1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2013 Christoph Hertzberg <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <unsupported/Eigen/AutoDiff>
12*bf2c3715SXin Li
13*bf2c3715SXin Li /*
14*bf2c3715SXin Li * In this file scalar derivations are tested for correctness.
15*bf2c3715SXin Li * TODO add more tests!
16*bf2c3715SXin Li */
17*bf2c3715SXin Li
check_atan2()18*bf2c3715SXin Li template<typename Scalar> void check_atan2()
19*bf2c3715SXin Li {
20*bf2c3715SXin Li typedef Matrix<Scalar, 1, 1> Deriv1;
21*bf2c3715SXin Li typedef AutoDiffScalar<Deriv1> AD;
22*bf2c3715SXin Li
23*bf2c3715SXin Li AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX());
24*bf2c3715SXin Li
25*bf2c3715SXin Li using std::exp;
26*bf2c3715SXin Li Scalar r = exp(internal::random<Scalar>(-10, 10));
27*bf2c3715SXin Li
28*bf2c3715SXin Li AD s = sin(x), c = cos(x);
29*bf2c3715SXin Li AD res = atan2(r*s, r*c);
30*bf2c3715SXin Li
31*bf2c3715SXin Li VERIFY_IS_APPROX(res.value(), x.value());
32*bf2c3715SXin Li VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
33*bf2c3715SXin Li
34*bf2c3715SXin Li res = atan2(r*s+0, r*c+0);
35*bf2c3715SXin Li VERIFY_IS_APPROX(res.value(), x.value());
36*bf2c3715SXin Li VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
37*bf2c3715SXin Li }
38*bf2c3715SXin Li
check_hyperbolic_functions()39*bf2c3715SXin Li template<typename Scalar> void check_hyperbolic_functions()
40*bf2c3715SXin Li {
41*bf2c3715SXin Li using std::sinh;
42*bf2c3715SXin Li using std::cosh;
43*bf2c3715SXin Li using std::tanh;
44*bf2c3715SXin Li typedef Matrix<Scalar, 1, 1> Deriv1;
45*bf2c3715SXin Li typedef AutoDiffScalar<Deriv1> AD;
46*bf2c3715SXin Li Deriv1 p = Deriv1::Random();
47*bf2c3715SXin Li AD val(p.x(),Deriv1::UnitX());
48*bf2c3715SXin Li
49*bf2c3715SXin Li Scalar cosh_px = std::cosh(p.x());
50*bf2c3715SXin Li AD res1 = tanh(val);
51*bf2c3715SXin Li VERIFY_IS_APPROX(res1.value(), std::tanh(p.x()));
52*bf2c3715SXin Li VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px));
53*bf2c3715SXin Li
54*bf2c3715SXin Li AD res2 = sinh(val);
55*bf2c3715SXin Li VERIFY_IS_APPROX(res2.value(), std::sinh(p.x()));
56*bf2c3715SXin Li VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px);
57*bf2c3715SXin Li
58*bf2c3715SXin Li AD res3 = cosh(val);
59*bf2c3715SXin Li VERIFY_IS_APPROX(res3.value(), cosh_px);
60*bf2c3715SXin Li VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x()));
61*bf2c3715SXin Li
62*bf2c3715SXin Li // Check constant values.
63*bf2c3715SXin Li const Scalar sample_point = Scalar(1) / Scalar(3);
64*bf2c3715SXin Li val = AD(sample_point,Deriv1::UnitX());
65*bf2c3715SXin Li res1 = tanh(val);
66*bf2c3715SXin Li VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914));
67*bf2c3715SXin Li
68*bf2c3715SXin Li res2 = sinh(val);
69*bf2c3715SXin Li VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939));
70*bf2c3715SXin Li
71*bf2c3715SXin Li res3 = cosh(val);
72*bf2c3715SXin Li VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150));
73*bf2c3715SXin Li }
74*bf2c3715SXin Li
75*bf2c3715SXin Li template <typename Scalar>
check_limits_specialization()76*bf2c3715SXin Li void check_limits_specialization()
77*bf2c3715SXin Li {
78*bf2c3715SXin Li typedef Eigen::Matrix<Scalar, 1, 1> Deriv;
79*bf2c3715SXin Li typedef Eigen::AutoDiffScalar<Deriv> AD;
80*bf2c3715SXin Li
81*bf2c3715SXin Li typedef std::numeric_limits<AD> A;
82*bf2c3715SXin Li typedef std::numeric_limits<Scalar> B;
83*bf2c3715SXin Li
84*bf2c3715SXin Li // workaround "unused typedef" warning:
85*bf2c3715SXin Li VERIFY(!bool(internal::is_same<B, A>::value));
86*bf2c3715SXin Li
87*bf2c3715SXin Li #if EIGEN_HAS_CXX11
88*bf2c3715SXin Li VERIFY(bool(std::is_base_of<B, A>::value));
89*bf2c3715SXin Li #endif
90*bf2c3715SXin Li }
91*bf2c3715SXin Li
EIGEN_DECLARE_TEST(autodiff_scalar)92*bf2c3715SXin Li EIGEN_DECLARE_TEST(autodiff_scalar)
93*bf2c3715SXin Li {
94*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
95*bf2c3715SXin Li CALL_SUBTEST_1( check_atan2<float>() );
96*bf2c3715SXin Li CALL_SUBTEST_2( check_atan2<double>() );
97*bf2c3715SXin Li CALL_SUBTEST_3( check_hyperbolic_functions<float>() );
98*bf2c3715SXin Li CALL_SUBTEST_4( check_hyperbolic_functions<double>() );
99*bf2c3715SXin Li CALL_SUBTEST_5( check_limits_specialization<double>());
100*bf2c3715SXin Li }
101*bf2c3715SXin Li }
102