts # Model specifc export scripts
15├── models # Model definitions
16 ├── llm_models # LLM model definitions
17 ├── weights # LLM model weights location (Offline) [Ensure that config.json, relevant tokenizer files and .bin or .safetensors weights file(s) are placed here]
18├── executor_runner # Example C++ wrapper for the ExecuTorch runtime
19├── pte # Generated .pte files location
20├── shell_scripts # Shell scripts to quickrun model specific exports
21├── CMakeLists.txt # CMake build configuration file for compiling examples
22├── requirements.txt # MTK and other required packages
23├── mtk_build_examples.sh # Script for building MediaTek backend and the examples
24└── README.md # Documentation for the examples (this file)
25```
26# Examples Build Instructions
27
28## Environment Setup
29- Follow the instructions of **Prerequisites** and **Setup** in `backends/mediatek/scripts/README.md`.
30
31## Build MediaTek Examples
321. Build the backend and the examples by exedcuting the script:
33```bash
34./mtk_build_examples.sh
35```
36
37## LLaMa Example Instructions
38##### Note: Verify that localhost connection is available before running AoT Flow
391. Exporting Models to `.pte`
40- In the `examples/mediatek directory`, run:
41```bash
42source shell_scripts/export_llama.sh <model_name> <num_chunks> <prompt_num_tokens> <cache_size> <calibration_set_name>
43```
44- Defaults:
45 - `model_name` = llama3
46 - `num_chunks` = 4
47 - `prompt_num_tokens` = 128
48 - `cache_size` = 1024
49 - `calibration_set_name` = None
50- Argument Explanations/Options:
51 - `model_name`: llama2/llama3
52 <sub>**Note: Currently Only Tested on Llama2 7B Chat and Llama3 8B Instruct.**</sub>
53 - `num_chunks`: Number of chunks to split the model into. Each chunk contains the same number of decoder layers. Will result in `num_chunks` number of `.pte` files being generated. Typical values are 1, 2 and 4.
54 - `prompt_num_tokens`: Number of tokens (> 1) consumed each forward pass for the prompt processing stage.
55 - `cache_size`: Cache Size.
56 - `calibration_set_name`: Name of calibration dataset with extension that is found inside the `aot_utils/llm_utils/prompts` directory. Example: `alpaca.txt`. If `"None"`, will use dummy data to calibrate.
57 <sub>**Note: Export script example only tested on `.txt` file.**</sub>
58
592. `.pte` files will be generated in `examples/mediatek/pte`
60 - Users should expect `num_chunks*2` number of pte files (half of them for prompt and half of them for generation).
61 - Generation `.pte` files have "`1t`" in their names.
62 - Additionally, an embedding bin file will be generated in the weights folder where the `config.json` can be found in. [`examples/mediatek/models/llm_models/weights/<model_name>/embedding_<model_config_folder>_fp32.bin`]
63 - eg. For `llama3-8B-instruct`, embedding bin generated in `examples/mediatek/models/llm_models/weights/llama3-8B-instruct/`
64 - AoT flow will take roughly 2.5 hours (114GB RAM for `num_chunks=4`) to complete (Results will vary by device/hardware configurations)
65
66### oss
671. Exporting Model to `.pte`
68```bash
69bash shell_scripts/export_oss.sh <model_name>
70```
71- Argument Options:
72 - `model_name`: deeplabv3/edsr/inceptionv3/inceptionv4/mobilenetv2/mobilenetv3/resnet18/resnet50
73
74# Runtime
75## Environment Setup
76
77To set up the build environment for the `mtk_executor_runner`:
78
791. Navigate to the `backends/mediatek/scripts` directory within the repository.
802. Follow the detailed build steps provided in that location.
813. Upon successful completion of the build steps, the `mtk_executor_runner` binary will be generated.
82
83## Deploying and Running on the Device
84
85### Pushing Files to the Device
86
87Transfer the `.pte` model files and the `mtk_executor_runner` binary to your Android device using the following commands:
88
89```bash
90adb push mtk_executor_runner <PHONE_PATH, e.g. /data/local/tmp>
91adb push <MODEL_NAME>.pte <PHONE_PATH, e.g. /data/local/tmp>
92```
93
94Make sure to replace `<MODEL_NAME>` with the actual name of your model file. And, replace the `<PHONE_PATH>` with the desired detination on the device.
95
96##### Note: For oss models, please push additional files to your Android device
97```bash
98adb push mtk_oss_executor_runner <PHONE_PATH, e.g. /data/local/tmp>
99adb push input_list.txt <PHONE_PATH, e.g. /data/local/tmp>
100for i in input*bin; do adb push "$i" <PHONE_PATH, e.g. /data/local/tmp>; done;
101```
102
103### Executing the Model
104
105Execute the model on your Android device by running:
106
107```bash
108adb shell "/data/local/tmp/mtk_executor_runner --model_path /data/local/tmp/<MODEL_NAME>.pte --iteration <ITER_TIMES>"
109```
110
111In the command above, replace `<MODEL_NAME>` with the name of your model file and `<ITER_TIMES>` with the desired number of iterations to run the model.
112
113##### Note: For llama models, please use `mtk_llama_executor_runner`. Refer to `examples/mediatek/executor_runner/run_llama3_sample.sh` for reference.
114##### Note: For oss models, please use `mtk_oss_executor_runner`.
115```bash
116adb shell "/data/local/tmp/mtk_oss_executor_runner --model_path /data/local/tmp/<MODEL_NAME>.pte --input_list /data/local/tmp/input_list.txt --output_folder /data/local/tmp/output_<MODEL_NAME>"
117adb pull "/data/local/tmp/output_<MODEL_NAME> ./"
118```
119
120### Check oss result on PC
121```bash
122python3 eval_utils/eval_oss_result.py --eval_type <eval_type> --target_f <golden_folder> --output_f <prediction_folder>
123```
124For example:
125```
126python3 eval_utils/eval_oss_result.py --eval_type piq --target_f edsr --output_f output_edsr
127```
128- Argument Options:
129 - `eval_type`: topk/piq/segmentation
130 - `target_f`: folder contain golden data files. file name is `golden_<data_idx>_0.bin`
131 - `output_f`: folder contain model output data files. file name is `output_<data_idx>_0.bin`
132